Оптимизация режимов работы электроэнергетического оборудования. Структура задач оптимизации технологических режимов работы оборудования

Актуальность темы. Осветить режимы работы электродвигателя на компрессорной станции (аварийный, нормальный, само запуск) и т.д. Эта проблема отражена в работах множества авторов: Д.П. Петелина, И.Д. Сыромятникова, Б.Н. Абрамовича, И.Д. Лищенко, В.А. Веникова, Ф.Г. Гусейнова, Н.И. Воропая и прочих учёных. В работах Н.Д. Абдуллаева, В.Ф. Шумилова, Г.Р. Шварца и др. рассмотрены вопросы синтеза подходящих систем АРВ при перегрузках. Тем не менее, миссия оптимизации систем АРВ СД, синтеза подходящих действий остаются открытыми. Кроме того важным считается возведение цифровых возбудителей СД ГПА.

Главной целью работы считается оптимизация режимов работы электродвигателей в сетях с распределенной генерацией.

В основе работы электродвигателей лежит принцип электромагнитной индукции. Электродвигатель включает в себя статор (неподвижную часть) и ротор (якорь, если мы имеем дело с машиной постоянного тока) (подвижную часть). При помощи электрического тока (либо постоянных магнитов) в электродвигателе возникают неподвижные и/или вращающиеся магнитные поля.

Отличительной чертой электродвигателей является свойство обратимости: любой электрический генератор способен выполнять задачи двигателя и наоборот, а в любом трансформаторе и электромашинном преобразователе электрической энергии направление преобразования энергии можно изменить на обратное. Несмотря на это каждая вращающая машина, как правило, создана только для одного режима работы (например, в качестве двигателя или генератора). Таким же образом одна из обмоток трансформатора играет роль приемника электрической энергии (первичная обмотка), а вторая отвечает за отдачу энергии (вторичная обмотка). Это дает возможность наилучшим образом адаптировать электродвигатель для заданных условий работы и максимально выгодно использовать материалы, т.е. добиться наибольшей мощности на единицу веса электродвигателя .

Электродвигатели настолько распространены в производстве и быту, что опытные проектировщики или обслуживающий персонал предприятий хорошо разбираются в принципах и режимах их работы. Но средний потребитель и даже некоторые непрофильные инженеры немного заблуждаются в своих знаниях принципа работы и эксплуатации электрических машин и совершают классические ошибки, способные существенно навредить электрической машине. Рассмотрим пять основных ошибок при выборе и эксплуатации электрических машин.

Незначительный перегрев не окажет существенного влияния на электродвигатель

Это одно из наиболее популярных заблуждений. Для тех кто занимался выбором и расчетом электродвигателей известно, что электродвигатели делят по классам изоляции обмоток. Эти классы нормируют максимальные значения температур обмоток при работе электродвигателя. При превышении допустимой температуры изоляция начинает разрушатся быстрее, чем при нормальном режиме работы, тем самым снижая срок службы машины. Иногда такой перегрев может снизить срок службы более чем в два раза, не приводя, при этом, к мгновенному выходу из строя машины.

Частые запуски не смогут повредить электродвигатель

У электродвигателей есть такое понятие как допустимое количество включений в час. Если это значение превысить, то это тоже не добавит электрической машине срока службы. При прямом пуске пиковые (пусковые) токи генерируют дополнительное тепло, которое рассеивается в процессе работы электрической машины. Но если время стоянки электропривода или его работы в номинальном режиме недостаточно для возвращения температуры обмоток к нормальной – это тоже вызовет дополнительный перегрев.

Улучшение коэффициента мощности позволяет хорошо сэкономить

Да, улучшение коэффициента мощности (cos φ) позволяет сэкономить некоторое количество энергии, но не очень большое (зависит от мощности). Если электродвигатель малой мощности или вы не оплачиваете потребление реактивной мощности, то и экономии вы не получите. Количество сэкономленной реактивной энергии зависит от нескольких факторов, таких как длина и тип кабелей подключения, количества трансформаторов, а также количества нагрузки подключенной параллельно электродвигателю, а также от того, где располагается компенсирующее устройство.

Электродвигатели получили широкое распространение благодаря целому ряду своих достоинств, таких как: высокие энергетические показатели, удобство подачи и отдачи энергии, возможность выполнения электродвигателей самых разных мощностей, скоростей вращения и, в довершение всему, удобство обслуживания и легкость в обращении.

Энергия, теряемая в электродвигателях, приводит к нагреванию отдельных их частей. Для того чтобы электродвигатель прослужил как можно дольше, нагревание должно быть ограничено. Наиболее подвержены нагреванию электроизоляционные материалы, и в зависимости от их качества – задаются допустимые уровни нагревания электродвигателей. Также необходимо позаботиться о создании хороших условий отвода тепла и охлаждения электродвигателей .

С повышением нагрузки электрической машины увеличиваются потери энергии, растет уровень нагревания машины. В связи с этим максимальная мощность нагрузки машины определяется в зависимости от допустимой величины ее нагревания, а также от механической прочности отдельных ее частей, условий токосъема на скользящих контактах и т.д.

Напряженность режима работы электродвигателей переменного тока по отношению к электромагнитным нагрузкам (величине магнитной индукции, плотности тока и т.д.), потерям энергии и нагреванию определяется не активной, а полной мощ­ностью, т.к. величина магнитного потока в машине зависит от полного напряжения, а не от его активной части. Полезная мощность, предусмотренная для электрической машины, носит название номинальной. Остальные величины, которые также характеризуют работу электродвигателя при данной мощности - также называются номинальными. Среди них номинальный ток, напряжение, скорость вращения, КПД и др. величины (для машины переменного тока – номинальные частота и коэффициент мощности).

Различают следующие режимы работы моторов под перегрузкой в зависимости от ее длительности: долгий, временный и повторно-кратковременный.

При длительном режиме мотор действует без перерыва, кроме того рабочий период так активен, что нагрев мотора достигает установившейся температуры.

Долгая перегрузка быть может неизменной или же изменяющейся. В первом случае температура не меняется, во 2-м - меняется совместно с переменой перегрузки. С мало изменяющейся перегрузкой в данном режиме действуют двигатели конвейеров, лесопильных рам и др., с переменной длительной перегрузкой действуют движки всевозможных металлообрабатывающих и деревообрабатывающих станков.

При недолгом режиме мотор не успевает нагреться до установившейся температуры, ну а в течение паузы охлаждается до температуры окружающей среды. Длительность кратковременной работы ГОСТ на электрические машины устанавливает одинаковой 10, 30, 60 и 90 мин.

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время паузы - охладиться до температуры окружающей среды. В этом режиме двигатель функционирует с постоянно чередующимися периодами работы под перегрузкой и вхолостую, или же паузами.

Так как главными потребителями электричества на предприятиях считаются электроприводы постоянного и переменного тока, рассмотрим коротко зарождение утрат мощности в установившихся и переходных режимах работы регулируемых электроприводов. Известно, что выбор того или же другого метода регулировки скорости двигателей ориентируется, в окончательном счете, его экономичностью. В нынешнее время более экономичным считается прием регулировки скорости по системе УП-Д (управляемый преобразователь-двигатель). При этом методе согласно с требуемой механической мощностью источник выделяет нужную электрическую мощность. К системам УП-Д относят системы с двигателями постоянного тока и системы частотного управления с асинхронными двигателями переменного тока. У двигателей постоянного тока с независимым возбуждением постоянные затраты складываются из издержек в цепи возбуждения, механических издержек и добавочных утрат в стали. 1 ПГТУ, д-р техн. наук, проф. 2 ПГТУ, ст. препод.

Переходные процессы (разгон и торможение) осуществляются методом плавной перемены питающего напряжения для двигателей постоянного тока. Для двигателей при частотном приеме управления в тоже время с напряжением меняется и частота. Главным аспектом для выбора приема управления высокоскоростными режимами мотора основного привода считаются финансовые суждения. В том случае, если финансовый результат от внедрения систем рационального управления выше результата от экономии электричества, природным будет принятие решений в пользу увеличения производительности аппарата, в том числе, и с помощью увеличения расхода электричества. Тем не менее, и в данных условиях наличествуют значительные резервы экономии электричества. Решение трудностей состоит в исследовании и введении обучающихся адаптивных систем управления режимами работы электроприводов прокатных станов .

Для продуктивной и слаженной работы любого промышленного оборудования требуется наличие мощного электродвигателя, который берет на себя всю производственную часть. Именно двигатели задают номинальную мощность, что обеспечивает вращение вентилятора или функционирования насоса. Модели двигателей различаются по сферам применения и типам. В любом Интернет магазине вы сможете найти список из множества моделей однофазных двигателей, трехфазных двигателей, а также двигателей взрывозащищенного типа.

Каждый такой силовой агрегат отвечает за ряд особых функций и рассчитан на обеспечение определенного уровня мощности. Кроме того, все двигатели выполняются по схожим техническим условиям, поэтому, даже не взирая на бренд или дату разработки, они будут иметь сходные конструктивные черты внешнего вида и форму, что позволяет устанавливать их в любых местах, даже там, где имеются проблемы с нехваткой свободного пространства.

Итак, стоит отметить, что основные резервы экономии электричества содержатся в исследовании и совершенствовании энергосиловых характеристик промышленного электрооборудования и управления режимами работы этого оборудования на базе внедрения адаптивных систем управления. В зависимости от режима роботы двигателей изменяется количество потребляемой энергии.

Список литературы:

  1. Карасевич А.М., Сеннова Е.В., Федяев А.В., Федяева О.Н. Эффективность развития малых ТЭЦ на базе газотурбинных и дизельных энергоустановок при газификации регионов // Теплоэнергетика, 2000, № 12, с.35-39.
  2. Энергетика XXI века: Условия развития, технологии, прогнозы / Л.С.Беляев, А.В. Лагерев, В.В. Посекалин; Отв. ред. Н.И.Воропай. Новосибирск: Наука, 2004, 386 с.
  3. Bayegan M.A. Vision of the Future Grid // IEEE Power Engineering Review, 2001, Vol.21, №12, p. 10-12.

Для обеспечения надежного энергоснабжения потребителей, безаварийной и экономичной работы оборудования электростанции необходимо установить рациональные режимы работы оборудования, учитывающие спрос на энергию, технические и экономические характеристики. Основным, нормальным является установившийся режим работы оборудования, при котором обеспечивается мощность в соответствии с графиком нагрузки и выработка основного количества энергии в заданный период времени.

Одной из важнейших задач эксплуатации является экономичное распределение энергетической нагрузки между электростанциями энергосистемы и отдельными их блоками и агрегатами. Одновременно должен решаться вопрос о числе рабочих агрегатов, пуске или остановке отдельных агрегатов.

Экономичное распределение нагрузки между работающими агрегатами, обеспечивающее минимальный расход тепла и топлива на электростанции и в энергосистеме, производится на основе метода удельных (относительных) приростов расхода тепла.

Для применения этого метода необходимо располагать энергетическими характеристиками агрегатов, устанавливающими зависимость расхода тепла Q i от нагрузки агрегата W i:

Q 1 = f (W 1); Q 2 = f (W 2); …;

Q z = f (W z). (9.1)

Если функции Q i , выраженные уравнениями (9.1), являются непрерывными с непрерывно возрастающими производными при увеличении нагрузкиW i , то применение метода удельных приростов может быть математически обоснованно следующим образом.

Суммарная нагрузка W является заданной величиной и равняется сумме нагрузок всех агрегатов

W= W 1 + W 2 +…+ W z . (9.2)

Условие (9.2) можно представить также в виде вспомогательной функции Лагранжа

Экономичное распределение заданной суммарной нагрузки между данными z агрегатами находят, исходя из того, что суммарный расход тепла, топлива

Q= Q 1 + Q 2 +…+ Q z . (9.1а)

должен бить минимальным. Пользуясь методом условного экстремума Лагранжа и обозначая неопределенный множитель через r, ищем минимум функции F=Q+r*φ или

.

Приравнивая нулю частные производные функции F по величинам W i и имея в виду равенство (9.3), получаем уравнения

;
;…;

(9.3)

Таким образом, для обеспечения минимального расхода тепла и топлива, нагрузка работающих агрегатов должна быть такой, чтобы величина удельного прироста расхода тепла этих агрегатов была одинакова:

(9.3а)

Действительная энергетическая характеристика турбоагрегата отличается от только что рассмотренной теоретической. Для применения данного принципа оптимизации необходимые характеристики сглаживают.

Одной из особенностей энергетического производства является баланс между производством и потреблением электроэнергии и теплоты. Выпуск электроэнергии и тепла зависит от их потребности в энергосистеме. При планировании деятельности предприятий энергосистемы необходимо учитывать, что часть показателей носит прогнозный характер.

Режимы работы предприятий в энергосистеме взаимосвязаны единым графиком электрических нагрузок энергосистемы и определяются в результате оптимального распределения нагрузки между параллельно работающими в одной зоне нагрузки электростанциями, исходя из экономичности работы в целом.

Экономичное распределение нагрузки между работающими агрегатами, обеспечивающее минимальный расход тепла и топлива на электростанции и в энергосистеме, производится на основе метода удельных (относительных) приростов расхода тепла.

Для применения этого метода необходимо располагать энергетическими характеристиками агрегатов, устанавливающими зависимость расхода тепла от нагрузки агрегата.

Энергетическая характеристика отражает зависимость между входными, выходными параметрами и потерями. Существует три вида характеристик.

    Абсолютные (расходные) характеристики.

    Относительные характеристики.

    Дифференциальные характеристики.

Абсолютные (расходные) характеристики показывают взаимосвязь между первичной и вторичной энергией. К ним относятся зависимости:

Расхода топлива электростанции от ее мощности

В ст = f (P ст)

Расхода топлива котла от его теплопроизводительности

В к = f (Q ч)

Расход тепла турбин в зависимости от ее электрической мощности

Q ч = f (P т)

Расходные характеристики в свою очередь подразделяются на весовые и энергетические .

    Весовые характеристики:

для котла В к = f (D к), [т.н.т. / час]

для турбины D т = f (P т), [т пара / час].

Они используются для определения абсолютных значений расходов топлива, определения необходимой производственной мощности: соответствия производственной мощности котла и турбины.

2) Энергетические характеристики:

В т = f (Q к), [т.у.т. / час]

Q т = f (P т), [ГДж / час].

Относительные характеристики используются для расчета первичной энергии при заданных нагрузках. К ним относятся удельные расходы топлива и теплоты и КПД.

b уд = f (P ст)

η ст = f (P ст).

Удельные расходы характеризуют экономичность работы:

для котла

для турбин

для блока или электростанции

,

где В ч – часовой расход топлива котлом, тут/ч;

Q к – часовая производительность котла по теплоте, ГДж/ч;

Q т – расход пара турбиной, ГДж/ч;

Р т, Р – электрическая нагрузка турбоагрегата и электростанции, МВТ.

Дифференциальные характеристики используются для определения оптимальных режимов работы агрегатов; т.е. нахождения условий, при которых расход топлива, теплоты или себестоимости энергии будет минимальным при условии соблюдения графика нагрузки.

В ст ∆ В ст

= f (P ст) = f (P ст).

Р ст ∆ Р ст

Энергетические характеристики котлов. Расходные характеристики – это зависимости между количеством подводимого топлива и получаемой теплоты.

Составляются эти характеристики для установившегося режима и характерных условий эксплуатации, т.е. когда давление пара, температура питательной воды, вид топлива соответствуют нормам эксплуатации. Если при эксплуатации условия отличаются, то применяются нормы-поправки. Характеристики получают в результате испытаний котлов при разных тепловых нагрузках.

Расходные характеристики паровых котлов строятся на основе их тепловых балансов. Тепловой баланс может быть представлен в виде:

Q час к = Q 1 + ∆Q ,

где ∆Q = ∆Q 2 + ∆Q 3 + ∆Q 4 + ∆Q 5 + ∆Q 6 , ГДж/ч

где Q 1 – полезно используемое тепло;

Q 2 – потери тепла с уходящими газами;

Q 3 – потери тепла от химической неполноты сгорания;

Q 4 – потери тепла от механической неполноты сгорания;

Q 5 – потери тепла в окружающую среду от наружной поверхности агрегата;

Q 6 – потери тепла с физической теплотой шлаков.

Зависимость отдельных видов потерь от полезной нагрузки устанавливаются на основе испытаний парового котла (рис. 9.1).

Q 1 min Q 1 mах

Рис. 9.1. Зависимость отдельных видов потерь от полезной нагрузки.

Характеристики строятся в пределах от минимальной нагрузки до максимальной. Минимальная нагрузка – наименьшая нагрузка, с которой котел может работать длительно без нарушения циркуляции или процесса горения. Обычно Q 1min зависит от вида топлива и типа котла: для газа-мазута Q 1min = 30% Q ном; для твердого топлива Q 1min = 50% Q ном.

1m ax – наибольшая нагрузка, при которой котел может длительно работать без вредных последствий.

Расходная характеристика котла может быть представлена выражением (рис. 9.2):

В = 0,0342 (Q 1 + ∆Q ), тут/ч, где

где 29,3 – теплота сгорания 1 тут, ГДж.

Удельный расход топлива:

b уд = 0,0342 (1 + ∆Q / Q 1), тут/ГДж.

тут/час потери

полезная теплота

Q 1 , ГДж/час

Рис. 9.2. Расходная характеристика котла.

Характеристика относительных приростов расхода топлива котлом (дифференциальная характеристика) отражает изменение часового расхода топлива при повышении отдачи теплоты на 1 ГДж/ч.

r к = ;

d ∆Q

r к = 0,0342 1 + .

Следовательно, для определения r к надо найти производную потерь по полезной нагрузке. Это делается путем аналитического или графического дифференцирования.

Взаимосвязь между удельным расходом топлива b, относительным приростом расхода топлива r к и кпд η. Тангенс угла наклона расходной характеристики к оси Q в каждой точке соответствует удельному расходу топлива b = В /Q . Как видно из рис. 9.3. угол наклона кривой, а следовательно, и его тангенс сначала уменьшаются, а затем в какой-то момент времени начинают увеличиваться. Соответственно и удельный расход топлива при росте нагрузки сначала снижается (b а >b б > b г ), а затем вновь начинает возрастать (b б = b д ).

В , 1

тут/час 2

б г

а ● ●

Q , ГДж/час

η

● ● ●

Q , ГДж/час

Рис. 9.3. Взаимосвязь между удельным расходом топлива, относительным приростом расхода топлива и КПД котла.

В точке г удельный расход равен относительному приросту расхода топлива b = r к, т.к. луч совпадает с касательной, а относительный прирост расхода топлива численно равен тангенсу угла наклона касательной к энергетической характеристике. В этой же точке (г ) достигается минимум удельного расхода топлива (b ) и максимальное значение КПД:

Зоны I и III характеризуются снижением КПД и невыгодны для нормальной работы энергооборудования. Наиболее предпочтительна работа в зоне нагрузок II, что соответствует наиболее экономичной работе агрегатов, КПД близок к максимальному.

Расходные энергетические характеристики турбоагрегатов. Расходные характеристики паровых турбоагрегатов зависят от системы их регулирования и представляют собой выпуклые кривые или сочетания таких кривых (рис.9.4).

При возрастании нагрузки угол наклона касательной уменьшается. Это объясняется постепенным открытием дроссельного клапана, пропускающего пар в проточную часть турбины, и снижением потерь дросселирования.

QQ I+II+III Q

Р Р Р

r т r т r т

Р Р Р

Рис. 9.4. Расходные характеристики паровых турбоагрегатов: а) дроссельное регулирование, б) сопловое или клапанное регулирование, в) обводное регулирование.

Использование в практических расчетах криволинейных характеристик весьма сложно. Поэтому их заменяют прямолинейными (рис.9.5). Обычно проводят прямую через точки характеристики, соответствующие нагрузкам 50 и 100%.

Расходные характеристики таких турбоагрегатов могут быть описаны выражением вида:

Q ч = Q хх + Q наг = Q хх + r т *Р ,

где Q хх – расход теплоты на холостой ход агрегата, ГДж/ч;

r т – относительный прирост расхода теплоты турбоагрегатом, ГДж/(МВт*ч);

Р – текущая электрическая нагрузка турбоагрегата, МВт.

Например: для турбины К-300-240 расходная характеристика имеет вид:

Q ч = 158,8 + 7,68*Р , ГДж/ч.

Для увеличения пропуска пара через проточную часть турбин большой мощности применяется обводное регулирование, т.е. при больших нагрузках генератора пар пропускается непосредственно в одну из промежуточных ступеней (в обвод первых ступеней).

QQ

Q наг

Q хх Q хх

50 100 Р ,% 50 100 Р,%

Рис. 9.5. Расходные характеристики паровых турбоагрегатов при замене криволинейных зависимостей прямолинейными

При обводном регулировании расходная характеристика представляет собой сочетание двух выпуклых кривых, из которых последняя имеет больший угол наклона (рис.9.6).

r т r т 2

Q перег

Q нагр

P min Р кр Р P m ах

Рис. 9.6. Расходная характеристика паровых турбоагрегатов при обводном регулировании

В зоне действия I клапана: ∆Q Q кр – Q min

tgα 1 = = = r т1

P Р кр – Р min

В зоне действия I и II клапанов: ∆Q Q mах - Q кр

tgα 2 = = = r т2

P Р mах Р кр

Таким образом, при обводном регулировании меняется вид расходной характеристики, который можно описать уравнением:

Q ч = Q хх + r т1 *Р кр + r т2 * (Р Р кр)

В условиях современного производства основной частью нормы времени чаще всего является машинное (аппаратурное) время, величина которого определяется режимами работы оборудования. Так, при механической обработке машинное время рассчитывается на основе соотношения между длиной пути и скоростью перемещения инструментов. Эти величины, в свою очередь, устанавливаются исходя из параметров режима обработки: глубины, подачи и скорости резания.

Как было показано в разд. 2.8, при оптимизации технологического и трудового процессов должны указываться ограничения по необходимому производственному результату, условиям труда, использованию средств производства и объемам производственных ресурсов. Выбор оптимального варианта должен осуществляться по критерию минимума суммарных затрат на заданную программу выпуска продукции.

Рассмотрим структуру задач оптимизации режимов технологического процесса на примере обоснования режимов механической обработки деталей на металлорежущих станках. Эти задачи анализируются в технической и экономической литературе уже в течение десятилетий. Одна из первых попыток оптимизации режима резания была предпринята Ф. У. Тейлором, который известен своими работами не только по организации и нормированию труда, но и по технологии обработки металлов [Илек, Куба, Илкова. С. 85]. При оптимизации режимов резания определяются наиболее эффективные значения скорости резания (v), подачи (s) и глубины (t), т. е.

Область допустимых значений v, s, t определяет система ограничений. Прежде всего должны соблюдаться технические ограничения, обусловленные характеристиками предметов труда, инструментов, приспособлений и оборудования. К числу этих характеристик относятся свойства обрабатываемого материала, требуемая точность и чистота обработки детали, статические и динамические характеристики станка, конструкция, материал, геометрические параметры, допустимый износ инструмента, жесткость системы «станок - приспособление - инструмент - деталь» (СД) и т. д.

В частности, при установлении режима резания должны соблюдаться ограничения вида

где Q r (X) - усилие на r-й элемент системы СД, соответствующее определенному варианту режима резания; Q? - допустимое усилие на г -й элемент системы СД.

Так, допустимость той или иной подачи проверяется по прочности державки резца и пластинки твердого сплава, по величине прогиба детали, возникающего вследствие радиального усилия резания, и по прочности механизма подачи станка.

Наряду с ограничениями типа (5.3.2) должны соблюдаться ограничения, обусловленные параметрами применяемого оборудования. В частности, выбранное число оборотов шпинделя (п (X)) должно соответствовать допустимому числу оборотов (л д), указанному в паспорте станка.

В общем виде подобные ограничения записываются следующим образом:

Такая запись означает, что величины а е (Х) должны соответствовать множеству допустимых значений ?}.

Из группы ограничений по условиям труда следует учитывать требования, обусловленные необходимостью удобного и безопасного отвода стружки из зоны резания. Для этого выбирают соответствующую геометрию инструмента, параметры режима резания, защитные приспособления. Психофизиологические и социальные ограничения, обусловленные конструкцией оборудования, должны учитываться при его проектировании.

При выборе режима резания большое значение имеют ограничения по программе выпуска продукции и использованию фонда времени оборудования. В существующих методиках эти ограничения учитываются недостаточно, хотя для выбора экономически наиболее эффективного режима обработки они являются одними из важнейших.

Зависимость объема выпуска продукции от режима резания характеризуется двумя обстоятельствами. С одной стороны, увеличение скорости резания приводит к уменьшению машинного времени на единицу продукции, с другой - при увеличении скорости существенно уменьшается стойкость инструмента, увеличивается число его переточек и, как следствие, увеличивается время простоев оборудования, вызванных заменой инструментов.

Чтобы учесть эти обстоятельства при выборе оптимального режима резания, будем исходить из того, что на каждом станке можно выделить три состояния: машинную работу (резание), простой во время и в ожидании смены инструмента и простой по всем остальным причинам. Соответственно, можно записать:

где К м - коэффициент использования оборудования по машинному времени (удельный вес машинного времени в фонде времени работы станка); К и - доля времени простоев оборудования при замене инструментов; К п - доля времени простоев оборудования по остальным причинам.

Значениям ЛГ(т. е. скорости резания, подаче, глубине) соответствуют определенные величины машинного времени на единицу продукции. На основе этих величин для каждого X можно установить величину коэффициента использования оборудования по машинному времени (А"м (X)), необходимому для выполнения производственной программы:

где Р к - программа выпуска деталей к-то вида в планируемом периоде; (А) - машинное время на единицу продукции А:-го вида; F - располагаемый фонд времени одного станка в планируемом периоде; N - количество используемых единиц оборудования.

Наряду с коэффициентом машинного времени каждому варианту режима обработки соответствует коэффициент простоев, связанных с заменой инструментов, (К п (А)). Эта величина рассчитывается исходя из стойкости режущего инструмента, определяющей частоту его переточек, и времени на смену инструмента, которое зависит от организации обслуживания рабочих мест. В частности, если рабочий-станочник сам затачивает и меняет инструмент, время на смену инструмента будет включать продолжительность действия рабочего по снятию инструмента, его заточке, установке и переходов. При централизованной заточке и доставке инструмента на рабочее место время на смену инструмента будет определяться продолжительностью действий по снятию затупившегося и установке нового инструмента.

Величину К и (А) можно определить по формуле

где R (X) - среднее количество простоев оборудования во время замены или подправки инструмента за период F (при прочих равных условиях величина R(X) пропорциональна стойкости инструмента); t и (А) - среднее время на одну замену (подправку) инструмента.

Коэффициент машинного времени, который можно реально обеспечить при данной системе замены инструментов, устанавливается исходя из формул (5.3.4) и (5.3.6). Величина К„ в формуле (5.3.4) при расчетах режима резания может быть либо независимой от X (при обслуживании рабочим одного станка), либо связанной с ним зависимостью, близкой к функциональной (при многостаночной работе) . В дальнейшем будем считать, что величина К п однозначно определена. При этом на основе формул (5.3.4) и (5.3.6) имеем:

Таким образом, каждому варианту режима обработки и каждой системе организации обслуживания рабочих мест соответствуют определенные величины коэффициентов К" { (X) и Kl (X). Для выполнения программы выпуска продукции необходимо, чтобы соблюдалось ограничение:

Оптимальный вариант, удовлетворяющий ограничениям (5.3.2), (5.3.3) и (5.3.8), должен определяться по критерию минимума суммарных затрат на заданную программу выпуска продукции.

В условиях действующего производства при фиксированном количестве единиц используемого оборудования варианты режимов обработки будут различаться в основном расходами на оплату труда рабочих - S р (X), инструмент - S„ (20 и электроэнергию - S э (X). В этом случае целевой функции (5.3.9) будет эквивалентна функция

На основе соотношений (5.3.2), (5.3.3), (5.3.8), (5.3.9) структуру задачи оптимизации технологического режима в условиях действующего производства при фиксированном количестве единиц оборудования можно представить в следующем виде: найти

при котором

Расчеты при выборе оптимального режима резания выполняются в следующем порядке.

  • 1. В соответствии с требованиями к точности и чистоте обрабатываемой поверхности и с величиной припуска устанавливается глубина резания (t). При черновой обработке стремятся работать с максимальной глубиной резания, допустимой системой СД. Чистовая обработка ведется при небольшой глубине резания. Так, если при обработке на токарном станке припуск составляет 5 мм, то черновая обработка может вестись при t - 4 мм, а чистовая - при t = 1 мм.
  • 2. Исходя из принятой глубины резания выбирается подача, обеспечивающая выполнение требований к качеству обработки с учетом геометрии инструмента и допустимых усилий в системе СД. Величина подачи при чистовой обработке регламентируется в основном необходимым качеством обрабатываемой поверхности.
  • 3. На основе глубины резания и подачи устанавливается скорость резания. При этом учитываются: требуемая точность и чистота обработки, геометрия и материал инструмента, механические характеристики и материал заготовки, допустимые усилия в системе СД, экономически наиболее эффективные периоды стойкости инструмента.
  • 4. Для выбранной скорости резания определяются число оборотов шпинделя, необходимая мощность станка и двойной крутящий момент. Эти величины сопоставляются с паспортными данными станка. Исходя из уточненного числа оборотов шпинделя рассчитывается фактическая скорость резания.

В зависимости от конкретных производственных условий и возможностей применения вычислительной техники на практике используются различные методики установления режимов обработки. При оперативном нормировании чаще всего используются общемашиностроительные нормативы режимов резания, а также различного рода таблицы и номограммы, позволяющие сократить трудоемкость технологических расчетов. Наряду с этим все большее применение получают автоматизированные системы технологического проектирования и нормирования труда, важнейшей частью которых являются алгоритмы и программы оптимизации режимов обработки.

В связи с расширяющимся применением оборудования с числовым программным управлением (ЧПУ) и гибких автоматизированных производств (ГАП) наиболее перспективными являются комплексные системы проектирования производственных процессов, включающие комплексы взаимосвязанных расчетов по выбору оптимальных вариантов последовательности обработки, технологического оборудования, инструмента, приспособлений, режимов резания, по определению всех составляющих нормы времени с учетом масштабов выпуска продукции и этапов ее освоения. Результаты расчетов выдаются в виде технолого-нормировочных карт, в которых для каждой операции указываются: оборудование, инструмент, приспособления, режимы обработки, норма времени и разряд работы. Наряду с этим при выполнении операции на станке с числовым программным управлением выдается программа работы станка.

После выбора оптимального варианта режима обработки машинное время на операцию однозначно определяется установленными значениями технологических параметров. Так, при обточке детали на токарном станке машинное время определяется по формуле

где L - длина пути инструмента в направлении подачи, мм; / - длина обрабатываемой поверхности, мм; 1 - длина врезания инструмента, мм; / 2 - длина перебега инструмента, мм; п - число оборотов в минуту; s 0 - подача в мм/об; s м - подача в мм/мин; i - число рабочих ходов (проходов), определяется соотношением припуска на обработку (И) и глубины резания (/) при каждом рабочем ходе, т. е. t + ti +... + = h.

  • При многостаночной работе от стойкости инструмента зависит среднее время работы станка без участия рабочего. Это время непосредственно влияет на величину нормы обслуживания, а следовательно, и на среднее время простоя станкав ожидании обслуживания.

Оптимизация режимов работы тепловых сетей относится к организационно-техническим мероприятиям, не требующих значительных финансовых затрат на внедрение, но приводящая к значительному экономическому результату и снижению затрат на топливно-энергетические ресурсы.

В работе по управлению и наладке режимов работы тепловых сетей задействованы практически все структурные подразделения «Тепловых сетей», которые разрабатывают оптимальные тепло-гидравлические режимы и мероприятия по их организации, анализируют фактические режимы, выполняют разработанные мероприятия и наладку систем автоматического регулирования (САР), а также оперативно управляют режимами и контролируют потребление тепловой энергии и др.

Разработка режимов (в отопительный и межотопительный периоды) проводится ежегодно с учетом анализа режимов работы тепловых сетей в предыдущие периоды, уточнения характеристик по тепловым сетям и системам теплопотребления, ожидаемого присоединения новых нагрузок, планов капитального ремонта, реконструкции и технического перевооружения. С использованием данной информации осуществляются теплогидравлические расчеты с составлением перечня наладочных мероприятий, в том числе с расчетом дроссельных устройств (дроссельные диафрагмы и сопла элеваторов). Расчет дроссельных устройств осуществляется для каждого теплового узла с учетом снижения температуры теплоносителя за счет потерь тепловой энергии по трубопроводам от источника до теплового узла. Расчеты на отопительный период выполняются при 3-х режимах: наладочный (соотношение долей ГВС открытой схемы из подающего и обратного трубопровода соответственно 60 и 40%), в результате которого определяются диаметры дроссельных устройств, зимний (при расчетной температуре наружного воздуха и ГВС открытой схемы 100% из обратного трубопровода) и переходный (при температуре наружного воздуха, соответствующей началу/окончанию отопительного периода и ГВС открытой схемы 100% из подающего трубопровода). При проведении расчетов в последние два года к расчетным (договорным) нагрузкам применяются повышающие или понижающие коэффициенты, определенные по фактическому потреблению тепловой энергии. Учет фактических тепловых нагрузок позволяет более точно рассчитывать режимы, проводить наладку и, в конечном итоге, свести к минимуму отклонения от расчетных режимов.

Разработка режимов работы тепловых сетей в течение последних 10 лет ведется при помощи программного обеспечения «СКФ-ТС». По системе централизованного теплоснабжения города Омска сформирована подробная схема тепловых сетей и база данных, содержащая характеристики всех элементов схемы (участки магистральных и внутриквартальных трубопроводов, насосного оборудования, запорной и регулирующей арматуры, ПНС, ЦТП и ТПНС, схемы присоединения и нагрузки тепловых узлов (потребителей). В настоящее время в базе данных содержатся характеристики более 130 тысяч элементов (рисунок).

Помимо расчетов оптимальных режимов и разработки наладочных мероприятий «СКФ-ТС» также позволяет оперативному и инженерно-техническому персоналу в едином информационном пространстве выполнять:

1) анализ технического состояния системы теплоснабжения, фактического состояния сетей, режимов, повреждаемости трубопроводов;

2) моделирование нештатных ситуаций, в том числе аварийных;

3) оптимизацию планирования замен трубопроводов с расстановкой приоритетов замены;

4) проектирование и модернизацию систем теплоснабжения, в том числе оптимизировать планирование модернизации и развития тепловых сетей.

Основным критерием оптимизационной задачи при разработке режимов и перераспределению тепловых нагрузок является снижение затрат на производство и транспорт тепловой энергии (в частности, загрузка наиболее экономичных тепловых источников ТЭЦ-5 и ТЭЦ-3, разгрузка ПНС) при имеющихся технологических ограничениях (располагаемые мощности и характеристика оборудования тепловых источников, пропускная способность тепловых сетей и характеристики оборудования перекачивающих насосных станций, допустимые рабочие параметры систем теплопотребления и т.д.).

Разработанные режимы работы тепловых сетей согласовываются с тепловыми источниками, утверждаются и направляются для руководства и планирования режимов работы оборудования на тепловые источники и в эксплуатационные подразделения. При разработке режимов также разрабатываются и утверждаются необходимые мероприятия по организации режимов по магистральным тепловым сетям и по системам теплопотребления, которые выдаются в эксплуатационные районы и потребителям для исполнения до начала отопительного периода. По системам теплопотребления установка дроссельных устройств выполняется жилищными управляющими компаниями и другими собственниками под контролем персонала абонентских отделов тепловых районов при приемке в повторную эксплуатацию. Кроме того, специалистами осуществляется контроль за исполнением данных мероприятий, в том числе выборочно по системам теплопотребления. После начала отопительного периода проводятся наладочные работы на узлах регулирования, настраиваются регуляторы, проводятся регулировочные работы по системам теплопотребления.

В течение отопительного периода осуществляется многоуровневый контроль и анализ отпуска и потребления тепловой энергии.

1) Оперативный контроль осуществляет диспетчерская служба по дистанционно передаваемым данным с приборов учета тепловых источников, а также по периодически передаваемым данным с контрольных точек.

2) Ежесуточный контроль параметров теплоносителя, отпуска тепловой энергии и теплоносителя по каждой тепломагистрали и в целом по тепловому источнику передается на сервер (расходы сетевой, подпиточной и исходной воды, температуры и давление теплоносителя) с внесением оперативных корректировок в диспетчерский график тепловых нагрузок.

3) Контроль за потреблением тепловой энергии потребителями осуществляется инспекторами и специалистами абонентских отделов с периодичностью 1 раз в месяц. Также по распечаткам с приборов учета производится анализ режимов потребления потребителей с приборами учета для выявления нарушений потребления тепловой энергии (увеличенный расход, превышение температуры обратной сетевой воды и т.д.).

4) Контроль температуры обратной сетевой воды по границам и по ответвлениям (проводится еженедельно персоналом теплового района для выявления ответвлений с повышенной температурой обратной сетевой воды и проведением регулировки).

По вопросам регулирования режимов теплоснабжения и наладки еженедельно проводятся рабочие совещания, в которых участвуют руководители и специалисты управления, инспекции, абонентских отделов, оперативно-ремонтный персонал тепловых районов. Кроме того, еженедельно проводятся совещания в СП «Тепловые сети» по вопросу прохождения отопительного периода с рассмотрением всех проблемных вопросов по теплоснабжению и горячему водоснабжению города. На данных совещаниях присутствуют представители Управляющих компаний жилищного фонда, транспортирующей организации МП «Тепловая компания», ОАО «Омскводоканал», Администрации города.

Наладка гидравлических режимов неразрывно связана с регулированием температурных режимов от тепловых источников. Основной задачей регулирования в системах теплоснабжения является поддержание температуры воздуха внутри отапливаемых помещений в заданных допустимых пределах при изменении внешних и внутренних возмущающих факторов.

В соответствии с «Правилами технической эксплуатации» температура воды в подающей линии водяной тепловой сети в соответствии с графиком задается по усредненной температуре наружного воздуха за промежуток времени в пределах 12-24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов . В связи с отсутствием разработанных методик и рекомендаций, определение задаваемых параметров теплоносителя (температура, давление) и времени задания, как правило, осуществлялось на основе опыта и интуиции диспетчера.

Возрастание доли автоматизации систем теплопотребления и переход на количественно-качественное регулирование при низкой гидравлической устойчивости системы приводит к существенной переменности гидравлических режимов, поэтому требования к организации и оперативному управлению тепловыми и гидравлическими режимами систем ЦТ существенно возрастают.

Анализ динамики изменения среднесуточной температуры наружного воздуха в г. Омске в отопительные периоды показывает, что изменение температуры носит случайный характер, при этом в отдельные периоды имеют место значительные амплитуды изменения суточных температур (до 15÷17 О С), что при качественном регулировании предполагает изменение температуры в подающих трубопроводах более 30 О С.

Постоянные изменения внешних возмущающих факторов приводят к необходимости изменения тепловой нагрузки, режимов и состава работающего оборудования ТЭЦ, а также к возникновению знакопеременных напряжений в трубопроводах тепловых сетей, что увеличивает вероятность их повреждений и снижает надежность.

В целях исключения негативных моментов при оперативном регулировании тепловых нагрузок в тепловых сетях Омского филиала ОАО «ТГК-11», упрощения процесса разработки диспетчерского графика тепловых нагрузок разработана «Инструкция по заданию температурного режима работы теплоисточников» и форма расчета температурных параметров на последующие сутки. Основные положения данной инструкции основаны на модели, учитывающей динамические характеристики системы теплоснабжения, аккумулирующие способности зданий, а также динамику изменения и влияние основных возмущающих воздействий (температура наружного воздуха) в течение нескольких дней (фактические и прогнозные) на тепловой режим отапливаемых зданий.

При формировании диспетчерского графика также предусмотрена корректировка задания, которая может быть введена по внешней инициативе, либо при значительном отклонении фактических температур от прогнозных. Данная температура может быть задана на период регулирования либо, с учетом корректировки, на несколько периодов регулирования.

В тепловых сетях Омского филиала ОАО «ТГК-11» с 2009 г. применяется регулирование с учетом динамических характеристик системы теплоснабжения. Как показала практика, в определенных пределах изменения внешних факторов позволяют увеличить периоды регулирования до 24-72 ч и более, при этом увеличение периода практически не влияет на качество теплоснабжения потребителей, что дает возможность эксплуатировать оборудование тепловых источников и тепловых сетей в более «щадящем» режиме .

В системе ЦТ от тепловых источников Омского филиала ОАО «ТГК-11» в результате планомерно проводимой работы по оптимизации и наладке режимов функционирования тепловых сетей в течение последних 6-7 лет кардинально улучшилось качество теплоснабжения потребителей и повышена эффективность всей системы централизованного теплоснабжения от тепловых источников ОАО «ТГК-11», а именно:

1) решены вопросы теплоснабжения и горячего водоснабжения в целых микрорайонах города (пос. 40 лет Октября, пос. Сибзавода, пос. Свердлова, микрорайонов № 5, № 6, № 10, № 11 Левого берега, Центральной части города, жилых кварталов по ул. Поселковая, ул. Тюленина, ул. Труда), а также отдельных потребителей;

2) полностью исключены работы систем теплопотребления «на сброс» по причине недостаточных располагаемых напоров;

3) сокращены излишние расходы топлива за счет перегрева потребителей в переходные периоды;

4) сокращены расходы электроэнергии на перекачку теплоносителя на 14% (с 53 до 46 млн кВт.ч) за счет сокращения циркуляционных расходов теплоносителя при одновременном подключении новых потребителей;

5) сокращены расходы топлива на выработку электроэнергии за счет снижения и приведения в норму температуры обратной сетевой воды;

6) сокращены расходы подпиточной воды на 21% (с 40,2 до 31,9 млн м 3);

7) подключены новые потребители;

8) снижена повреждаемость трубопроводов. Таким образом, при комплексном подходе к процессу управления режимами работы могут быть оптимизированы режимы и значительно повышена эффективность функционирования системы ЦТ.

Литература

1. Правила технической эксплуатации электрических станций и сетей Российской Федерации. - М.: НЦ ЭНАС, 2008. - 264 с.

2. Жуков Д.В., Дмитриев В.З. Повышение эффективности работы систем централизованного теплоснабжения путем оптимизации теплогидравлических режимов. - В сб. «Труды ВНПК «Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем» - Энерго - 2010. В 2 томах. - М.: Издательский дом МЭИ, 2010. - T. 1. 304 с. ил. С. 229-232.

Задачам оптимизации управления системами электроснабжения уделяется пристальное внимание, начиная с момента появления первых автоматизированных систем проектирования и автоматизированных систем управления на основе компьютеров. Действующие программные системы позволяют проверять реальность и оптимальность проектных решений по отдельным энергетическим объектам, а также надежность функционирования работающей энергосистемы в целом путем решения конкретных технологических задач. Программное обеспечение используется также для сравнительного анализа разных стратегий проектирования, монтажа, оптимизации и эксплуатации при принятии решений на основании состояния и параметров режима электрической сети.

Основными элементами электрической сети являются силовые трансформаторы подстанций и линии электропередачи. Данные элементы в любом аналитическом или синтетическом программном продукте представляются своими математическими моделями. Из всего множества моделей в общем случае можно выделить два основных вида, используемых при решении поставленных задач:

1) Общепринятая графическая модель электрической схемы энергосистемы (включая силовые трансформаторы и ЛЭП);

2) Специализированные модели расчетных схем, описывающие схему электрической сети энергосистемы на уровне требований применяемых математических методов и конкретных технологических задач.

Задачи повышения энергоэффективности систем электроснабжения различных объектов требуют выполнения мероприятий, нередко связанных с инженерными расчетами. Инженерные расчеты в области энергосбережения являются трудоемким процессом. Принимая во внимание сложность и высокую стоимость выполнения таких работ, необходимость и полезность энергосберегающих мероприятий не всегда являются очевидными для руководства предприятий, организаций и учреждений.

Большая часть принимаемых решений строго регламентирована законами, руководящими указаниями и другими нормативными документами. Это дает возможность автоматизировать решения многих частных и комплексных задач, в том числе задач по повышению энергоэффективности эксплуатирующихся силовых трансформаторов.

На трансформаторных подстанциях устанавливаются, как правило, два силовых трансформатора. В зависимости от суммарной нагрузки подстанции в ненагруженные часы выгодно отключать один трансформатор. Такой режим работы следует считать мероприятием по энергосбережению, так как коэффициент полезного действия оставшегося в работе трансформатора приближается к максимальному значению.

Оптимальную нагрузку трансформатора S ОПТ, отвечающую максимально возможному коэффициенту полезного действия, можно найти по формуле :

где S НОМ - номинальная мощность трансформатора, кВ∙А; ΔP ХХ - потери холостого хода, кВт; ΔP КЗ - потери короткого замыкания, кВт.

Отношение оптимальной нагрузки трансформатора и его номинальной мощности является оптимальным коэффициентом загрузки трансформатора k З:

При пользовании формулами (1) и (2) коэффициент загрузки трансформаторов получается достаточно низким (в пределах 0,45÷0,55), так как трансформаторы выпускаются с соотношением потерь холостого хода и короткого замыкания в диапазоне 3,3÷5,0. Обычно в проектной практике пользуются максимальными значениями нагрузки, по которым определяется и загрузка трансформаторов. Коэффициент загрузки оказывается значительно ниже оптимального значения, поэтому находящиеся в настоящее время в эксплуатации силовые трансформаторы имеют низкую загрузку и многие из них работают в неоптимальном режиме.

Потери мощности в силовом трансформаторе определяют по формуле :

где U - фактическое напряжение на выводах обмотки высшего напряжения трансформатора, кВ; U НОМ - номинальное напряжение обмотки высшего напряжения, кВ.

Потери электроэнергии в силовом трансформаторе зависят от времени включения трансформатора, формы графика электрических нагрузок и определяются по формуле:

где Т ГОД - количество часов работы трансформатора в году, ч; τ - время наибольших потерь, определяемое по фактическому графику нагрузки или через справочное значение количества часов использования максимальной нагрузки, ч.

Минимум потерь энергии в трансформаторе в течение года будет при равенстве потерь энергии холостого хода и энергии короткого замыкания. Нагрузку трансформатора, учитывающую показатели графика электрической нагрузки Т ГОД, τ и отвечающую минимуму потерь электроэнергии можно найти с учетом (4) при U=U НОМ:

Проведены сравнительные расчеты по формулам (1) и (5) с учетом средних значений продолжительности использования максимума нагрузки в промышленности . Расчеты показали, что понижающие трансформаторы требуют более высокой загрузки, чем они имеют на практике.

В некоторых случаях может оказаться целесообразным отключение части трансформаторов, работающих на общую нагрузку S Н. Определим экономически выгодную нагрузку S ЭК,Δ P при работе, в пределах которой достигается максимально выгодная загрузка трансформаторов. При изменении нагрузки от нуля до S ЭК,Δ P целесообразна работа одного трансформатора, при нагрузке свыше S ЭК,Δ P , экономически выгодна работа двух трансформаторов. Нагрузка S ЭК,Δ P , при которой целесообразно отключать один из трансформаторов и обусловленная равенством потерь мощности при работе одного и двух трансформаторов определяется по формуле:

Нагрузку S ЭК,Δ W , обусловленную равенством потерь электроэнергии при работе одного и двух трансформаторов, предлагается, по аналогии с (6), определять с учетом времени включения трансформатора и формы графика электрических нагрузок по формуле:

На рисунке согласно уравнениям (3) и (4) представлены зависимости потерь мощности и электроэнергии в силовых трансформаторах двухтрансформаторной подстанции от мощности нагрузки на шинах низшего напряжения S Н.

Рис. - Определение экономической мощности трансформаторов по критериям

минимума потерь мощности и электроэнергии: ΔP 1 , ΔW 1 - потери мощности и энергии при работе одного трансформатора; ΔP 2 , ΔW 2 - потери мощности и энергии при работе двух трансформаторов.

Анализ зависимостей ΔP(S Н) и ΔW(S Н) показывает смещение экономической мощности в сторону ее увеличения при учете времени включения трансформатора и фактического графика электрических нагрузок. При расчетах S ЭК,Δ W по (7) увеличивается интервал экономической мощности. В этом случае увеличивается продолжительность работы подстанции с одним трансформатором при неравномерном графике нагрузки. Экономия достигается за счет отсутствия потерь холостого хода отключенного трансформатора.

Влияние фактического напряжения U на выводах трансформатора на потери мощности и энергии отражают формулы (3) и (4). С целью снижения потерь целесообразно установить такой режим трансформатора, при котором напряжение на обмотках высшего напряжения не будет превышать номинальное значение. Существенное снижение напряжения также недопустимо, поскольку может не обеспечить требования ГОСТ по отклонению напряжения у потребителя. Снижение напряжения на подстанциях приводит также к увеличению потерь электроэнергии в линиях электропередачи.

Следует отметить, что в рамках жизненного цикла силового трансформатора наблюдаются изменения магнитных свойств электротехнической стали и рост потерь холостого хода ΔP ХХ. При расчетах потерь электроэнергии в силовых трансформаторах рекомендуется использовать фактические значения потерь холостого хода, полученные путем измерений в условиях эксплуатации. Это в первую очередь относится к группам силовым трансформаторам, находящимся в длительной эксплуатации. Последние исследования показывают, что для силовых трансформаторов со сроком эксплуатации более двадцати лет паспортные потери холостого хода ΔP ХХ.ПАСП при расчетах должны быть увеличены на 1,75% за каждый год эксплуатации сверх 20 лет :

где T СЛ - срок эксплуатации трансформатора, лет.

Тогда с учетом (2), (4), (5) и (8) оптимальный коэффициент длительной загрузки силового трансформатора, находящегося в эксплуатации более 20 лет, должен определяться по формуле:

Очевидно, что отключение по экономическим соображениям части трансформаторов не должно отражаться на надежности электроснабжения потребителей. С этой целью выводимые из работы трансформаторы должны сопровождаться устройствами автоматического ввода резерва. Целесообразно автоматизировать операции отключения и включения трансформаторов. Для сокращения числа оперативных переключений частота вывода трансформаторов в резерв не должна превышать 2-3 раз в сутки. Кроме того, загрузка трансформаторов, определяемая по формулам (7) и (9) не должна превышать допустимые значения . Исходя из соотношения показателей экономичности и надежности, рассматриваемые в настоящей статье подходы, являются весьма актуальными для подстанций, имеющих сезонные колебания нагрузки.

Приведенные в настоящей статье положения по оптимизации режимов работы трансформаторов реализованы в виде программного обеспечения . Веб-сервис «Онлайн Электрик» позволяет руководителям предприятий и учреждений достаточно оперативно оценивать технико-экономические показатели мероприятий по повышению энергоэффективности работы трансформаторного оборудования и устанавливать их целесообразность, а энергоаудиторам - качественно дополнять и обосновывать энергетические паспорта зданий и сооружений в сокращенные сроки.

Реализация энергосберегающих мероприятий на трансформаторном оборудовании посредством ресурсов «Онлайн Электрик» имеет целый ряд преимуществ по сравнению с классическим решением подобных задач «вручную» или на программном обеспечении, устанавливаемом на персональных компьютерах, а именно:

1) не нужно приобретать и устанавливать прикладные программы на компьютер;

2) имеется возможность подключения к системе из любой точки планеты;

3) пользователю нет необходимости отслеживать и постоянно обновлять версии программного обеспечения;

4) отчеты с предоставлением используемых формул позволяют убедиться в достоверности расчетов.

Список используемых источников

1. Киреева, Э.А. Полный справочник по электрооборудованию и электротехнике (с примерами расчетов): справочное издание / Э.А. Киреева, С.Н. Шерстнев; под общ.ред. С.Н. Шерстнева.- 2-е изд., стер.- М.-: Кнорус, 2013.- 864 с.

2. Справочник по проектированию электрических сетей / под ред. Д. Л. Файбисовича. - 4-е изд., перераб. и доп. - М. : ЭНАС, 2012. - 376 с. : ил.

3. ГОСТ 14209-97. Руководство по нагрузке силовых масляных трансформаторов.- Введ. 2002.01.01.- Минск, 1998.

4. Коротков, А.В. Методы оценки и прогнозирования энергетической эффективности электротехнических комплексов городских распределительных сетей [Электронный ресурс]: автореф. дис. … канд. техн. наук: 05.09.03 / Коротков А.В.; Санкт-Петербургский государственный политехнический университет. - Электрон. текстовые дан. (1 файл: 283 Кб). - Санкт-Петербург, 2013. - Загл. с титул. экрана. - Электронная версия печатной публикации. - Свободный доступ из сети Интернет (чтение, печать, копирование). - Текстовый файл. - Adobe Acrobat Reader 7.0. - .

5. Онлайн Электрик: Интерактивные расчеты систем электроснабжения. - 2008 [Электронный ресурс]. Доступ для зарегистрированных пользователей. Дата обновления: 08.02.2015. - URL: http://www.online-electric.ru (дата обращения: 08.02.2015).



Закрытие ИП