Принцип работы генератора тэц. Основные принципы работы тэс. Об удельных расходах, о делении топлива и о формировании тарифов на электрическую и тепловую энергию от ТЭЦ

Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности:

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.
Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно! Так что же такое ТЭЦ? Согласно Википедии ТЭЦ - сокращенное от теплоэлектроцентраль - это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды. О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений. Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.


Вода перекачивается огромными насосами.
Работа цеха контролируется отсюда.
Вокруг много кнопочек...
Датчиков...
А также совсем непонятных элементов... Качество воды проверяется в лаборатории. Здесь все по-серьезному...

Полученную здесь воду, в дальнейшем мы будем называть "Чистой водой". Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой - Помары - Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа. ТЭЦ - объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.
Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия - котлотурбинный цех. Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.
Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды. Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах. Рядом находится труба чуть поменьше. Снова резерв. Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ. В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.
В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.
Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.
Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.
Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.
В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб. Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами). Вот так выглядит рабочее место дежурного.
Вокруг сотни кнопок.

И десятки датчиков.
Есть механические, есть электронные. Это у нас экскурсия, а люди работают.
Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).
Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.
В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют. Ах, да. А для чего же все-таки нужны градирни?
Оказывается, все очень просто. Чтобы охладить оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника, вода превращается в пар, который остывает в градирнях, конденсирует, и снова превращается в воду. С градирен вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование. Одним словом, градирни нужны, чтобы охлаждать пар, который охлаждает другой пар. Простите за тавтологию...
Вся работа ТЭЦ, контролируется из главного щита управления.
Здесь постоянно находиться дежурный.
Все события заносятся в журнал.
Меня хлебом не корми, дай сфотографировать кнопочки и датчики...


На этом почти все. В завершение осталось немного фотографий станции. Это старая, уже не рабочая труба. Скорее всего скоро ее снесут. На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.
И их достижениями.
Похоже, что не напрасно...
Без преувеличения - настоящие профессионалы своего дела.

ВВЕДЕНИЕ

Одной из важнейших отраслей промышленного производства является энергетика. Развитие энергетики должно происходить с опережением темпов развития и роста других отраслей промышленности.

Производство электроэнергии является одним из главных показателей экономического уровня развития страны и отражает общее состояние производящих сил.

В программах индустриального развития регионов нашей страны предусматривается строительство мощных тепловых электростанций. Основным типом ТЭС являются паротурбинные электростанции, которые могут работать на любом топливе, иметь весьма большую мощность и сооружаться там, где есть потребность в тепловой и электрической энергии. При блочной схеме ТЭС, каждый блок в значительной мере является независимым элементом ТЭС, и так как строительство электростанции длится несколько лет, часто блоки второй очереди имеют более совершенную конструкцию.

С ростом населения Сибири и Дальнего Востока развивается промышленность и сельское хозяйство. Соответственно растет энергопотребление в качестве тепла и электроэнергии. Для этого требуется строительство новых и расширение существующих ТЭС.

С ростом численности населения в городе Чите возрастает потребность в тепловой и электрической энергии. Существующие ТЭС с трудом покрывают их. С этой целью предлагается проект ТЭЦ.

Технологическая часть

Описание технологического процесса

При описании технологической установки используются некоторые термины, являющиеся специфическими для данного типа установок:

Насос - гидравлическая машина, создающая напорное перемещение жидкости при сообщении ей энергии.

Насосный агрегат (НА) - совокупность насоса, электропривода и передаточного механизма (муфта, редуктор, шкив).

Насосная установка (НУ) - комплекс оборудования, обеспечивающий требуемый режим работы насосов одного или нескольких насосных агрегатов. НУ состоит из одного или нескольких насосных агрегатов, трубопроводов, запорной и регулирующей арматуры, контрольно-измерительной аппаратуры, а также аппаратуры управления и защиты.

Насосная станция (НС) - сооружение, включающее в себя одну или несколько насосных установок, а также вспомогательные системы и оборудование.

Тепловая электростанция (ТЭС) - энергопредприятие, предназначенное для преобразования химической энергии органического топлива (каменного угля, мазута, природного газа, сланцев и др.) в электрическую энергию.

Теплоэлектроцентрали (ТЭЦ) - является энергетическим предприятием, предназначенным для выработки и отпуска производственным и коммунально-бытовым потребителям двух видов энергии:

1) тепловой - в виде горячей воды или водяного пара;

2) электрической.

Теплоэлектростанция (ТЭС, ТЭЦ) - это энергетическая установка (собственный энергоблок), работающая на базе газотурбинных или газопоршневых двигателей, которая одновременно вырабатывает несколько видов энергии (как правило, тепло и электричество).

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. В ТЭЦ электроэнергия вырабатывается генераторами электрического тока. Генераторы используют механическую работу двигателей. Системы охлаждения двигателей и выхлопные газы отдают тепловую энергию в виде горячей воды или технического пара.

преобразователь диод электромагнитный транзистор

Рис.1. Технологическая схема паротурбинной электростанции, работающей на твердом топливе; 1 - электрический генератор; 2 - паровая турбина; 3 - пульт управления; 4 - деаэратор; 5 и 6 - бункеры; 7 - сепаратор; 8 - циклон; 9 - котел; 10 - поверхность нагрева (теплообменник); 11 - дымовая труба; 12 - дробильное помещение; 13 - склад резервного топлива; 14 - вагон; 15 - разгрузочное устройство; 16 - конвейер; 17 - дымосос; 18 - канал; 19 - золоуловитель; 20 - вентилятор; 21 - топка; 22 - мельница; 23 - насосная станция; 24 - источник воды; 25 - циркуляционный насос; 26 - регенеративный подогреватель высокого давления; 27 - питательный насос; 28 - конденсатор; 29 - установка химической очистки воды; 30 - повышающий трансформатор; 31 - регенеративный подогреватель низкого давления; 32 - конденсатный насос

Кроме основного оборудования, в комплекс электростанции, как видно из рассмотренной технологической схемы, входит многочисленное вспомогательное оборудование, а именно: механизированные склады твердого топлива, мазутное и газовое хозяйство, оборудование шлакозолоудаления, устройства для подготовки добавочной воды и технического водоснабжения, маслохозяйство и др.

Под технологической схемой понимают последовательный путь топлива, воды, пара и электрического тока на паротурбинной электростанции, выдающей внешним потребителям электрическую и тепловую электроэнергию. На рисунке представлена примерная технологическая схема паротурбинной электростанции, работающей на твердом топливе.

С места добычи твердое топливо доставляется на электростанцию по железной дороге в специальных саморазгружающихся вагонах «2». Вагон поступает в закрытое разгрузочное устройство «1» с вагоноопрокидывателей, где топливо высыпается в находящийся под вагоноопрокидывателем приемный бункер, из которого попадает на ленточный транс­портер «6».

В зимнее время вагоны со смерзшимся углем предварительно подают для размораживания в размораживающее устройство. Транспортером уголь подается на склад угля «3» (обслуживаемый мостовым грейферным краном «4») или через дробильную установку «5» в бункера сырого угля «7», установленные перед фронтом котельных агрегатов. В эти бункера уголь может быть подан также со склада «3». Для учета расхода топлива, поступающего в котельное отделение электростанции, на трак­те топлива до бункеров котельной устанавливают весы для взвешивания этого топлива.

Из бункеров сырого угля «7» топливо поступает в систему пылеприготовления: питатели сырого угля «8», а затем углеразмольные мельницы «9», из которых угольная пыль пневматически транспортируется через мельничный сепаратор «10», пылевой циклон «11» и пылевые шнеки «13» в пылеугольный бункер «12». Из, бункера «12» пыль питателями «14» подается к горелкам «17» топочной камеры.

Весь пневматический транспорт пыли от мельницы до топки осуществляется мельничным вентилятором «15». Воздух, необходимый для горения топлива, забирается дутьевым вентилятором «22» из верхней зоны котельной или снаружи, затем подается в воздухоподогреватель «21», откуда после подогрева нагнетается; частично в мельницу «9» для подсушки и транспортировки топлива в топку котельного агрегата (первичный воздух) и непосредственно к пылеугольным горелкам «17» (вторичный воздух).

Растопка пылеугольных котельных агрегатов производится на газе или мазуте. Природный газ поступает из магистрального пункта в газорегулировочный пункт, а оттуда в котельную. Мазут доставляется на электростанцию в железнодорожных цистернах, в которых он перед сливом разогревается острым паром. После разогрева мазут сливается по межрельсовому (также обогреваемому) лотку в приемный резервуар малой емкости, оттуда перекачивающим насосом подаётся в основной расходный резервуар. При растопке котельного агрегата мазут прокачивается насосом «первого подъема» через паровые подогреватели, после которых уже насосами «второго подъема» подается к мазутным форсункам,

В топке «18» и газоходах котельного агрегата «16» тепло газов, образующихся от сгорания топлива, передается последовательно воде (подаваемой в котельный агрегат питательными насосами «38») в водяном экономайзере «20», насыщенному и перегретому пару в топочных экранах и пароперегревателе «19» и воздуху, необходимому для горения топлива, в воздухоподогревателе «21». После воздухоподогревателя газы поступают в золоуловители «23» (механические, гидравлические или электрофильтры) для очистки от содержащейся в них летучей золы и затем дымососом «24» подаются в дымовую трубу «25».

При сгорании топлива образуется значительное количество шлака в топке и летучей золы, выносимой газами из котельного агрегата. Шлак (сухой раскаленный или жидкий) из шлаковых шахт топки котельного агрегата и летучая зола, осажденная в золоуловителях, смывными устройствами направляются в смывные каналы системы гидрошлакозолоудаления «26» и «27», после чего проходят металлоуловитель, шлакодробилку и поступают в багерный насос, которым перекачиваются в виде золошлаковой пульпы по золопроводам на золоотвал.

На паротурбинных электростанциях, сжигающих жидкое (мазут) и газообразное (природный газ) топливо, топливное хозяйство значительно проще, чем на пылеугольных электростанциях, и, кроме того, отсутствует необходимость в золоулавливании и шлакозолоудалении. Свежий перегретый пар после пароперегревателя «19» по паропроводу «28» направляется в ЦВД паровой турбины «31». После ЦВД пар со сниженным давлением и температурой по трубопроводу «29» поступает в промежуточный перегреватель котельного агрегата; расположенный между перегревателем свежего пара «19» и водяным экономайзером «20» и перегревается в нем снова до начальной температуры свежего пара. По трубопроводу «30» nap промежуточного перегрева поступает в ЦСД, а оттуда по верхним перепускным трубам в ЦНД и из них в конденсаторы турбины «33».

Из конденсаторов конденсат насосами «34» направляется на фильтры установки очистки конденсата, а затем в группу вертикальных ре­генеративных подогревателей низкого давления «35» и оттуда в деаэратор «36». Из питательного блока деаэратора «37» вода, освобожденная от растворенных в ней газов - кислорода и углекислоты питательными насосами «55» прокачивается через регенеративные подогреватели высокого давления «39» и по трубопроводам «40» и подается в водяной экономайзер котельного агрегата «20». Здесь замыкается пароводяной тракт паротурбинной электростанции. При работе электростанции в пароводяном тракте происходят потери питательной воды, которые восполняются установкой приготовления и подачи добавочной воды. Химическая очистка сырой воды производится в ионообменных фильтрах химводоочистки «46», откуда вода поступает в бак обессоленной воды, забирается насосом и подается в конденсатор турбины. Для подачи охлаждающей воды в конденсатор турбины служит система технического водоснабжения.

Охлаждающая вода подается через очистные сетки циркуляционными насосами «43» по напорным трубопроводам «44», из источника водоснабжения (в данном примере - береговой насосной станции) «41» и возвращается по сливным трубопроводам «45». Электрический генератор «32» приводится во вращение паровой турбиной и вырабатывает переменный электрический ток, который поступает на повышающие электротрансформаторы, а оттуда на сборные шины открытого распределительного устройства электростанции. К выводам генератора через трансформатор собственных нужд присоединено также распределительное устройство собственных нужд.

На схеме, представленной ниже, отображен состав основного оборудования теплоэлектроцентраль станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭЦ.


Рис 2. Схема состава основного оборудования ТЭЦ и взаимосвязь ее систем Обозначения на схеме ТЭЦ: 1 - Топливное хозяйство; 2 - Подготовка топлива; 3 - котел; 4 - промежуточный пароперегреватель; 5 - часть высокого давления паровой турбины (ЧВД или ЦВД); 6 - часть низкого давления паровой турбины (ЧНД или ЦНД); 7 - электрический генератор; 9 - трансформатор собственных нужд; 10 - трансформатор связи; 11 - главное распределительное устройство; 12 - конденсатор; 13 - конденсатный насос;14 циркуляционный насос; 15 - источник водоснабжения (например, река); 16 - подогреватель низкого давления (ПНД); 17 - водоподготовительная установка (ВПУ); 18 - потребитель тепловой энергии; 19 - насос обратного конденсата; 20 - деаэратор; 21 - питательный насос; 22 - подогреватель высокого давления (ПВД); 23 - шлакозолоудаление; 24 - золоотвал; 25 - дымосос; 26 - дымовая труба; 27 - дутьевой вентилятор (ДВ); 28 - золоуловитель

Особенности работы ТЭЦ

Основной особенностью работы любой электростанции (конденсационной или теплоэлектроцентрали с комбинированной выработкой электроэнергии и теплоэнергии) является то, что ее промышленная продукция (электрическая и тепловая энергия) потребляется в момент производства и не может вырабатываться «на склад» или в резерв. Это значит, что электростанция в каждый данный момент времени должна вырабатывать энергии ровно столько, сколько потребляют ее промышленные предприятия, транспорт, сельское хозяйство, бытовые и другие потребители.

Потребление электроэнергии у разных потребителей меняется во время суток в течение года. Оно, как правило, снижается летом и возрастает в зимнее время, неравномерно изменяется в течение недели (снижается в выходные и праздничные дни) и даже в течение одних суток, зависят от многих факторов.

Изменение мощности электростанции в зависимости от потребления энергии выражают диаграммами, называемыми графиками нагрузки. В зависимости от периода времени, который они охватывают, графики могут быть суточными, месячными, сезонными и годовыми.

Если электрическая нагрузка меняется ежесуточно в течение года в большей или меньшей степени единообразно, то отпуск тепловой нагрузки ТЭЦ в значительной степени зависит от потребителя. При использовании теплоты на технологические нужды промышленного предприятия ее расход определяется графиком работы этого предприятия. Коммунальные нужды требуют теплоту на отопление жилых, общественных и производственных зданий, на вентиляцию, горячее водоснабжение и др.

Несмотря на значительное разнообразие тепловой нагрузки, ее можно разбить на две группы по характеру протекания во времени: сезонную и круглогодичную.

March 23rd, 2013

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем назва­нии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;

ГЭС – гидроэлектростанция преобразует механическую энер­гию движения воды в электрическую;

ГАЭС – гидроаккумулирующая станция преобразует механи­ческую энергию движения предварительно накопленной в искус­ственном водоеме воды в электрическую;

АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

ПЭС приливная электростанция преобразует энергию при­ливов в электрическую, и т. д.

В Республике Беларусь более 95% энергии вырабатывается на ТЭС. По назначению тепловые электро­станции (ТЭС) делятся на два типа:

КЭС – конденсационные тепловые электростанции, предназ­наченные для выработки только электрической энергии;

ТЭЦ – теплоэлектроцентрали, на которых осуществляется со­вместное производство электрической и тепловой энергии .

На рис. 1. представлена тепловая схема ТЭС. Ее основное обору­дование состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется теп­ловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превраща­ется в механическую энергию вращения. Гене­ратор Г превращает энер­гию вращения в электри­ческую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины либо котла. На рис. 1. кроме основного оборудования ТЭС показаны конден­сатор пара К, в котором отработанный пар, отдавая скрытую теплоту парообразования охлаждающей его воде, с помощью циркуляционного насоса Н в виде конденсата вновь подается в котел-парогенератор. Схе­ма ТЭЦ отличается тем, что взамен конденсатора устанавливается теп­лообменник, где пар при значительном давлении нагревает воду, пода­ваемую в главные тепловые магистрали. Технология преобразований энергии на ТЭС может быть представ­лена в виде цепи следующих превращений:

Рис. 1. Тепловая схема ТЭС

Топливо и окислитель, которым обычно служит воздух, непрерывно поступает в топку котла. В качестве топлива чаще всего используются уголь, сланцы, природный газ и мазут (продукт переработки нефти – остаток пос­ле отгонки из нефти бензина, керосина и других легких фракций). Однако использование природного газа и особенно мазута в перспективе должно сокращаться, так как это слишком ценные вещества, чтобы их использо­вать в качестве котельного топлива. За счет тепла, образующегося в резуль­тате сжигания топлива, в паровом котле вода превращается в пар с температурой около 550°С. КПД ТЭС – это отношение полученной электрической энергии к тепловой энергии, образовавшейся при сжигании топлива; он растет при повышении начальной температуры пара. Но при этом для наиболее ответственных деталей установки, испытывающих боль­шие механические нагрузки в сочетании с высокой температурой, прихо­дится применять высококачественные, дорогие стали. Выигрыш в КПД не компенсирует повышенных затрат на металл. В турбине способ преобразования тепловой энергии пара в меха­ническую энергию состоит в следующем. Пар высокого давления и тем­пературы, имеющий большую тепловую энергию, из котла поступает в сопла турбины. Сопла – это неподвижно укрепленные, не вращающие­ся вместе с валом турбины, сделанные из металла каналы, в которых температура и давление пара уменьшаются, а значит, уменьшается и его тепловая энергия, но зато увеличивается скорость движения потока пара. Таким образом, за счет уменьшения тепловой энергии пара возра­стает его механическая (кинетическая) энергия. При этом механическая энергия потока пара превращается в механическую энергию ротора турбины, а точнее – в механическую энергию турбогенератора, так как валы турбины и элек­трического генератора соединены между собой. Современные паровые турбины для ТЭС – весьма совершенные, быстроходные, высокоэкономичные машины. Количество охлаждающей воды должно быть в несколько десятков раз больше, чем количество конденсируемого пара. Поэтому ТЭС стро­ят поблизости от крупных водных источников. Процесс производства электроэнергии на ТЭС условно можно раз­делить на три цикла: химический – горение, в результате которого внутренняя хи­мическая энергия топлива превращается в тепловую и переда­ется пару; механический – тепловая энергия пара превращается в энергию вращения турбины и ротора турбогенератора; электрический – механическая энергия превращается в элект­рическую .

Предприятиями, на которых производится тепловая и электрическая энергии, являются: ТЭС на углеводородном топливе, ТЭЦ производит электрическую и тепловую энергию, АЭС использует энергию ядерного распада. ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Поступающее со склада в парогенератор топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора воду, преобразует ее в энергию водяного пара с температурой 550˚С. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор, который превращает ее в электрическую. В конденсаторе пара отработанный пар с температурой 123-125˚С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса в виде конденсата вновь подается в котел-парогенератор. На ТЭС могут использоваться газотур­бинные установки (ГТУ). Широкое распространение газовые турбины получили на транспорте в качестве основных элементов авиационных двигателей, на железнодорожном транспорте – газотурболокомотивы.

В ГТУ в качестве рабочего тела служит смесь продуктов сго­рания топлива с воздухом или нагретый воздух при большом дав­лении и высокой температуре. По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутрен­него сгорания, а при очень высоких температурах рабочего тела их экономичность выше. Газовые турбины более компактны, чем паро­вые турбины и двигатели внутреннего сгорания аналогичной мощно­сти. Важнейшим преимуществом газовой турбины является ее высокая маневренность: время запуска составляет 1–1,5 мин. ТЭС с газотурбинными установками более маневренна, чем паротурбинная, легко пускается, останавливается, регулируется. Недостаток ГТУ заключается в том, что газовые турбины работают, в основном, на жидком высокосортном топливе или на газообразном (природный газ; искусственный газ, по­лучаемый при особом сжигании твердых топлив). Тем не менее, ана­литические исследования перспективных направлений развития ми­ровой энергетики называют ГТУ в числе наиболее прогрессивных преобразователей энергии XXI века. На рис. 2. представлена принципиальная схема ТЭС с газотурбин­ной установкой.

Рис. 2. Схема ТЭС с газотурбинной установкой (ГТУ)

В камеру сгорания 1 подается жидкое или газообраз­ное топливо и воздух. Образующиеся в ней газы 2 высокого давления при температуре 750-770°С направляются на рабочие лопатки турби­ны 3. Турбина 3 вращает электрический генератор 4, вырабатывающий электрическую энергию, и компрессор 5, служащий для подачи под дав­лением воздуха 6 в камеру сгорания. Сжатый в компрессоре 5 воздух 6 перед подачей в камеру сгорания 1 подогревается в регенераторе 7 от­работанными в турбине горючими газами 8. Подогрев воздуха позволя­ет повысить эффективность сжигания топлива в камере сгорания. Для повышения экономической эффективности использования ГТУ на ТЭС применяют парогазовые установки – совмещение газотур­бинных и паротурбинных агрегатов. Они являются высокоманеврен­ными и служат для покрытия пиковых нагрузок в энергосистеме. Принципиальная схема ТЭС с парога­зовой установкой приведена на рис. 3. На ней обозначены: 1– паро­генератор, 2 – компрессор, 3 – газовая турбина, 4 – генератор, 5 – паровая турбина, 6 – конденсатор, 7 – насос, 8 – экономайзер. Экономайзер по­зволяет отработанные в турбине газы использовать для подогрева пита­тельной воды, что дает возможность уменьшить расход топлива и по­высить КПД до 44%.

Рис. 3. Схема ТЭС с парогазовой установкой

На рис. 4. представлена еще одна возможная схема ТЭС с парогазовой установкой – с выбросом отработанных газов в паровой котел. Здесь 8 – камера сгорания.

Рис. 4. Схема ТЭС с парогазовой установкой с выбросом отработанных газов в паровой котел

Теплоэлектроцентрали (ТЭЦ), где осуществляется комплексная вы­работка электрической и тепловой энергии, обладают КПД в 1,5-1,7 раз выше, достигающим 60-65%. Комплексная выработка электро­энергии и тепла очень выгодна. Многим отраслям промышленности: химической, металлургичес­кой, текстильной, пищевой и др. тепло необходимо для технологичес­ких целей. Примерно 50% добываемого топлива расходуется на тепло­вые нужды предприятий. Отработанный в турбинах КЭС пар имеет температуру 25-30°С и давление около 0,04 бара (0,04-10~7МПа) и не­пригоден для использования в технологических целях на предприяти­ях. Тре­буется горячая вода и для отопления жилых зданий. Тепловая энергия в виде пара указанных параметров и горячей воды может производиться централизованно на ТЭЦ и в крупных ко­тельных или децентрализованно на заводских мини-ТЭЦ и в индиви­дуальных котельных. На ТЭЦ для получения пара с необходимыми потребителю парамет­рами используют специальные турбины с промежуточными отборами пара. В них, после того как часть энергии пара израсходуется на приведе­ние в движение турбины и параметры его понизятся, производится отбор некоторой доли пара для потребителей. Оставшаяся доля пара обычным способом используется в турбине для приведения ее во вращение и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывается меньшим, то несколько возрастает расход топлива на выра­ботку электроэнергии. Однако это увеличение в конечном счете меньше по сравнению с расходом топлива в случае раздельной выработки элект­рической энергии и тепла на небольших котельных. При сжигании топ­лива только для получения тепла, например для отопления, весь «темпе­ратурный напор» примерно от 1500°С до 100°С, т.е. от температуры, получаемой при сжигании топлива, до температуры, нужной для отопле­ния, никак не используется. Выгоднее использовать этот температурный интервал больше 1000°С для получения из тепловой энергии механичес­кой, а тепло (около 100°С) направить на отопление. Конечно, в этом слу­чае механической энергии при том же количестве сжигаемого топлива получится меньше за счет повышения конечной температуры примерно на 70°С (с 30 до 100°С). Такое повышение необходимо для обеспечения температуры воды на нужды отопления. Горячая вода и пар под давлени­ем до 3 МПа доставляются потребителям по трубопроводам. Совокуп­ность трубопроводов для передачи тепла называется тепловой сетью. Передача тепла в виде пара неэкономична на расстояние более 5–7 км .

Централизованное теплоснабжение на базе комплексной выработ­ки тепловой и электрической энергии обеспечивает в настоящее время основную долю потребности в тепле промышленного и жилищно-ком­мунального хозяйства, уменьшает расход топливно-энергетических ре­сурсов, а также материальных и трудовых затрат в системах теплоснаб­жения, имеет экологические преимущества. Однако при максимальной централизации теплоснабжения на ТЭЦ можно выработать только 25-30% требуемой электрической энер­гии. Работа же конденсационных станций определяется условиями вы­работки электроэнергии, которую технологически и экономически возможно передавать на значительные расстояния. Это делает благо­приятным концентрацию больших электрических мощностей и позво­ляет быстро наращивать электроэнергетический потенциал страны. Поэтому в национальной энергетической системе необходимо и целе­сообразно сочетание КЭС и ТЭЦ.

В качестве весьма энергоэффективного решения снабжения крупных производств элект­роэнергией и теплом рассматриваются мини-ТЭЦ. Атомная электростанция (АЭС) по своей сути также является теп­ловой электростанцией. Однако вместо котла, где сжигается органическое топливо, использует­ся ядерный реактор. Внутриядерная энергия превращается в тепловую энергию пара, которая затем – в механическую энергию вращения тур­богенератора и в электрическую энергию. Наличие термодинамическо­го цикла на АЭС ограничивает КПД этой станции, как и обычных теп­ловых станций. Недостаток АЭС заключается также в отсутствии маневренности: пуск и останов блоков и агрегатов этих станций требу­ет значительных затрат времени и труда.



Документы