К какой отрасли относится электроэнергетика. Единая энергетическая система России. Перспективы развития отрасли

Электроэнергетика занимается производством и передачей электроэнергии и является одной из базовых отраслей тяжелой промышленности.

По производству электроэнергии Россия находится на 2-м месте в мире после США, но разрыв по этому показателю между нашими странами весьма значителен (в 1992 г.

В России было произведено 976 млрд кВт?ч электроэнергии, а в США - более 3000, т. е. более чем втрое.

В последние пятьдесят лет электроэнергетика была в нашей стране одной из наиболее динамично развивающихся отраслей, она опережала по темпам развития как промышленность в целом, так и тяжелую индустрию. Однако последние годы характеризовались снижением темпов увеличения производства электроэнергии, а в 1991 году впервые произошло уменьшение абсолютных показателей производства (табл. 3.1).

Таблица 3.1. Производство электроэнергии в России, млрд кВт-ч.*

* Из кн.: Российский статистический ежегодник. - М., 1997. - С. 344.

В настоящее время электроэнергетика России находится в глубоком кризисе. Ежегодный ввод мощностей снизился до уровня 1950-х гг., более половины электроэнергетического оборудования устарело, нуждается в реконструкции, а часть - в немедленной замене. Резкое сокращение резервов мощностей приводит к сложному положению со снабжением электроэнергией в ряде регионов (особенно на Северном Кавказе, Дальнем Востоке).

Основная часть электроэнергии, производимой в России, 1 используется промышленностью - 60% (в США соответственно 39,5), причем большую часть потребляет тяжелая индустрия - машиностроение, металлургии, химическая, лесная, 9% электрической энергии потребляется в сельском хозяйстве (в США - 4,2), 9,7% - транспортом (в США - 0,2%), 13,5% - другими отраслями - сфера обслуживания и быта, реклама и пр. (в США это основная сфера потребления электроэнергии - 44,5%). Часть производимой электроэнергии идет на экспорт. Потери электроэнергии в России составляют около 8% ее производства (в США - 11,6%).

Отличительная особенность экономики России (так же и ранее СССР) - более высокая по сравнению с развитым: странами удельная энергоемкость производимого национального дохода (почти в полтора раза выше, чем в США), поэтому необходимо широко внедрять энергосберегающие технологии и технику. Тем не менее даже в условиях снижения энергоемкости ВНП спецификой развития производства энергии является постоянно возрастающая потребность в ней производственной и социальной сферы. Важную роль электроэнергетика играет в условиях перехода к рыночной экономике, от ее развития во многом зависит выход из экономического кризиса, решение социальных проблем. На решение социальных задач в 1991-2000 гг. пойдет свыше 50% прироста потребления электроэнергии, а в 2000-2010 гг. - почти 60%.

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и по размерам (разумеется, с учетом потерь), и во времени. Существуют устойчивые межрайонные связи по ввозу и вывозу электроэнергии: электроэнергетика является отраслью специализации Поволжского и Восточно-Сибирского крупных экономических районов. Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоемкие и теплоемкие производства (выплавка алюминия, титана, ферросплавов, производство химических волокон и др.). Например, Саянский ТПК (на базе Саяно-Шушенской ГЭС) - электрометаллургия: сооружается Саянский алюминиевый завод, завод по обработке цветных металлов, строится молибденовый комбинат, в перспективе намечается строительство электрометаллургического комбината.

В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Представить без электроэнергии наш быт также невозможно. Столь широкое распространение объясняется ее специфическими свойствами:

· возможности превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и т.п.);

· способности относительно просто передаваться на значительные расстояния в больших количествах;

· огромным скоростям протекания электромагнитных процессов;

· способности к дроблению энергии и образование ее параметров (изменение напряжения, частоты).

В промышленности электрическая энергия применяется для приведения в действие различных механизмов и непосредственно в технологических процессах. Работа современных средств связи (телеграфа, телефона, радио, телевидения) основана на применении электроэнергии. Без нее невозможно было бы развитие кибернетики, вычислительной техники, космической техники.

В сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и др.) были созданы благодаря развитию электротехнической промышленности.

Электроэнергетика - важнейшая часть жизнедеятельности человека. Уровень ее развития отражает уровень развития производительных сил общества и возможности научно-технического прогресса.

Становление электроэнергетики России связано с планом ГОЭЛРО (1920 г.) План ГОЭЛРО, рассчитанный на 10-15 лет, предусматривал строительство 10 гидроэлектростанций и 20 паровых электростанций суммарной мощностью 1,5 млн кВт. Фактически план был реализован за 10 лет - к 1931 году, а к концу 1935 г. вместо 30 электростанций были построены 40 районных электростанций, в том числе Свирская и Волховская гидроэлектростанции, Шатурская ГРЭС на торфе и Каширская ГРЭС на подмосковных углях.

Основу плана составили:

· широкое использование на электростанциях местных топливных ресурсов;

· создание высоковольтных электрических сетей, объединяющих мощные станции;

· экономическое использование топлива, достигаемое параллельной работой ТЭС и ГЭС;

· сооружение ГЭС в первую очередь в районах, бедных органическим топливом.

План ГОЭЛРО создал базу индустриализации России. В 1920-е годы наша страна занимала одно из последних мест по выработке энергии, а уже в конце 1940-х годов она заняла первое место в Европе и второе в мире.

Развитие и размещение основных типов электростанций в России. В последующие годы электроэнергетика развивалась быстрыми темпами, строились линии электропередач (ЛЭП). Одновременно с гидравлическими и тепловыми электростанциями стала развиваться атомная энергетика.

Тепловые электростанции (ТЭС). Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн кВт) ГРЭС - государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

На размещение тепловых электростанция оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива. Тепловые электростанции, использующие местные виды топлива (торф, сланцы, низкокалорийные и многозольные угли), ориентируются на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Что же касается тепловых электростанций, работающих на мазуте, то они располагаются преимущественно в центрах нефтеперерабатывающей промышленности. В табл. 3.2 приводятся характеристики крупнейших ГРЭС.

Таблица 3.2. ГРЭС мощностью более 2 млн кВт

Крупными тепловыми электростанциями являются ГРЭС на углях Канско-Ачинского бассейна, Березовская ГРЭС-1 и ГРЭС-2. Сургутская ГРЭС-2, Уренгойская ГРЭС (работает на газе).

На базе Канско-Ачинского бассейна создается мощный территориально-производственный комплекс. Проект ТПК предполагал создание на территории около 10 тыс. км2 вокруг Красноярска 10 уникальных сверхмощных ГРЭС по 6,4 млн кВт. В настоящее время число запланированных ГРЭС уменьшено пока до 8 (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах).

На данный момент начато сооружение только 1-й очереди ТПК. В 1989 г. был введен в эксплуатацию 1-й агрегат Березовской ГРЭС-1 мощностью 800 тыс. кВт и уже решен вопрос о строительстве ГРЭС-2 и ГРЭС-3 такой же мощности (на расстоянии всего 9 км друг от друга).

Преимущества тепловых электростанций по сравнению с другими типами электростанций заключаются в следующем: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний (в отличие от ГРЭС).

К недостаткам относятся: использование невозобновимых топливных ресурсов; низкий КПД, крайне неблагоприятное воздействие на окружающую среду.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрида; они поглощают огромное количество кислорода воздуха. К настоящему времени установлено, что и радиоактивная обстановка вокруг тепловых электростанций, работающих на угле, в среднем (в мире) в 100 раз выше, чем вблизи АЭС такой же мощности (так как обычный уголь в качестве микропримесей почти всегда содержит уран-238, торий-232 и радиоактивный изотоп углерода). ТЭС нашей страны в отличие от зарубежных до сих пор не оснащены сколь-либо эффективными системами очистки уходящих газов от оксидов серы и азота. Правда, ТЭС на природном газе существенно экологически чище угольных, мазутных и сланцевых, но огромный экологический вред наносит природе прокладка газопроводов, особенно в северных районах.

Несмотря на отмеченные недостатки, в ближайшей перспективе (до 2000 года) доля ТЭС в приросте производства электроэнергии должна составить 78-88% (так как прирост производства на АЭС в связи с повышением требований и их безопасности в лучшем случае будет весьма незначительным, сооружение ГЭС будет ограничиваться возведением плотин главным образом в условиях с минимальными площадями затопления).

Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута. В ближайшей перспективе планируется увеличение доли газа в топливном балансе электростанций западных районов, в регионах со сложной экологической обстановкой, особенно в крупных городах. Тепловые электростанции восточных районов будут базироваться в основном на угле, прежде всего дешевом угле открытой добычи Канско-Ачинского бассейна.

Гидравлические электростанции (ГЭС). На втором месте по количеству вырабатываемой электроэнергии находится ГЭС (в 1991 г. - 16,5%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, обладают простотой управления (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД (более 80%). В результате производимая на ГЭС энергия самая дешевая. Огромное достоинство ГЭС - высокая маневренность, т. е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных "пиковых" электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

Но строительство ГЭС требует больших сроков и больших удельных капиталовложений, ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период времени, причем только в многоводные годы. Поэтому несмотря на обеспеченность России гидроэнергетическими ресурсами гидроэнергетика не может служит основой выработки электроэнергии в стране.

Наиболее мощные ГЭС построены в Сибири, где осваиваются гидроресурсы наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны (табл. 3.3).

Таблица 3.3. ГЭС мощностью более 2 млн кВт

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - это группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы; ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для создания нормального судоходства и орошения это необходимо.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре, строится Богучанская ГЭС (4 млн кВт).

В европейской части страны создан крупный каскад ГЭС на Волге: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская им. В.И. Ленина, Саратовская, Волжская.

Весьма перспективным является строительство гидроаккумулирующих электростанций - ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность в электроэнергии, мала вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой ночью электростанциями. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ГЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС (а также ПГУ, ГТУ). Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (2,6 млн кВт).

Атомные электростанции. Доля АЭС в суммарной выработке электроэнергии - около 12% (в США - 19,6%, в Великобритании - 18,9, в ФРГ - 34%, в Бельгии - 65%, во Франции - свыше 76%). Планировалось, что удельный вес АЭС в производстве электроэнергии достигнет в СССР в 1990 г. 20%, фактически было достигнуто только 12,3%. Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только 4 энергоблока.

В настоящее время ситуация меняется, правительством было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт (табл. 3.4). Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

Таблица 3.4. Мощность действующих АЭС

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта.

Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий.

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

2. Катастрофические последствия аварий на наших АЭС - вследствие несовершенной системы защиты.

3. Тепловое загрязнение используемых АЭС водоемов. Функционирование АЭС как объектов повышенной опасности требует участия государственных органов власти и управления в формировании направлений развития, выделении необходимых средств.

Все большее внимание в перспективе будет уделяться использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла земли, морских приливов. Уже построены опытные электростанции на этих нетрадиционных источниках энергии: на приливных волнах на Кольском полуострове Кислогубская и Мезенская, на термальных водах Камчатки - электростанции близ реки Паужетки и др. Ветровые энергоустановки в жилых поселках Крайнего Севера мощностью до 4 кВт используются для защиты от коррозии магистральных газо- и нефтепроводов, на морских промыслах. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса.

Для более экономичного, рационального и комплексного использования общего потенциала электростанции нашей страны создана Единая энергетическая система (ЕЭС), в которой работают свыше 700 крупных электростанций, имеющих общую мощность свыше 250 млн кВт (т. е. 84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра, оснащенного электронно-вычислительной техникой.

Экономические преимущества Единой энергосистемы очевидны. Мощные линии электропередачи значительно повышают надежность снабжения электроэнергией народного хозяйства, выращивают суточные и годовые графики потребления электроэнергии, улучшают экономические показатели станций, создают условия для полной электрификации районов, еще испытывающих недостаток в электроэнергии. В состав ЕЭС на территории бывшего СССР входят многочисленные электростанции, которые работают параллельно в едином режиме, сосредоточивая 4/5 суммарной мощности электростанций страны. ЕЭС распространяет свое влияние на территорию свыше 10 млн км2 с населением около 220 млн чел. Всего в стране насчитывается примерно 100 районных энергосистем. Они образуют 11 объединенных энергетических систем. Самые крупные из них - Южная, Центральная, Сибирская, Уральская.

ОЭС Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа и Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВт), Самара - Челябинск, Волгоград - Москва (500 кВт), Волгоград - Донбасс (800 кВт), Москва - Санкт-Петербург (750 кВт) и др.

Сегодня в условиях перехода к рынку ознакомление с опытом координации деятельности и конкуренции различных собственников в электроэнергетическом секторе западных стран может быть полезным для выбора наиболее рациональных принципов совместной работы собственников элекгроэнергетических объектов, функционирующих в составе Единой энергосистемы.

Создан координационный орган - Электроэнергетический совет стран СНГ. Разработаны и согласованы принципы совместной работы объединенных энергосистем СНГ.

Развитие электроэнергетического хозяйства в современных условиях должно учитывать следующие принципы:

· вести строительство экологически чистых электростанций и переводить ТЭС на более чистое топливо - природный газ;

· создавать ТЭЦ для теплофикации отраслей промышленности, сельского хозяйства и коммунального хозяйства, что обеспечивает экономию топлива и вдвое увеличивает КПД электростанций;

· строить небольшие по мощности электростанции с учетом потребностей в электроэнергии крупных регионов;

· объединять различные типы электростанций в единую энергосистему;

· сооружать гидроаккумулирующие станции на малых реках, особенно в остродефицитных по энергии районах России;

· использовать в получении электрической энергии нетрадиционные виды топлива, энергии ветра, солнца, морских приливов, геотермальных вод и т.д.

Необходимость разработки новой энергетической политики России определяется рядом объективных факторов:

· распадом СССР и становлением Российской Федерации как подлинно суверенного государства;

· коренными изменениями социально-политического устройства, экономического и геополитического положения страны, принятым курсом на ее интеграцию в мировую экономическую систему;

· принципиальным расширением прав субъектов Федерации - республик, краев, областей и т.д.;

· коренным изменением отношений между органами государственного управления и хозяйственно самостоятельными предприятиями, быстрым ростом независимых коммерческих структур;

· глубоким кризисом экономики и энергетики страны, в преодолении которого энергетика может сыграть важную роль;

· переориентацией топливно-энергетического комплекса на приоритетное решение социальных задач общества, возросшими требованиями охраны окружающей среды.

В отличие от прежних энергетических программ, создававшихся в рамках планово-административной системы управления и определявших непосредственно объемы производства энергоресурсов и выделяемые для этого ресурсы, новая энергетическая политика имеет совершенно иное содержание.

Основными инструментами новой энергетической политики должны стать:

· приведение одновременно с конвертируемостью рубля цен на энергоносители в соответствии с мировыми ценами с постепенным сглаживанием скачков цен на внутреннем рынке;

· акционирование предприятий топливно-энергетического комплекса с привлечением денежных средств населения, зарубежных инвесторов и отечественных коммерческих структур;

· поддержка независимых производителей энергоносителей, прежде всего ориентированных на использование местных и возобновляемых энергетических ресурсов.

Приняты законодательные акты для энергетического комплекса, основными целями которых являются:

1. Сохранение целостности электроэнергетического комплекса и ЕЭС России.

2. Организация конкурентоспособного рынка электроэнергии как инструмента стабилизации цен на энергию и повышения эффективности электроэнергетики.

3. Расширение возможностей привлечения инвестиций на развитие Единой энергетической системы России и региональных энергетических компаний.

4. Повышение роли субъектов Федерации (областей, краев, автономий) в управлении развитием ЕЭС Российской Федерации.

В перспективе Россия должна отказаться от строительства новых и крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС.

Новые ТЭЦ будут строиться на газе и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС.

Важным аспектом расширения рынка энергоносителей является возможность увеличения экспорта топлива и энергии из России.

Основу энергетической стратегии России составляют следующие три главные цели:

1. Сдерживание инфляции путем наличия больших запасов энергоресурсов, которые должны дать внутреннее и внешнее финансирование страны.

2. Обеспечение достойной роли энергии как фактора роста производительности труда и улучшения жизни населения.

3. Снижение техногенной нагрузки топливно-энергетического комплекса на окружающую среду.

Высшим приоритетом энергетической стратегии является повышение эффективности энергопотребления и энергосбережения.

На период становления и развития рыночных отношений выработана структурная политика в области энергетики и топливной промышленности на ближайшие 10-15 лет. Она предусматривает:

· повышение эффективности использования природного газа и его доли во внутреннем потреблении и в экспорте;

· увеличение глубокой переработки и комплексного использования углеводородного сырья;

· повышение качества углепродуктов, стабилизация и наращивание объемов угледобычи (в основном открытым способом) по мере освоения экологически приемлемых технологий его использования;

· преодоление спада и умеренный рост добычи нефти.

· интенсификацию местных энергоресурсов гидроэнергии, торфа, значительное увеличение использования возобновляемых энергоресурсов - солнечной, ветровой, геотермической энергии, шахтного метана, биогаза и т. д.;

· повышение надежности АЭС. Освоение предельно безопасных и экономических новых реакторов, в том числе и малой мощности.

Развитие и размещение электроэнергетики в России основывается на принципах, сформулированных еще в плане ГОЭЛРО (1920 г.). Электроэнергетика России играет огромную роль в обеспечении нормального функционирования экономики страны. Обеспечивая НТП, электроэнергетика решающим образом воздействует не только на развитие, но и на территориальную организацию производительных сил, в первую очередь промышленности: передача электроэнергии на большие расстояния способствует более эффективному освоению топливно-энергетических ресурсов независимо от того, насколько они удалены от мест потребления; благодаря возможности промежуточного отбора электроэнергии для снабжения тех районов, через которые проходят высоковольтные ЛЭП (т.н. электронный транспорт), увеличивается плотность размещения промышленных предприятий; на основе массового использования электрической и тепловой энергии в технологических процессах возникают электроемкие (алюминий, магний, титан, ферросплавы и др.) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше по сравнению с традиционными отраслями; электроэнергетика - важный районообразующий фактор, так, в Сибири и на Дальнем Востоке она во многом определяет специализацию районов и формирование ТПК.

В последнее пятидесятилетие электроэнергетика была в нашей стране одной из наиболее динамично развивающихся отраслей. Она опережала по темпам развития как промышленность в целом, так и тяжелую индустрию. РФ занимает четвертое место по общему объему производства электроэнергии в мире после США, Китая и Японии.

Главный потребитель электроэнергии - промышленность (около 60% всей вырабатываемой энергии). Там электроэнергия используется в качестве двигательной силы и для осуществления ряда технологических процессов. То, что продукция электроэнергетики не может накапливаться, а передается по линиям электропередач, значительно расширяет географию размещения предприятий. Размещение предприятий самой электроэнергетики зависит от расположения топливно-энергетических ресурсов и потребителей.

Важная особенность электроэнергии России - существование энергосистем, объединенных в Единую энергосистему (ЕЭС). Это дает возможность эффективнее распределять электроэнергию по территории страны, управлять балансом электрической мощности (см. рисунок 1).

Основными в составе электроэнергетики России являются тепловые электростанции (ТЭС). Они сосредотачивают 2/3 всей установленной мощности. Но поскольку число часов использования среднегодовой установленной мощности ТЭС как минимум в 1,5 раза больше, чем гидроэлектростанций, то их доля по выработке электроэнергии еще значительнее. Вместе с тем следует учитывать, что теплоэнергетика оказывает наиболее сильное и всестороннее загрязняющее воздействие на окружающую среду.

Среди ТЭС различают конденсационные (КЭС) и теплоэлектроцентрали (ТЭЦ). По характеру обслуживания потребителей различают государственные районные электрические станции (ГРЭС) и центральные, расположенные вблизи центра энергетических нагрузок. ТЭС преобразуют энергию сгорания органического топлива в электрическую. На ТЭЦ пар после турбины либо отправляется к потребителю, либо возвращается обратно в систему, отдав свою теплоту воде, которая идет к потребителю. Поэтому ТЭЦ выгодно строить в больших городах и около крупных промышленных предприятий, т.к. радиус передачи теплоты весьма невелик (10-12 км). В Москве, например, расположено свыше двух десятков ТЭЦ. И хотя максимальная мощность ТЭЦ, как правило, не превышает 1млн. кВт, их КПД больше 70%. Но, тем не менее, первостепенную роль среди ТЭС играют КЭС, несмотря на то, что их КПД всего лишь 30-35%. Тяготея одновременно и к источникам топлива, и к местам потребления, они имеют самое широкое распространение. Насчитывается свыше 70 КЭС мощностью 1млн. кВт и более каждая.

Особо выделяются ГРЭС мощностью свыше 2 млн. кВт. ГРЭС дают более 70% всей электроэнергии России. Крупнейшие российские ГРЭС: Центральный район - Конаковская, Костромская (3600 МВт); Северный Кавказ - Новочеркасская; Поволжье - Заинская; Урал - Рефтинская (третья по мощности в Европе), Ириклинская, Троицкая; Западная Сибирь - Сургутская (работает на попутном газе), Назаровская; Восточная Сибирь - Березовская, Харанорская, Гусиноозерская; Дальний Восток - Нерюнгринская.

В рамках проекта Канско-Ачинского топливно-энергетического комплекса (КАТЭК) ведется строительство мощнейшей ГРЭС мощностью 6400 МВт.

В последнее время среди тепловых электростанций появились установки принципиально новых типов: газотурбинные электростанции (ГТ), где вместо паровых действуют газовые турбины на жидком или газообразном топливе, что в основном снимает проблему водоснабжения и тем самым повышает значение дефицитных по воде районов для их размещения. ГТ готовятся к вводу на Краснодарской и Шатурской ГРЭС; парогазотурбинные установки (ПГУ), в которых теплота отработавших газов используется для подогрева воды или получения пара низкого давления в парогенераторах, ПГУ готовятся к вводу на Невинномысской и Кармановской ГРЭС; магнитогидродинамические генераторы (МГД-генераторы) для непосредственного преобразования тепловой энергии в электрическую, МГД-генераторы готовятся к вводу на ТЭЦ-21 "Мосэнерго" и Рязанской ГРЭС.

Геотермические электростанции (ГеоТЭС), в основе работы которых лежит освоение глубинной теплоты земных недр, принципиально напоминают ТЭЦ, но в противоположность последним связаны не с потребителями, а с источниками энергии. Геотермальные электростанции преобразуют внутреннюю энергию перегретой воды или пара, выходящего из недр Земли, в электрическую. ГеоТЭС строят в тех районах, где происходит заметная вулканическая деятельность. В 1968 г. на Камчатке, в долине реки Паужетки, была сооружена первая и пока единственная российская ГеоТЭС мощностью 11 МВт.

Гидроэлектростанции (ГЭС) являются весьма эффективными источниками энергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким КПД - более 80%. На ГЭС занято в 15-20 раз меньше персонала. По этим причинам ГЭС производят более дешевую энергию, чем ТЭС: ее себестоимость в 5-6 раз ниже. На электростанциях этого типа производится 18% всей российской электроэнергии.

Гидроэлектростанция преобразует энергию водного потока в электрическую. Строительство ГЭС требует решения целого комплекса проблем (орошение земель, развитие водного транспорта и рыбного хозяйства, охрана окружающей среды), и лучшим решением является каскадный принцип строительства, когда ГЭС "нанизываются" на реку. Каскады ГЭС сооружены на Волге и Каме, на Иртыше, на Ангаре и Енисее, на мелких реках Карелии и Кольского полуострова, на притоках Амура, на Вилюе, на Свири. К крупным ГЭС относятся электростанции мощностью свыше 25 МВт. ГЭС выгодно строить на горных реках с большим падением и расходом воды. Российские же ГЭС в большинстве своем равнинные, а, следовательно, низконапорные и малоэффективные. Сооружение ГЭС на равнинных реках влечет за собой и значительный материальный ущерб, вызываемый затопление территории под водохранилища.

В России действует несколько крупнейших ГЭС: каскад Волга - Кама (11 ГЭС: Самарская, Волгоградская, Саратовская, Чебоксарская, Камская и др.); каскад Ангара - Енисей (Саяно-Шушенская (6400 МВт), Красноярская (6000 МВт), Усть-Илимская, Братская (4500 МВт), Иркутская); Зейская (Зея) и Бурейская (Бурея) - на притоках Амура.

Гидроаккумулирующие электростанции (ГАЭС) требуют постройки не одного, а двух водохранилищ на разных уровнях. Они предназначены для снятия пиковых нагрузок, и поэтому их целесообразно строить вблизи больших городов. В России действует Загорская ГАЭС мощностью 1200 МВт.

Приливные электростанции (ПЭС) имеют похожий принцип действия, только строятся они на берегах морей и океанов. Первая ПЭС в СССР была сооружена в 1968 г. на Белом море (Кислогубская).

Атомные электростанции (АЭС) используют в высшей степени транспортабельное топливо. При расходе 1 кг урана-235 выделяется теплота, эквивалентная сжиганию 2,5 тыс. т лучшего угля. Эта характерная особенность совершенно исключает зависимость АЭС от топливно-энергетического фактора и обеспечивает наибольшую маневренность размещения среди электростанций всех типов. АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или там, где выявленные ресурсы минерального топлива и гидроэнергии ограничены. Однако наряду с этими преимуществами АЭС имеет главный недостаток - она несет в себе постоянную и страшную угрозу окружающей среде. 26 апреля 1986 г. произошла одна из крупнейших катастроф в истории человечества - авария на Чернобыльской АЭС.

Атомная электростанция преобразует энергию деления тяжелых или синтеза легких атомных ядер в электрическую энергию. Теплота, выделившаяся в результате ядерной реакции, нагревает до кипения воду, пар вращает турбину и т.д. (аналогично ТЭС).

Россия имеет приоритет в мирном использовании атомной энергии. В 1954 г. вступила в строй первая опытная Обнинская АЭС (Центральный район). К началу 1989 г. в СССР действовало 15 АЭС суммарной мощностью 35 млн. кВт. Ныне действуют 11 АЭС: Обнинская, Кольская (1760 МВт), Петербургская (4000 МВт), Тверская, Смоленская, Курская (4000 МВт), Нововоронежская (2455 МВт), Балаковская, Димитровградская, Белоярская (900 МВт), Билибинская.

В России доля электроэнергии, вырабатываемой на АЭС, составляет 12% (для сравнения: Франция 75%, Бельгия 61%, Республика Корея 54%, Германия 32%, США 18%). По объему производства электроэнергии на АЭС в настоящее время Россия уступает США (в 2,5 раза), Франции и Японии.

Очень перспективной отраслью энергетики является создание ветряных электростанций (ВЭС) и их комплексов. Стоимость электроэнергии на ВЭС ниже, чем на любых других станциях. Преимуществом ВЭС также является ее абсолютная независимость от каких бы то ни было недвижимых объектов. Имеется проект создания сети ВЭС на Кольском полуострове общей мощностью 1000 МВт.

Для электроэнергетики характерны следующие тенденции развития. Во-первых, снижение в топливном балансе электростанций сначала доли мазута, а затем и природного газа, благодаря строительству АЭС и тепловых электростанций, работающих на углях открытой добычи, а также крупных ГЭС (главным образом в восточных районах). Во-вторых, завершение формирования ЕЭС с повышением ее маневренности и надежности путем строительства пиковых электростанций, ЛЭП сверхвысокого напряжения переменного и постоянного тока.

Значение электроэнергии

XVI XVIII XIX XIX

XX

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1.1.1).

Рис. 1.1.1. Электроэнергетика в современной экономике

Роль электроэнергетики в ХХ I в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно корреспондирует с уровнем деловой активности и с уровнем жизни населения. Научно-технический прогресс и развитие новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни населения предопределяют расширение сфер использования электроэнергии и усиление требований к надежному и бесперебойному энергоснабжению.

Особенности электроэнергетики как отрасли обуславливаются спецификой ее основного продукта – электроэнергии, а также характером процессов ее производства и потребления.

Электроэнергия по своим свойствам подобна услуге: время производства совпадает со временем потребления. Однако это подобие не является неотъемлемым физическим свойством электроэнергии - ситуация изменится, если появятся эффективные технологии хранения электроэнергии в значительных масштабах. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива. Чем больше максимальное (хотя и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги.

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса производства, передачи и потребления электроэнергии. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла производства, передачи и потребления продукта, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя. Последнее обстоятельство, по понятным причинам, может иметь большое число совершенно неожиданных следствий.

Очевидно, потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, от времени суток, от технологических режимов различных производственных процессов в отраслях-потребителях, от особенностей домашних хозяйств и даже от программы телепередач. Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции и вида технологического топлива, от степени ее загрузки и режима работы. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей в электроэнергетике необходимо и целесообразно объединение устройств, производящих энергию – генераторов, в единую энергетическую систему , что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Эти же свойства обуславливают наличие в отрасли системного оператора, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии. Решения системного оператора принимаются на основании рыночных сигналов от производителей о возможностях и стоимости производства электроэнергии, от потребителей – о спросе на нее в определенные временные интервалы. В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Большая часть производства электроэнергии в мире осуществляется на электрических станциях трех типов :

· на тепловых электростанциях (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор, преобразуясь, таким образом, в электроэнергию. Опыт продемонстрировал эффективность одновременного производства тепла и электроэнергии на ТЭЦ, что привело к распространению в ряде стран централизованного теплоснабжения;

· на гидроэлектростанциях (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

· на атомных электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.

Три типа электростанций определяют состав используемых в электроэнергетике энергоресурсов . Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.

Первичные энергоносители – это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. В разговорной речи эти материалы называют просто «первичной энергией». Солнечное излучение, ветер, водные ресурсы – все это тоже первичная энергия.

Вторичная энергия – это продукт переработки, «облагораживания» первичной энергии, например электричество, бензин, мазут. Та энергия, которая попадает непосредственному потребителю, именуется конечной энергией. Чаще всего это вторичная энергия – электричество или мазут, но иногда конечная энергия бывает и первичной, например дрова, солнечное излучение или природный газ.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, и они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, ядерное топливо, по большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь. Это объясняется относительной дешевизной и широкой распространенностью запасов данного вида топлива. Однако транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает нерентабельным этот вид топлива для электростанций, находящихся на значительном удалении от мест добычи угля. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде. В последние десятилетия ХХ века появились технологии, позволяющие использовать уголь для производства электроэнергии с большей эффективностью и меньшим загрязнением окружающей среды по сравнению с тем, как это происходило в первых двух третях ХХ в.

Значительный рост использования газа в мировой электроэнергетике за последние годы объясняется существенным ростом его добычи, появлением высокоэффективных технологий производства электроэнергии, основанных на применении данного вида топлива, а также ужесточением политики по охране окружающей среды. Использование газа при производстве электроэнергии позволяет сократить выброс в атмосферу вредных веществ, в первую очередь углекислого газа.

Все более широкое распространение получает производство электроэнергии за счет использования урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако использование урана и прочих радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии, а также чрезвычайно высокой капиталоемкостью возведения АЭС и утилизации отработанного топлива. Кроме того, сдерживающим фактором для развития этого вида энергетики является сложность технологии производства атомной энергии. Пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.

Сохраняют высокую значимость в структуре источников электроэнергии гидроресурсы, хотя их доля несколько сократилась за последние десятилетия. Важность данного источника электроэнергии заключается в его возобновляемости и относительной дешевизне. Однако возведение гидростанций сопряжено с необратимым воздействием на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водоемов на планете и зависимость водных ресурсов от климатических условий ограничивают их гидроэнергетический потенциал.

Существенное сокращение использования нефти и нефтепродуктов для производства электроэнергии за последние тридцать лет объясняется как ростом стоимости данного вида топлива, высокой эффективностью его применения в других отраслях, так и дороговизной его транспортировки на значительные расстояния, а также возросшими требованиями к экологической безопасности.

В последние десятилетия резко возросло внимание к возобновляемым источникам энергии . В частности, активно разрабатываются технологии использования энергии солнца и ветра. Потенциал данных источников энергии огромен. Однако, на сегодняшний день производство электроэнергии в промышленных масштабах из солнечной энергии в большинстве случаев оказывается менее эффективным, чем ее производство из традиционных видов ресурсов. Что касается энергии ветра, то здесь ситуация несколько иная. В развитых странах, особенно под влиянием экологических движений, преобразование энергии ветра в электрическую выросло весьма значительно. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов: Исландия, Новая Зеландия, Россия (Камчатка, Ставропольский край, Краснодарский край, Калининградская область). Однако пока еще все эти виды электрогенерации успешно развиваются в тех странах, где производство и (или) потребление электроэнергии на основе возобновляемых ресурсов дотируется государством.

В конце XX – начале XXI резко возрос интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе заняло заметное место в энергетическом балансе. В США бала принята специальная программа субсидирования биотоплива. Однако, в настоящее время резко возросли сомнения в перспективах развития данного направления в электроэнергетике. С одной стороны, оказалось, что при производстве биотоплива очень неэффективно используются такие природные ресурсы, как земля и вода; с другой – отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно. Все это в обозримой перспективе делает весьма проблематичным широкое использование биотоплива в электроэнергетике.

Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия - товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия - важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды.

Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение - например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.

В каком-то смысле электроэнергия - стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т.н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. - двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.

Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.

Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми сектора

1.1. Значение, особенности, технологическая структура и топливная база электроэнергетики

Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия - товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия - важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды .

Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение - например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.

В каком-то смысле электроэнергия - стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т. н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. - двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.

Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.

Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1.1.1).

Машины и оборудование


Рис. 1.1.1. Электроэнергетика в современной экономике

Роль электроэнергетики в ХХI в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно корреспондирует с уровнем деловой активности и с уровнем жизни населения. Научно-технический прогресс и развитие новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни населения предопределяют расширение сфер использования электроэнергии и усиление требований к надежному и бесперебойному энергоснабжению .

Особенности электроэнергетики как отрасли обуславливаются спецификой ее основного продукта – электроэнергии, а также характером процессов ее производства и потребления.

Электроэнергия по своим свойствам подобна услуге: время производства совпадает со временем потребления. Однако это подобие не является неотъемлемым физическим свойством электроэнергии - ситуация изменится, если появятся эффективные технологии хранения электроэнергии в значительных масштабах. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива. Чем больше максимальное (хотя и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги.

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса производства, передачи и потребления электроэнергии. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла производства, передачи и потребления продукта, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя. Последнее обстоятельство, по понятным причинам, может иметь большое число совершенно неожиданных следствий.

Очевидно, потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, от времени суток, от технологических режимов различных производственных процессов в отраслях-потребителях, от особенностей домашних хозяйств и даже от программы телепередач. Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции и вида технологического топлива, от степени ее загрузки и режима работы. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей в электроэнергетике необходимо и целесообразно объединение устройств, производящих энергию – генераторов, в единую энергетическую систему , что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Эти же свойства обуславливают наличие в отрасли системного оператора, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии. Решения системного оператора принимаются на основании рыночных сигналов от производителей о возможностях и стоимости производства электроэнергии, от потребителей – о спросе на нее в определенные временные интервалы. В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Большая часть производства электроэнергии в мире осуществляется на электрических станциях трех типов :

· на тепловых электростанциях (ТЭС), где тепловая энергия , образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т. д.), используется для вращения турбин, приводящих в движение электрогенератор, преобразуясь, таким образом, в электроэнергию. Опыт продемонстрировал эффективность одновременного производства тепла и электроэнергии на ТЭЦ, что привело к распространению в ряде стран централизованного теплоснабжения ;

· на гидроэлектростанциях (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

В последние десятилетия резко возросло внимание к возобновляемым источникам энергии . В частности, активно разрабатываются технологии использования энергии солнца и ветра. Потенциал данных источников энергии огромен. Однако, на сегодняшний день производство электроэнергии в промышленных масштабах из солнечной энергии в большинстве случаев оказывается менее эффективным, чем ее производство из традиционных видов ресурсов. Что касается энергии ветра, то здесь ситуация несколько иная. В развитых странах, особенно под влиянием экологических движений, преобразование энергии ветра в электрическую выросло весьма значительно. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов: Исландия, Новая Зеландия, Россия (Камчатка, Ставропольский край , Краснодарский край , Калининградская область). Однако пока еще все эти виды электрогенерации успешно развиваются в тех странах, где производство и (или) потребление электроэнергии на основе возобновляемых ресурсов дотируется государством.

В конце XX – начале XXI резко возрос интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе заняло заметное место в энергетическом балансе. В США бала принята специальная программа субсидирования биотоплива. Однако, в настоящее время резко возросли сомнения в перспективах развития данного направления в электроэнергетике. С одной стороны, оказалось, что при производстве биотоплива очень неэффективно используются такие природные ресурсы, как земля и вода; с другой – отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно. Все это в обозримой перспективе делает весьма проблематичным широкое использование биотоплива в электроэнергетике.

1.2. Российская электроэнергетика и ее место в мире

Россия обладает значительными запасами природных энергоресурсов, что создает возможность для долгосрочного роста производства электроэнергии в соответствии с предъявляемым экономикой растущим спросом. В российской экономике представлены все основные виды энергоресурсов (см. рис. 1.2.1).

В период с 1970 по 1990 г. производство первичных энергоресурсов в СССР выросло с 801 млн до 1857 млн. т. у.т., а в их структуре произошли крупные изменения. Значительно увеличилась доля газа, сократился удельный вес угля и нефти. Это было обусловлено быстрым развитием газодобычи в СССР в эти годы.

После 1991 г. российская экономика переживала трансформационный спад, что привело к сокращению добычи и потребления энергоресурсов. С началом экономического подъема в 2000-х гг. картина изменилась, и к середине текущего десятилетия Россия приблизилась к уровню производства и потребления энергоресурсов 1990 года. В настоящее время Россия входит в число крупнейших нефте - и газодобывающих стран мира и не только обеспечивает внутренний спрос на эти виды топлива, но и осуществляет значительные поставки на экспорт (табл. 1.2.2, 1.2.3).

Рис. 1.2.1. Структура производства первичных энергоресурсов в российской экономике (расчет Института энергетических исследований РАН по данным Росстата)

Анализ баланса энергоресурсов в российской экономике за 2006 год показывает, что в общем объеме этих ресурсов (1635,1 млн. т. у.т.) электроэнергия занимает всего 20,1 %, но в общем объеме их конечного потребления (981,5 млн. т. у.т.) - уже 34,4 %, то есть находится на первом месте, опережая по доле другие энергоресурсы.

В России существенное место в топливных ресурсах, используемых для преобразования в другие виды энергии, занимает газ. Это объясняется наличием на территории страны богатейших месторождений и относительным занижением внутренних цен на газ. Поэтому имеет место существенное отклонение структуры потребления энергоресурсов от общемировой тенденции (табл. 1.2.1). Ожидается, что в ближайшее десятилетие в структуре топливного баланса в нашей стране будут происходить изменения. В период до 2020 года доля газа останется самой крупной, но будет постепенно сокращаться, а доля угля - расти. Данные изменения приведут к повышению эффективности использования энергоресурсов в российской экономике.

Таблица 1.2.1

Структура потребления топливных ресурсов для преобразования в другие виды энергии в российской экономике (% к суммарному потреблению)

Уголь

Мазут

Прочие

Таблицу переделать: данные дать только за 1991 и 2006 годы, в каждой колонке (по газу, углю и т. д.) дать цифры по России и миру. Указать источник.

Бóльшая часть электроэнергии в России в настоящее время производится и потребляется внутри страны (см. табл. 1.2.2, 1.2.3). Более половины спроса приходится на долю промышленного сектора экономики, хотя по сравнению с 1991 г. она несколько сократилась. Доли потребления сельского хозяйства и транспорта также снизились за последнее пятнадцатилетие, а соответствующий показатель других отраслей вырос. Это объясняется структурными изменениями в российской экономике, которые сопровождались перераспределением материальных, трудовых и финансовых ресурсов между ее секторами. За последние годы значительно увеличилось электропотребление населением, поскольку быстрыми темпами растет оснащенность домохозяйств бытовыми электроприборами. Растущий потребительский спрос на электроэнергию обусловлен также интенсивным строительством качественного нового современного жилья. Заметное влияние на изменение в структуре электропотребления оказал быстро развивающийся сектор рыночных услуг.

Таблица 1.2.2

Электробаланс Российской Федерации, млрд. кВт ч

Производство всего

Потреблено

Промышлен-ностью

Сельским хозяйством

Транспортом

Другими отраслями

Домохозяй-ствами

*) Добыча полезных ископаемых, обрабатывающие производства, производство и распределение электроэнергии, газа и воды.

**) Транспорт и связь.

Таблица 1.2.3

Электробаланс Российской Федерации, %

Производ-ство, всего

Получено из-за пределов Российской Федерации

Потребленовсего

в т. ч. потреблено

Отпущено за пределы Российской Федерации

промышленностью

сельским хозяйством

транспортом

другими отраслями

населением

Примечание. Источник - Росстат

С учетом динамики спроса и развития топливной базы в Российской Федерации в гг. наблюдался значительный спад, а в гг. устойчивый рост производства электроэнергии (табл. 1.2.4).

Таблица 1.2.4

Производство электроэнергии в России по типам

электростанций, млрд. кВт. ч, по годам

Тип электростанций

Все электростанции

В том числе:

Примечание. Источник - Росстат

В этот период произошли определенные сдвиги в структуре генерации: от 73 до 66,6 % сократилась доля производства электроэнергии на ТЭС, доля ГЭС в итоге достигла доперестроечного уровня 15,7 %, а доля АЭС выросла от 11,2 до 17,7 %.

Сегодняшняя структура производства и потребления электроэнергии в российской экономике сложилась в ходе ее рыночных преобразований, начавшихся в 1992 году. Трансформационный спад гг. повлек за собой сокращение производства и потребления электроэнергии. Однако падение выработки в электроэнергетике было меньшим, чем в целом по экономике, так как спад производства в электроемких отраслях (металлургии, нефтепереработке и др.) был меньшим, чем в отраслях с относительно низкой электроемкостью (машиностроение, легкая промышленность и др.). При этом после либерализации ценообразования тарифы на электроэнергию росли намного медленнее, чем цены на другие товары (см. рис. 1.2.2).

Рисунок 1.2.2

Охарактеризованные выше сдвиги в структуре производства и соотношениях цен в гг. привели к существенному росту электроемкости ВВП.

После финансового кризиса 1998 г. в российской экономике возобновился экономический рост, а вместе с ним увеличивался и спрос на электроэнергию. В гг. ежегодные темпы ее выработки превышали 1,6%. Вместе с тем сблизились и темпы роста промышленных цен и тарифов на электроэнергию, повысилась платежная дисциплина . Произошли заметные сдвиги в структуре потребления электроэнергии и электроемкости отдельных секторов экономики.

Динамика электропотребления сектора услуг в гг. характеризовалась действием двух противоположно направленных тенденций: повышением доли менее электроемкого сектора услуг в структуре ВВП, что явилось фактором сужения совокупного спроса экономики на электроэнергию; формированием новых сегментов рынка услуг (современных систем связи, информационно-вычислительного обслуживания, финансово-кредитных и страховых учреждений и др.), что инициировало рост электропотребления в народном хозяйстве. После 1999 г. с началом экономического роста и расширением спроса на услуги новых сегментов рынка наблюдается тенденция к постепенному снижению электроемкости сектора услуг.

В настоящее время среди крупнейших потребителей электроэнергии – цветная металлургия, топливная промышленность , черная металлургия . По данным Института экономики переходного периода (рис. 1.2.3), около 37 % потребленной промышленностью электроэнергии приходится на долю металлургического комплекса и 33,0 % - на топливно-энергетический комплекс. Соответственно динамика и эффективность использования электроэнергии в этих двух комплексах доминирующе воздействует на характер электроемкости промышленности и экономики в целом.

Рис. 1.2.3. Структура электропотребления в российской промышленности в 2003 г. (доли отраслей рассчитаны Институтом экономики переходного периода по данным Росстата).

В масштабе мировой экономики российская электроэнергетика обладает уникальными особенностями:

· наибольшая территория единой энергосистемы (8 часовых поясов);

· на единицу установленной мощности электростанций Россия располагает наибольшей протяженностью электрических сетей высокого напряжения: 2,05 км/МВт против 0,75-0,8 км/МВт в США и Европе.

Конфигурация электрических сетей и совместная работа электростанций единой энергетической системы Российской Федерации в синхронном режиме позволяют в значительной степени реализовать преимущества по наиболее эффективному использованию генерирующих мощностей, экономичному расходу топлива и обеспечению надежности электроснабжения.

Российская электроэнергетическая система - одна из крупнейших в мировой экономике - входит в первую десятку энергосистем мира по уровню установленных генерирующих мощностей, производству электроэнергии на электростанциях трех основных типов и экспорту (табл. 1.2.5-1.2.12). Установленная мощность электростанций России на конец 2005 г. приблизительно равнялась 217,2 млн кВт (четвертый по величине показатель после США, Китая и Японии) и составляла около 5,6 % совокупной мощности мировой электроэнергетики. Россия находится на пятом месте в мире по уровню мощностей и производства электроэнергии на ГЭС. Доля в совокупной мощности гидроэлектростанций мира составляет 6,1 %; в производстве - около 6,0 %. Россия находится на четвертом месте в мире по уровню установленных мощностей и производства энергии на ТЭС, мощность которых составляет около 5,6 % совокупной мощности ТЭС мира, а выработка электроэнергии - около 5,8 %. Россия занимает пятое место в мире по уровню мощностей и производства атомной электроэнергетики. Следует отметить, что производство 85 % электроэнергии, осуществляемое на АЭС, сосредоточено в 10 странах. В последние годы около двух третей электроэнергии в мире производится на ТЭС и приблизительно по 17 % на ГЭС и АЭС.

Таблица 1.2.5

Установленная мощность российской электроэнергетики по годам (на конец года), млн. кВт

Типы станций

Все электростанции

В том числе:

Примечание. Источник - Росстат

Таблица 1.2.6

Установленная мощность крупнейших национальных энергосистем мира по годам

Страна

200 5

Млн. кВт

Млн. кВт

Млн. кВт

Россия

Германия

Бразилия

Великобритания

Остальной мир

Весь мир

2 929,295

3 279,313

3 871,952

2 929,295

Примечание. Источник - IЕA

Таблица 1.2.7

Производство электроэнергии крупнейшими национальными энергосистемами мира по годам

Страна

Млрд. кВт .ч

Млрд. кВт .ч

Млрд. кВт .ч

Россия

Германия

Великобритания

Бразилия

Примечание. Источник - IЕA

Таблица 1.2.8

Экспорт электроэнергии крупнейшими национальными энергосистемами мира в 2005 г.

Страна

Млрд. кВт. ч

Германия

Парагвай

Швейцария

Чешская Республика

Россия

Примечание. Источник -IEA.

Таблица 1.2.9

Производство и мощность крупнейших гидроэлектростанций в мире в 2005 г.

Страна

Установленная мощность

Страна

Производство электроэнергии

Млн. кВт

Млн. кВт. ч

Бразилия

Бразилия

Россия

Россия

Норвегия

Норвегия

Венесуэла

Весь мир

Весь мир

Все существующие виды электроэнергетики можно разделить на уже достигшие зрелости и находящиеся на стадии разработки и развития. Для одних требуется только модернизация, для других – инновационные технологические решения.

К зрелым видам электроэнергетики в первую очередь можно отнести тепловую, атомную, и гидроэнергетику. С определенными оговорками в эту группу попадают также некоторые виды альтернативной энергетики: солнечная, ветровая, приливная и пр. Они активно применяются во многих странах, но в силу некоторых ограничений не получили повсеместное распространение. Ну а на стадии формирования сейчас находятся другие виды энергетики: бестопливная энергетика, термоядерная энергетика и пр.

На территории России наибольшее распространение среди различных видов электроэнергетики получила тепловая энергетика, преимущественно газовая и угольная. Тепловые электростанции, которые работают на органическом топливе, традиционно находятся на лидирующих позициях в российской электроэнергетике. Это сложилось исторически и считается экономически оправданным.

Атомную энергетику на практике также иногда относят к подвиду тепловой электроэнергетики, потому как в результате деления атомных ядер в реакторе выделяется тепло, и далее все происходит так же, как и при сгорании органического топлива. Атомная энергетика в России — довольно популярный вид электроэнергетики. В нашей стране применяется полный цикл технологий от добычи урановых руд до выработки электроэнергии. Однако крупные аварии АЭС, которые имели место в последние десятки лет, настроили мировую общественность против этого вида электроэнергетики.

В гидроэнергетике для получения электрической энергии используют кинетическую энергию течения воды. ГЭС для функционирования требуется практически столько же электроэнергии, сколько они вырабатывают. Поэтому ГЭС, по сути, не являются генерирующими мощностями в чистом виде. Но такие станции при необходимости эффективно покрывают пиковые нагрузки, тем самым гидроэнергетика выгодно выделяется среди других видов электроэнергетики.

К альтернативным видам электроэнергетики относят ветровую и солнечную энергетику, которые по некоторым причинам не получили достаточное распространение. На данный момент ветровые и солнечные станции являются маломощными при дороговизне оборудования для них. К тому же обязательно необходим резервный источник питания (при отсутствии ветра или в ночное время соответственно). Также к альтернативным видам электроэнергетики относят приливную гидроэнергетику. Для строительства приливной электростанции необходимо морское побережье с достаточно сильными колебаниями уровня воды, иначе это будет экономически нецелесообразно.

Преимуществом альтернативных видов электроэнергетики является возобновляемость источников такой энергии. Их применение позволяет существенно сэкономить органическое топливо, сохраняя запасы углеводородов. Научные исследования, проводимые в области альтернативных видов электроэнергетики, делают их все более доступными для применения. Возобновляемая энергетика получает все большее географическое распространение по всему миру.

Существуют и другие виды электроэнергетики, технология которых пока малоизвестна. К ним можно отнести разработку прямых способов получения электроэнергии из окружающей среды с помощью накапливающихся зарядов ионосферы, использования энергии вращения земли и др. Использование различных видов электроэнергетики позволяет наиболее эффективно распределить нагрузку, покрывая мировой спрос на электроэнергию и создавая необходимый резерв мощности.



Доверенности