Водоподготовка для теплоэнергетики. тэц, грэс и другие объекты. Химический цех. Процессы водоподготовки

Основные требования наших Заказчиков в сфере водоподготовки для теплоэнергетики - безопасность, надёжность, экономичность, экологичность и качество оборудования и очищенной воды.

Ухудшение качества питательной воды в процессе водоподготовки ТЭЦ или ГРЭС ведёт к активной коррозии металла, образованию накипи и отложений на поверхностях нагрева, теплопередающих поверхностях, отложений в проточной части паровых турбин, шлама в оборудовании и трубопроводах. В этом случае работа энергообъектов становится неэкономичной и небезопасной.

Нормативная документация, устанавливающая требования к качеству водоподготовки для теплоэнергетики, жёстко регламентирует требования к питательной воде, к очистке конденсатов, к сбросам от ТЭЦ и ко всем видам работ: к проектированию, изготовлению, монтажу и ПНР водоподготовительного оборудования. Регламентирующие документы: ВНТП, ГОСТ, СНиП, МУ, СТО, РД, требования производителей котлового и турбинного оборудования и пр.

Экодар в своей деятельности руководствуется всей современной нормативной базой, благодаря чему наши Заказчики гарантированно получают оптимальные системы очистки воды, спроектированные, изготовленные, смонтированные, и отлаженные силами компании Экодар, полностью готовые к вводу в эксплуатацию.

Основные технологические решения по очистке воды и водоподготовке для теплоэнергетики применяются в зависимости от исходных условий и конечных требований. Так, для котлов низкого давления часто используются простые схемы умягчения с предочисткой. Для котлов среднего и высокого давления на ТЭЦ и ГРЭС применяются более сложные многоступенчатые схемы обессоливания с использованием нанофильтрации, и качество воды на выходе из ВПУ отвечает самым высоким требованиям.

Предварительная очистка:

    осветление как в традиционных осветлителях, так и в осветлителях-флотаторах;

    механическое фильтрование с помощью самопромывных сетчатых, дисковых, напорных и безнапорных осветлительно-сорбционных фильтров;

    ультрафильтрация.

Обессоливание:

    ионный обмен, прямоточный или противоточный, одно- или двух ступенчатый, в зависимости от качества исходной воды и конечных требований;

    обратноосмотическое обессоливание, одно- или двухступенчатое.

Глубокое обессоливание:

    ионообменные фильтры смешанного действия (ФСД);

    мембранная электродеионизация.

В процессе разработки технологических схем очистки воды с использованием ультрафильтрации и нанофильтрации Экодар учитывает все возможности повторного использования конденсатов и дренажей, промывных вод, их очистки и возврата в цикл систем водоподготовки, поскольку и мы, и наши Заказчики ответственно относимся к окружающей среде и её защите.

Организация водооборотных циклов на объектах теплоэнергетики также требует профессионального и ответственного подхода. Экодар совместно со своими партнерами предлагает современные программы дозирования, контроля и стабилизации воды.

Понятие ультрафильтрации

Принцип ультрафильтрации основан на «продавливании» воды через полупроницаемую мембрану. Основное отличие данной технологии от традиционного объемного фильтрования заключается в том, что большинство задерживаемых частиц оседает на поверхности мембраны, создавая дополнительный фильтрующий слой, обладающий собственным сопротивлением. Ультрафильтрация позволяет удалить из воды взвешенные вещества, водоросли, микроорганизмы, вирусы и бактерии, а также значительно снизить мутность. Также данный способ очистки воды уменьшает ее цветность и окисляемость. Использование ультрафильтрации эффективно заменяет такие этапы водоподготовки, как отстаивание и осаждение.

Технология нанофильтрации

Технология нанофильтрации объединяет особенность ультрафильтрации и обратного осмоса. Для очистки воды путем нанофильтрации используют заряженные и электронейтральные полимерные мембраны, а также керамические мембраны, близкие по размерам пор к ультрафильтрационным. Благодаря ультратонкой полупроницаемой мембране задерживаются различные растворенные загрязнители, величина которых не превышает величину молекулы. В результате нанофильтрации происходит разделение жидкости на 2 части: концентрат соли и чистую воду.

При нанофильтрации используется мембрана, поры которой в 10–50 раз меньше пор мембраны для ультрафильтрации. Благодаря этому нанофильтрация позволяет исключить возможность проникновение микроорганизмов через мембранные элементы. Кроме этого, применяется более высокое (в 2–3 раза) давление для «проталкивания» воды. Естественно, технология нанофильтрации позволяет удалить любые загрязнения, которые удаляются с помощью механической очистки воды, микро- и ультрафильтрации.

Сравнение характеристик ультрафильтрации и нанофильтрации.

Название метода Рабочее давление, бар Размер удаляемых частиц, АО (10–4 мкм) Соотношение пермеат/исходная вода, % Удаляемые из воды примеси
1

Ультрафильтрация

1,0–4,5 80–2000 85–95 Данный метод используется для удаления из воды взвешенных частиц, коллоидов, цист простейших, водорослей, бактерий, вирусов, высокомолекулярных органических веществ.
2

Нанофильтрация

3,5–20 8–100 50–75 Нанофильтрация предназначена для очистки воды от взвешенных частиц и высокомолекулярных органических растворенных веществ. Также нанофильтрация удаляет 20–85 % растворенных неорганических веществ.

Экодар – патентообладатель в области очистки воды, член СРО по проектированию и СМР. Гарантией качества, надежности, безопасности и экологичности являются наличие в компании Экодар интегрированной системы менеджемента (ИСМ), сертифицированной на соответствие требованиям ISO 9001-2011 и Р ИСО 14001-2007 и высокопрофессиональных отделов и служб:

    Технологического отдела, разрабатывающего и внедряющего технологические схемы, осуществляющего всестороннее обследование объекта, пилотные испытания, и подготовку обоснования выбранных технических решений;

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский

университет) в г.Сатке

Контрольная работа

по дисциплине «Общая энергетика»

тема: «Химическая водоочистка на ТЭЦ»

ВВЕДЕНИЕ

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни. История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления. Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, -- оно возросло в 30 раз и достигло в 2001 г. 14,3 Гт у.т/год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше. В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей. Электрическая станция - энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

В зависимости от источника энергии различают: - тепловые электростанции (ТЭС), использующие природное топливо; - гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;

Атомные электростанции (АЭС), использующие ядерную энергию; - иные электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.

В России около 75% энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных реках. Поэтому наиболее крупные ГЭС построены на сибирских реках. Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме. теплофикационный электростанция турбина водоочистка

АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны).

Основным типом электростанций в России являются тепловые (ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России.

На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.

1. ТЕПЛОФИКАЦИОННЫЕ ЭЛЕКТРОСТАНЦИИ (ТЭЦ)

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов тепловой и электрической энергией. Являясь, как и КЭС, тепловыми станциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электрической и тепловой энергии достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т. е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится до 25% всей электроэнергии, вырабатываемой в стране.

Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и в способе выдачи электроэнергии.

Рис. 1. Особенности технологической схемы станции типа ТЭЦ:

1 -- сетевой насос; 2 -- сетевой подогреватель

Как видно из рис. 1, пар на производство берется из промежуточных отборов турбины, после того как он отдал значительную часть энергии при давлении 10--20 кгс/см2, в то время как первичные его параметры перед турбиной составляют 90--130 кгс/см2.

Для теплоснабжения отбирается пар при давлении 1,2-- 2,5 кгс/см2 и поступает в сетевые подогреватели 2 (рис. 1). Здесь он отдает тепло сетевой воде и конденсируется. Конденсат греющего пара возвращается в главный пароводяной контур, а вода, нагнетаемая в подогреватели сетевыми насосами 1, направляется на нужды теплофикации.

Ясно, что, чем больше коммерческий отпуск тепла (т. е. тепловое потребление) и чем меньше тепла бесполезно уносится циркуляционной водой, тем экономичнее процесс производства электроэнергии на ТЭЦ.

В целом КПД ТЭЦ превышает КПД КЭС. В зависимости от величины теплового потребления он может составить 50--80%.

Если потребления тепла нет или оно мало, ТЭЦ может вырабатывать электроэнергию в конденсационном режиме. Однако в этом режиме агрегаты ТЭЦ уступают по технико-экономическим показателям агрегатам КЭС.

Специфика электрической части ТЭЦ определяется положением станции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на станции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как в случае КЭС, в систему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью станции с учетом выдачи тепловой энергии. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем в случае КЭС.

2. ХИМИЧЕСКАЯ ВОДООЧИСТКА НА ТЭЦ

В теплоэнергетике основным теплоносителем является вода и образующийся из нее пар. Содержащиеся в воде примеси, попадающие в паровой котел с питательной водой, а в водогрейный - с сетевой, образуют на поверхности теплообмена низкотеплопроводные отложения и накипь, которые теплоизолируют поверхность изнутри, а так же вызывают коррозию. Процессы коррозии в свою очередь являются дополнительным источником поступления примесей в воду.

В результате растет термическое сопротивление стенки, снижается теплопередача, а, следовательно, повышается температура уходящих газов, что ведет к уменьшению КПД котла и перерасходу топлива. При чрезмерных повышениях температуры металла труб уменьшается их прочность, вплоть до создания аварийной ситуации.

При низких и средних давлениях в барабанных котлах примеси попадают в пар только вследствие уноса капелек котловой воды, т. е. если недостаточно эффективна осушка аппарата. При высоких давлениях примеси начинают растворяться в паре и тем интенсивнее, чем выше давление, и, в первую очередь, кремниевая кислота.

Поэтому с ростом давления значительно повышаются требования к качеству питательной и добавочной воды. Требования к надежности водного режима сформулированы в виде норм водного режима в правилах технической эксплуатации электрических станций и сетей (ПТЭ) и в правилах устройства и безопасной эксплуатации паровых и водогрейных котлов.

Наличие отложений вызывает необходимость очистки оборудования, а это трудоемкая и дорогостоящая операция. Таким образом, обработка воды является необходимым атрибутом любой котельной. Чистота воды и пара в отдельных агрегатах и частях трактов котельной, объединяемая общим понятием водного режима котельной, оказывает существенное влияние на экономичность и надежность ее работы.

2.1 Водоподготовка на ТЭЦ

Одним из самых важных вопросов в энергетике была и остается водоподготовка на ТЭЦ. Для предприятий энергетики вода - основной источник их работы и потому к ее содержанию предьявляются очень высокие требования. Поскольку Россия - страна с холодным климатом, постоянными сильными морозами, то работа ТЭЦ - это, то от чего зависит жизнь людей. Качество воды, подаваемой на теплоэгергоцентраль влияет очень сильно на ее работу. Жесткая вода выливается в очень серьезную проблему для паровых и газовых котельных, а также паровых турбин ТЭЦ, которые обеспечивают город теплом и горячей водой. Чтобы четко понимать, как и на что именно отрицательно влияет жесткая вода, не мешало бы сперва разобраться, что такое ТЭЦ? И с чем ее "едят"? Итак, ТЭЦ - теплоэнергоцентраль - это разновидность тепловой станции, которая не только обеспечивает теплом город, но и поставляет в наши дома и на предприятия горячую воду. Такая электростанция устроена как конденсационная электростанция, но отличается от нее тем, что может отобрать часть теплового пара, уже после того, как он отдал свою энергию.

Паровые турбины бывают разными. В зависимости от вида турбины и отбирается пар с различными показателями. Турбины на энергоцентрали позволяют регулировать количество отбираемого пара. Пар, который был отобран, проходит конденсацию в сетевом подогревателе или подогревателях. Вся энергия из него передается сетевой воде. Вода в свою очередь идет на пиковые водогрейные как котельные, так и тепловые пункты. Если на ТЭЦ перекрываются пути отбора пара, она становится обычной КЭС. Таким образом, теплоэнергоцентраль может работать по двум различным графикам нагрузки:

· тепловой график - прямопропорциональная зависимость электрической нагрузки от тепловой;

· электрический график - тепловой нагрузки либо нет вообще, либо электрическая нагрузка от нее не зависит. Достоинство ТЭЦ состоит в том, что она совмещает как тепловую энергию, так и электрическую. В отличии от КЭС, оставшееся тепло не пропадает, а идет на отопление. В результате растет коэффициент полезного действия электростанции. У водоподготовки на ТЭЦ он составляет 80 процентов против 30 процентов у КЭС. Правда, об экономичности теплоэнергоцентрали это не говорит. Здесь в цене другие показатели - удельная выработка электричества и КПДцикла. К особенностям расположения ТЭЦ следует отнести тот факт, что строить ее следует в черте города. Дело в том, что передача тепла на расстояния нецелесообразна и невозможна. Поэтому водоподготовка на ТЭЦ всегда строят рядом с потребителями электроэнергии и тепла. Из чего состоит оборудование водоподготовки для ТЭЦ? Это турбины и котлы. Котлы производят пар для турбин, турбины из энергии пара производят энергию электричества. Турбогенератор включает в себя паровую турбину и синхронный генератор. Пар в турбинах получают за счет применения мазута и газа. Эти вещества и нагревают воду в котле. Пар под давлением прокручивает турбину и на выходе получается электроэнергия. Отработанный пар поступает в дома в виде горячей воды для бытовых нужд. Потому то, отработанный пар и должен иметь определенные свойства. Жесткая вода со множеством примесей не даст получить качественный пар, который к тому же можно потом поставить людям для использования в быту. Если пар не отправляют на поставку горячей воды, то его тут же в ТЭЦ охлаждают в градирнях. Если вы видели когда-нибудь огромные трубы на тепловых станциях и как их них валит дым, то это и есть градирни, а дым, вовсе не дым, а пар, который подымается от них, когда происходит конденсация и охлаждение. Как работает водоподготовка на ТЭ? Больше всего влиянию жесткой воды здесь поддается турбина и, конечно же, котлы, которые преобразовывают воду в пар. Главная задача любой ТЭЦ получить в котле чистую воду. Чем так плоха жесткая вода? Каковы ее последствия и почему они обходятся нам так дорого? Жесткая вода отличается от обычной высоким содержанием солей кальция и магния. Именно эти соли под воздействием температуры оседают на нагревательном элементе и стенках бытовых приборов. То же относится и к паровым котлам. Накипь образовывается в месте нагрева и точке кипения по краям самого котла. Удаление накипи в теплообменнике в таком случае затруднено, т.к. накипь нарастает на огромном оборудовании, внутри труб, всевозможных датчиков, систем автоматизации. Промывка котла от накипи на таком оборудовании - это целая многоэтапная система, которая может даже проводится при разборе оборудования. Но это в случае высокой плотности накипи и больших ее залежей. Обычное средство от накипи в таких условиях конечно не поможет. Если говорить о последствиях жесткой воды для быта, то это и влияние на здоровье человека и удорожание использования бытовых приборов. К тому же жесткая вода очень плохо контактирует с моющими средствами. Вы станете использовать на 60 процентов больше порошка, мыла. Расходы будут расти как на дрожжах. Умягчение воды потому и было придумано, чтобы нейтрализовать жесткую воду, ставишь себе в квартиру один умягчитель воды и забываешь, что есть очистка от накипи, средство от накипи.

Накипь отличается еще и плохой теплопроводимостью. Этот ее недостаток главная причина поломок дорогой бытовой техники. Покрытый накипью тепловой элемент просто перегорает, силясь отдать тепло воде. Плюс из-за плохой растворимости моющих средств, стиральную машинку нужно дополнительно включать на полоскание. Это расходы воды, электричества. С любой стороны, умягчение воды - самый верный и экономически выгодный вариант предотвращения образования накипи. А теперь представьте что такое водоподготовка на ТЭЦ в промышленных масштабах? Там средство от накипи используется галлонами. Промывка котла от накипи проводится периодически. Бывает регулярной и ремонтной. Чтобы удаление накипи проходило более безболезненно и нужна водоподготовка. Она поможет предотвратить образование накипи, защитит и трубы и оборудование. С ней жесткая вода не будет оказывать свое разрушительное воздействие в таких угрожающихмасштабах. Если говорить о промышленности и энергетике, то больше всего жесткая вода приносит неприятностей ТЭЦ и котельным. То есть в тех областях, где происходит непосредственно водоподготовка и нагрев воды и перемещение этой теплой воды по трубам водоснабжения. Умягчение воды здесь необходимо, как воздух. Но поскольку водоподготовка на ТЭЦ это работа с огромными обьемами воды, водоподготовка должна быть тщательно просчитана и продумана с учетом всевозможным нюансов. От анализа химического состава воды да места расположения того или иного умягчителя воды. В ТЭЦ водоподготовка - это не только умягчитель воды, это еще и обслуживание оборудования после. Ведь удаление накипи все равно в этом производственном процессе придется делать, с определенной периодичностью. Здесь применяется не одно средство от накипи. Это может быть и муравьиная кислота, и лимонная, и серная. В различной концентрации, обязательно в виде раствора. И применяют тот или иной раствор кислот в зависимости от того из каких составных частей сделан котел, трубы, контроллер и датчики. Итак, на каких обьектах энергетики нужна водоподготовка? Это котельные станции, котлы, это тоже часть ТЭЦ, водонагревательные установки, трубопроводы. Самыми слабыми местами и ТЭЦ в том числе, остаются трубопроводы. Накапливающаяся здесь накипь может привести и к истощению труб и их разрыву. Когда накипь не удаляется во время, то она просто не дает воде нормально проходить по трубам и перегревает их. Наряду с накипью второй проблемой оборудования в ТЭЦ является коррозия. Ее также нельзя спускать на самотек. К чему может привести толстый слой накипи в трубах, которые подводят воду на ТЭЦ? Это сложный вопрос, но ответим на него мы теперь зная, что такое водоподготовка на ТЭЦ. Поскольку накипь - отменный теплоизолятор, то и расход тепла резко растет, а теплоотдача наоборот снижается. КПД котельного оборудования падает в разы, все это в результате может привести и к разрыву труб и взрыву котла.

Водоподготовка воды на ТЭЦ, это то, на чем нельзя экономить. Если в быту, вы все же подумаете, купить ли умягчитель воды или выбрать средство от накипи, то для теплового оборудования такой торг недопустим. На теплоэнергоцентралях подсчитывают каждую копейку, поэтому очистка от накипи при отсутствии системы умягчения обойдется куда дороже. Да и сохранность приборов, их долговечность и надежная эксплуатация тоже играют свою роль. Очищенное от накипи оборудование, трубы, котлы работают на 20-40 процентов эффективнее, чем оборудование не прошедшее очистку или работающее без системы умягчения. Главная особенность водоподготовки воды на ТЭЦ состоит в том, что здесь требуется глубоко обессоленная вода. Для этого нужно использовать точное автоматизированное оборудование. На таком производстве чаще всего применяют установки обратного осмоса и нанофильтрации, а также электродеионизации. Какие этапы включает в себя водоподготовка в энергетике в том числе и на теплоэнергцентрали? Первый этап включает в себя механическую очистку от всевозможных примесей. На этом этапе из воды удаляются все взвешенные примеси, вплоть до песка и микроскопических частиц ржавчины и т.п. Это так называемая грубая очистка. После нее вода выходит чистой для глаз человека. В ней остаются только растворенные соли жесткости, железистые соединения, бактерии и вирусы и жидкие газы.

Разрабатывая систему водоподготовки воды нужно учитывать такой нюанс, как источник водопоставки. Это водопроводная вода из систем централизованного водоснабжения или это вода из первичного источника? Разница в водоподготовке состоит в том, что вода из систем водоснабжения уже прошла первичную очистку. Из нее нужно убирать только соли жесткости, и обезжелезивать при необходимости. Вода из первичных источников - это вода абсолютно не обработанная. То есть, имеем дело с целым букетом. Здесь обязательно нужно проводить химический анализ воды, чтобы понимать с какими примесями имеем дело и какие фильтры ставить для умягчения воды и в какой последовательности. После грубой очистки в системе идет следующий этап под названием ионообменное обезсоливание. Здесь устанавливают ионообменный фильтр. Работает на основе ионообменных процессов. Главный элемент - ионообменная смола, которая включает в себя натрий. Он образует со смолой непрочные соединения. Как только жесткая вода на ТЭЦ попадает в такой умягчитель, то соли жесткости мгновенно выбивают натрий из структуры и прочно встают на его место. Восстанавливается такой фильтр очень просто. Картридж со смолой перемещается в бак регенерации, где находится насыщенный соляной раствор. Натрий снова занимает свое место, а соли жесткости вымываются в дренаж. Следующий этап - это получение воды с заданными характеристиками. Здесь применяют установку водоподготовки воды на ТЭЦ. Главное ее достоинство - получение 100-процентно чистой воды, с заданными показателями щелочности, кислотности, уровнем минерализации. Если предприятию нужна техническая вода, то установка обратного осмоса создавалась именно на такие случаи.

Главной составляющей частью этой установки является полунепроницаемая мембрана. Селективность мембраны меняется, в зависимости от ее сечения можно получить воду с разными характеристиками. Эта мембрана разделяет бак на два части. В одной части находится жидкость с высоким содержанием примесей, в другой части жидкость с низким содержанием примесей. Воду запускают в высококонцентрированный раствор, она медленно просачивается через мембрану. На установку подается давление, под воздействием его вода останавливается. Потом давление резко увеличивают, и вода начинает течь обратно. Разность этих давлений называют осматическим давлением. На выходе получается идеально чистая вода, а все отложения остаются в менее концентрированном растворе и выводятся в дренаж.

Нанофильтрация по сути тот же обратный осмос, только низконапорный. Поэтому принцип действия тот же, только напор воды меньше. Следующий этап - устранение из воды, растворенных в ней газов. Поскольку в ТЭЦ нужен чистый пар без примесей, очень важно удалить из воды, растворенные в ней кислород, водород и углекислый газ. Устранение примесей жидких газов в воде называется декарбонацией и деаэрацией. После этого этапа вода готова для подачи в котлы. Пар получается именно той концентрации и температуры, которая необходима.

Как видно, из всего вышеописанного, водоподготовка воды в ТЭЦ - один самых главных составляющих производственного процесса. Без чистой воды, не будет качественного хорошего пара, а значит, не будет электричества в нужном обьеме. Поэтому водоподготовкой в теплоэнергоцентралях нужно заниматься плотно, доверять эту службу исключительно профессионалам. Правильно спроектированная система водоподготовки - это гарантия долгосрочной службы оборудования и получения качественных услуг энергопоставок.

2.2 Химическая очистка воды

Большинство современных предприятий используют водоочистные сооружения для фильтрации стоков с целью их последующего использования. В связи с нахождением в них большого количества вредоносных веществ - остатков техногенного производства, простого механического очищения ставится недостаточно. По этой причине для полной химической очистки воды используют технологии и установки, которые производят очищение жидкости при помощи химических реагентов. Грамотное применение таких способов позволяет добиться очень высоких результатов и устранить загрязнения любого типа. В зависимости от данных химико-биологического анализа жидкости используются соответствующие виды химических, биохимических веществ для очистки воды, максимально удовлетворяющие всем предъявляемым требованиям.

Используя полученные данные о составе Н2О, ученые лабораторным путем устанавливают, какие химические реакции происходят при очистке воды с той или иной концентрацией реагентов. Поскольку активным в этом процессе является вещество, используемое в качестве реагента, то во избежание его передозировки следует строго соблюдать предложенные специалистами пропорции. В некоторых случаях использование таких добавок невозможно потому, что ущерба от них будет намного больше, чем пользы. В таких ситуациях применяют биологические активные вещества, способные окислить практически все загрязнения, не принося вреда окружающей среде. Перед их использованием не будет лишним подробнее узнать, какие анализы производят при аэробной биохимической очистке воды. Одним из самых распространенных исследований является биохимическое потребление кислорода, которое говорит о том, насколько микроорганизмам хватает О2 для их нормального функционирования и окисления вредных веществ. Помимо этого показателя также учитывается и химико-биологический анализ жидкости.

Нередко в стоках можно встретить хром - токсичное вещество, вызывающее аллергические реакции и очень опасное для человеческого организма. Его нейтрализация также важна, как и обессоливание, обезжелезивание Н2О. Для этого необходимо провести химическую очистку воды от хрома методом электрокоагуляции. Жидкость подвергается электрофорезу, вследствие чего молекула хрома делится на анионы и катионы. Гидроксиды алюминия и железа, имеющие высокую сорбционную способность, притягивают их, образовывая нерастворимый хлопьевидный осадок. Преимущества такого метода заключаются в отсутствии реагентов, выступающих качестве солей.

Химическая очистка воды от железа и кальция

Одним из самых распространенных загрязнителей является окись железа, характеризующаяся специфичным цветом и металлическим вкусом. В случае, когда ее количество невелико, в качестве реагента может быть применен кислород. Часто таким способом происходит очищение воды из скважины, содержащей окись железа. Суть этого метода заключается в том, что при помощи компрессора Н2О насыщается О2. Для успешного протекания реакции между железом и кислородом пименяется катализатор - магний. Результатом реакции становится получение трехвалентного железа, которое легко удерживается сетчатыми фильтрами.

В тех случаях, когда необходимо произвести обезжелезивание, умягчение, нейтрализацию и химическую очистку ржавой воды в скважине, используются более сильные реагенты. К ним относится гипохлорит натрия, который окисляет практически все соли, металлы и органические вещества. В случае, если жидкость в дальнейшем не будет задействована в производстве, а ее фильтрация необходима для возвращения в природную среду, стоит задействовать более щадящие методы. Особого внимания заслуживает промышленная очистка воды ТЭЦ химическими реагентами от кальция, защищающая трубы от образования известкого налета. Даже небольшой слой накипи на трубах способствует снижению коэффициента теплопередачи и возрастанию расхода топлива. Для решения этой проблемы может быть использован метод известкования, когда в жидкость добавляют раствор гашеной извести с уровнем рН не более 10. В итоге можно наблюдать следующий пример реакции химической очистки воды:

Ca(HCO3)2 + Ca(OH)2 = 2 CaCO3 + 2Н2O Mg(HCO3)2 + 2 Ca(OH)2 = Mg(OH)2 + 2СaCO3 + 2Н2O.

В результате образуются нерастворимые соли, которые затем удаляются из резервуара. Очень важно, чтобы реакции химической системы очистки воды, а также контроль над температурой и давлением производились постоянно. В противном случае могут возникнуть трудности в утилизации шламов, повышение мутности жидкости.

Выбор реагентов для химической подготовки промышленной воды во многом зависит от характера загрязнений, а также от финансовых возможностей предприятия. Химическая очистка воды сочетается усилиями многих организаций с использованием гипохлорита натрия, что объясняется его высокой эффективность и низкой стоимостью. По результатам фильтрации конкуренцию ему может составить метод озонирования, который абсолютно безвреден для человека, но его стоимость будет значительно выше. На многих предприятиях используются котельные установки, требующие тщательной фильтрации Н2О перед их использованием. Такая потребность обусловлена защитой от образования известкого налета и коррозий. Химическая очистка воды котельной установки осуществляется при помощи электрохимического окисления или добавления в жидкость специального раствора против образования накипи. Первый метод является более безопасным, поскольку в нем не используется реагентов, а удаление солей происходит за счет воздействия на них магнитного поля. Второй метод применяется не так часто и используется для профилактики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гительман Л.Д, Ратников Б.Е. Энергетический бизнес. - М.: Дело, 2006. - 600 с.

2. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев. 2-е изд., стереотип. - Мн.: БГЭУ, 2002. - 198 с.

3. Стандартизация энергопотребления - основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский //Стандарты и качество, 1993.

4. И.Х.Ганев. Физика и расчет реактора. Учебное пособие для вузов. М, 1992, Энергоатомиздат.

5. Рыжкин В. Я., Тепловые электрические станции, М., 1976.

Размещено на Allbest.ru

...

Подобные документы

    Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация , добавлен 23.03.2015

    Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа , добавлен 24.06.2009

    Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат , добавлен 27.05.2010

    Описание тепловой схемы станции, компоновки оборудования газового хозяйства, химической водоочистки питательной воды, выбор и эксплуатация основного оборудования. Автоматизация тепловых процессов и расчеты характеристик котельной и основных затрат.

    дипломная работа , добавлен 29.07.2009

    Способы и основные этапы подготовки воды для подпитки и заполнения контуров АЭС на водоподготовительной установке. Разновидности и конструкция фильтров. Системы обеспечения безопасности работы АЭС, виды сбросов и их утилизация, взрывопожаробезопасность.

    дипломная работа , добавлен 20.08.2009

    Разработка проекта и расчет электрической части тепловой пылеугольной электростанции. Выбор схемы ТЭЦ, коммутационных аппаратов, измерительных и силовых и трансформаторов. Определение целесообразного способа ограничения токов короткого замыкания.

    курсовая работа , добавлен 18.06.2012

    Конструкция корпуса атомной турбины. Методы крепления корпуса к фундаментной плите. Материалы для отливки корпусов паровых турбин. Паровая конденсационная турбина типа К-800-130/3000 и ее назначение. Основные технические характеристики турбоустановки.

    реферат , добавлен 24.05.2016

    История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат , добавлен 30.04.2010

    Выбор основного энергетического оборудования, паровых турбин. Высотная компоновка бункерно-деаэраторного отделения электростанции. Сооружения и оборудование топливоподачи и системы пылеприготовления. Вспомогательные сооружения тепловой электростанции.

    курсовая работа , добавлен 28.05.2014

    Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.

Теплоэнергоцентрали призваны обеспечивать город теплом и горячей водой. С их помощью генерируется энергия, которая питает заводы, магазины, жилые дома. Основной движущей силой теплоцентралей являются парогенераторы. И в отличие от обычных котельных, которые работают на воде, к качеству пара предьявляются требования намного выше. Таким образом, водоподготовка на ТЭЦ – удовольствие дорогое, и подлежит тщательной подготовке для правильного запуска в работу всей системы.

Оптимальная схема водоподготовки на мини ТЭЦ

Составит эффективную схему доведения воды до нужного качества на ТЭЦ вопрос многих миллионов денежных средств. Объемы очищаемой воды за каждый день огромны, качество входящей воды может быть разным, а бюджет на все эти входящие данные достаточно мал.

Лучше всего будет работать очистительная система с такими этапами, при условии забора воды из первичного источника, без какой либо первичной очистки.

Для получения высококачественного пара придется потрудиться. В чем принципиальная разница, между водоподготовкой на мини ТЭЦ и той же сферой на обычной котельной? Любая жидкость, попадающая в котел или парообразователь в обязательном порядке должна быть мягкой, как минимум. Причем воду очищают как до момента входа в систему, так и после выхода из системы. Связано это с тем, что после очищения остается масса отходов. И чтобы их скинуть, придется их дочистить.

Актуальность очистных схем доказывать не нужно. Они помогут обезопасить и трубы, и котлы, и непосредственно паровые турбины от коррозии и повреждений, вызванных ненужными примесями. Точно так же схема помогает решить проблему с образованием известкового налета. Собирать систему без привлечения специалистов достаточно рискованно. Можно легко вывести из строя свою рабочую установку или же получить недоочищенную воду.

Но и специалист может ошибаться. Любой человек должен чем-то подкреплять свои выводы. И прежде всего, это касается состава приборов. Сперва, нужно оценить состав воды, а потом предлагать варианты. Это правило должен помнить любой заказчик.

Так или иначе, но главной задачей любой теплоцентрали в любой стране по-прежнему остается применение более качественного сырья. И постараться потратить на всю эту процедуру, как можно меньше денег.

Специалисты на сегодня предлагают:

  • Новые устройства очищения и умягчения;
  • Использование окислителей для быстрого прохождения реакций;
  • Использование нейтрализаторов для нивелирования негативного влияния коррозионных процессов, например.

Более всего на теплоцентралях в качестве доведения воды до этапа дегазации используют мембранный обратноосматический прибор. Это фильтр для тонкой чистки и работает только с подготовленной водой. Самый оптимальный прибор подобного рода поможет убрать почти все органические растворенные примеси, некоторые виды бактерий, и соли металлов.

Не менее важно воду для паровых турбин и обеззараживать. Если этого не делать, то очень быстро бактерии сделают свое черное дело. Поверхности турбин станут зелеными и скользкими.

Лучше всего в этом случае будет работать озонатор, как самый экологически чистый прибор. Он поможет получать деминерализованную воду с очень неплохой производительностью. И для этого не нужны химикаты. Озон, как известно, это кислород из трех атомов, который помогает окислять вещества, без выделения новых образований. Причем работает он, как с металлами, так и солями. Вода получается не только обеззараженной, но еще и насыщенной кислородом, что тоже дает свои плюсы. Озонатор потому массово используется в теплоцентралях и на мини ТЭЦ, что одним своим присутствием и работой помогает убрать из воды и лишние соли, и лишние ионы железа. После данного этапа, все, что понадобиться сделать - устранить растворенные газы. А в общем вода получается деминерализированной, и готовой к использованию. Плохо в озонировании то, что оно дорого стоит, перевозить генерирующие установки нельзя, да и затраты энергоносителей очень высокие. Потому массового использования у озонаторов пока нет.

Еще одной немаловажной особенностью современной и грамотной водоподготовки на ТЭЦ является автоматическое управление. На таких больших предприятиях обойтись без ручного управления очень важно. Люди – это постоянное возникновение проблем из-за пресловутого «человеческого фактора». Но и обойтись без них нельзя. Т.к. кто-то должен управлять и автоматами.

И еще одна очень важная проблема любой топливно-энергетической системы – известковые отложения. В мини ТЭЦ использовали в свое время и флокулянты с коагулянтами для устранения жесткости в полном объеме. Применяли и кипячение. Но тогда вся известь оставалась внутри котла. Облегчение для систем мини ТЭЦ настало только с изобретением безреагентных способов устранения известкового налета. Начиналась история с магнитного воздействия и ультразвука. Сегодня более, чем эффективно работают электромагнитные устранители накипного налета.

Особенности паровых теплоцентралей (ТЭЦ) и их очищения

Парогенераторы работают на исключительно чистом паре, избавленном от абсолютно любых примесей. Применение некачественного пара ведет к большим потерям при производстве, потерям КПД, и как следствие поломкам турбин. Потому качественная водоподготовка на ТЭЦ парового вида – одно из превалирующих направлений работы.

Огромную роль здесь играет метод устранения примесей из воды. Есть в работе подобного оборудования такая особенность, как зависимость очистных сооружений от страны-производителя паровых турбин и сопутствующего оборудования. При этом важно еще сохранять хрупкий баланс состава воды в паровых котлах.

Наиболее удобными очистными установками для такого вида теплоцентралей являются комплексные (например, комплекс Gendos ). С их помощью из воды можно устранить большее количество вредных примесей, и при этом химикаты будут впрыскиваться контролировано и дозировано и в автоматическом режиме. При работе с дезинфекторами, впрыскиваемые в воду реагенты можно менять, для обеспечения оптимальной очистки.

Кроме огромного вреда, который приносит паровому оборудованию комплекс солей, есть еще соли железа, которые дают свой вклад в этот вред. могут привести и к коррозии, и к ржавчине. И как следствие, к поломке оборудования.

Классический набор фильтров для систем водоподготовки на ТЭЦ обязательно должен включать и умягчители. Первичная вода из систем водоснабжения может обладать разными включениями, даже при обязательном условии, что такую воду чистят. Чаще всего включаются жесткость, соли железа и иногда бактерии.

Многие считают, что бактерии – это обязательно вирусы или болезнетворные бактерии, или бактерии гниения. Но сегодня очень часто в оборудовании постоянно работающем с водой есть еще и железистые бактерии. Вот они тоже могут создавать очаги заражения, только бороться с ними можно несколько иными путями. Иногда могут помочь и специальные флокулянты, впрыскиваемые в систему.

Что поможет исправить ситуацию с превышением концентрации солей железа? Как известно, они могут быть трех видов – двухвалентного железа, трехвалентного железа и железных бактерий. Трехвалентное железо самое удобное для выведения. Оно уже имеет окисленную форму и быстро выпадает в осадок.

В это же время двухвалентное присутствует в воде в виде растворенных солей. И самая большая сложность начинается тогда, когда нужно преобразовывать его в трехвалентное, то есть выпадающее в осадок. Для этого есть реагенты и есть окислители в виде воздуха. В теплоцентралях больше всего применяют безреагентные окислители, это безопаснее для турбин, да и меньше вопросов потом с устранением осадков и излишков, добавленных реагентов.

Обойтись без докотловой обработки воды котельные не могут. Это четко указано и в стандартах и в постановлениях гос. надзора. Любая теплоэнергоцентраль должна подобрать компанию, которая будет выполнять услуги по разработке и монтажу докотловой системы обработки воды.

Есть еще такое понятие, как внутрикотловая обработка подпиточной воды. Ее применяют для неэкранированных котлов на ТЭЦ с малой паропроизводительностью, при условии, что они работают на твердом топливе. При этом максимальный порог жесткости составляет 3 милиграмма на экв. литр.

Умягчать воду в таких системах не так принципиально, как предотвратить образование и развитие накипного осадка. Поэтому поиск умягчающих систем должен вестись именно в направлении очистителей от осадка. Но для этого подойдет и сам принцип умягчения – то есть устранения или преобразования солей жесткости. Лучше всего в использовать катионные фильтры или электромагнитные.

Еще одной проблемой при очистках воды является уровень кислотно-щелочного баланса. При умягчении он сильно снижается, а при высокой степени загрязнения он высок. Поэтому поддерживать нужный уровень следует постоянно. Если этого не делать, то стимулируется развитие коррозии. Так, что для нормальной работы ТЭЦ воду придется подщелачивать. Для этого в систему водоподготовки на ТЭЦ монтируют специальный датчик уровня. Вот он при превышении уровня будет впрыскивать в систему необходимое количество щелочи.

Для получения воды с очень высокой степенью очистки могут применять двухступенчатые установки мембранного типа, что позволяет получить практически пустую воду, без органических примесей. Останется только избавить ее от растворенных газов. Так, что обработка воды для энергоцентралей намного хлопотнее, чем любые другие системы, даже для крупных металлургических предприятий.

Ни для кого не секрет, что требования к качеству воды достаточно высоки. По данным Российской Федерации, доля растворённых веществ в воде должна составлять не более 10 мкг/л. Удовлетворение требований к качеству требует осуществления специальной физико-химической обработки воды. Водоподготовка ТЭС производится в цехе «химводоочистки», организующем контроль за водно-химическим режимом, и состоит из нескольких этапов. Первый этап - предварительное умягчение воды, благодаря которому снижается концентрация примесей (добавляются реагенты, а также коагулянты, флокулянты). Стоит отметить, что методы обработки, особенности технологического процесса, определение требований качества напрямую зависят от исходного состава вод, типа и параметров электростанции. Второй этап ТЭС - осветление. Вода проходит через множество фильтров, в том числе песочные и ионные, что позволяет достичь желаемого результата - 10 мкг примесей на один литр. Не стоит забывать и о постоянном интенсивном перемешивании воды с реагентами. Это важнейшая необходимость. Очевидно, что задача водоподготовки ТЭС сложна, но вполне решаема. Опыт многолетнего использования энергоблоков в России и за рубежом показывает, что важнейшим условием длительной, экономичной и наиболее надёжной эксплуатации тепловых электростанций является организация водного режима и водоподготовки. Целями и задачами последних являются:

  • предотвращение отложений: кальцевидных и окислов железа - на внутренних поверхностях пароперегревательных (или парообразующих) труб, меди, кремниевой кислоты, натрия - в проточной части паровых турбин;
  • защита оборудования, основного и вспомогательного, от коррозии при контакте с паром и водой, а также при нахождении в резерве (применение качественного водного теплоносителя минимизирует скорость коррозии материалов котлов, турбин, оборудования конденсатно-питательного тракта).

Химические способы очистки сточных вод и воды для использования на ТЭС является сырьём, которое далее применяется как исходное вещество для образования пара в котлах и испарителях, конденсации отработанного пара, охлаждения агрегатов. Также она используется в качестве теплоносителя (в системе горячего водоснабжения и тепловых сетях).

Работа парогенератора в течение приблизительно пяти часов без отложений требует осуществления особых методов водоподготовки ТЭС. В интересах тепловой электростанции проводить данную операцию при минимальных капитальных затратах не только на организацию водоочистительных установок, но и на их эксплуатацию. Экономичность термических методов водообработки ТЭС в значительной степени зависят от характеристик и параметров оборудования . Наряду с материальной выгодой пред тепловыми электростанциями поставлен целый ряд задач, в числе которых увеличение экономичности электростанций, уменьшение числа обслуживающего персонала, внедрение технических новинок (механизация и автоматизация). Но одной из первоочередных задач всё же остаётся подготовка воды, осуществляемая на достаточно высоком уровне.

Очищая большие объёмы природной воды, ТЭС не должны забывать ещё об одном аспекте, а именно решении проблемы утилизации образующихся в процессе сточных вод. Они содержат шлам, состоящий из карбонатов магния и кальция, гидроксида магния, железа, алюминия, песка, органических веществ, различных солей серной и соляной кислот, при регенерации фильтров перемещающиеся в стоки. Это необходимо для обеспечения защиты от загрязнения источников промышленного и питьевого водоснабжения.

Итак, ТЭС потребляют значительное количество воды, основными потребителями которой являются конденсаторы турбин. Вода применяется для охлаждения подшипников вспомогательных механизмов и водорода генераторов, охлаждения воздуха электродвигателей, восполнения потерь пара и конденсата в цикле станции. Вода в данном случае является «жизненной необходимостью». Очевидно, что водоподготовка ТЭС требует особо пристального внимания и контроля.

Водоподготовка – это самый важный вопрос в теплоэнергетике. Вода является основой работы таких предприятий, поэтому ее качество и содержание тщательно контролируется. ТЭЦ очень важны для жизни города и жителей, без них невозможно существовать в холодный период года. От качества воды зависит деятельность ТЭЦ. Работа теплоэнергетики на сегодняшний день невозможна без водоподготовки. Вследствие парализации системы, возникает поломка оборудования, и как результат, плохо очищенная, некачественная вода, пар. Это может возникнуть из-за некачественной очистки и смягчения воды. Даже если постоянно удалять накипь, то это не убережет вас от перерасхода топливных материалов, формирования и распространения коррозии. Единственное и самое эффективное решение всех последующих проблем – это тщательная подготовка воды к использованию. При разработке системы для очистки нужно учитывать источник поступления воды.

Существует два типа нагрузки: тепловая и электрическая. При наличии тепловой нагрузки электрическая находится в подчинении первой. При электрической нагрузке ситуация обратная, она не находится в зависимости от второй и может работать без ее присутствия. Бывают ситуации, в которых совмещают оба вида нагрузки. При водоподготовке этот процесс полностью использует все тепло. Вывод можно сделать такой, что КПД на ТЭЦ значительно превышает его на КЭС. В процентном соотношении: 80 к 30. Еще один важный момент: тепло на большие расстояния передать практически невозможно. Именно поэтому ТЭЦ должна строиться вблизи или на территории города, который будет ею пользоваться.

Недостатки водоподготовки на ТЭЦ

Отрицательным моментом у процесса водоподготовки является образование нерастворимого осадка, образующегося при нагревании воды. Удаляется он очень сложно. Во время избавления от налета происходит остановка всего процесса, разбирается система, и только после этого можно качественно очистить труднодоступные места. Чем же вредит накипь? Она мешает теплопроводимости и, соответственно, возрастают затраты. Знайте, что даже при незначительном количестве налета, увеличится расход топлива.

Непрерывно устранять накипь невозможно, но делать это необходимо каждый месяц. Если этого не делать, то слой накипи будет постоянно увеличиваться. Соответственно, чистка оборудования потребует намного больше времени, усилий и материальных затрат. Чтобы не останавливать весь процесс и не нести убытки, необходимо регулярно следить за чистотой системы.

Признаки потребности в очистке:

  • будут действовать датчики, защищающие систему от перегревов;
  • блокируются теплообменники и котлы;
  • возникают взрывоопасные ситуации и свищи.

Все это – негативные последствия не удаленной вовремя накипи, которые приведут к поломкам и убыткам. В течении короткого времени вы можете потерять оборудование, которое стоит немалых денег. Очистка от накипи несет за собой ухудшение качества поверхности. Водоподготовка не устраняет накипь , это можете сделать только вы с использованием специального оборудования. При поврежденных и деформированных поверхностях накипь в дальнейшем образуется быстрее, также появляется коррозийный налет.

Водоподготовка на мини теплоэлектроцентралях

Подготовка питьевой воды включает в себя массу процессов. Перед началом водоподготовки следует провести тщательный анализ химического состава. Что же он из себя представляет? Химический анализ показывает количество жидкости, нуждающееся в ежедневной очистке. Указывает на те примеси, которые должны быть ликвидированы первыми. Подготовка воды на мини теплоэлектроцентралях не может быть осуществлена в полном объеме без такой процедуры. Жесткость воды – немаловажный показатель, который обязательно нужно определять. Многие проблемы состояния воды связаны с ее жесткостью и наличием отложений железа, солей, кремния.

Большой проблемой, с которой сталкивается каждая ТЭЦ, является присутствие примесей в воде. К ним можно отнести калиевые и магниевые соли, железо.

Главной задачей ТЭЦ является обеспечение жилых объектов населенного пункта нагретой водой и отоплением. Подготовка воды на таких предприятиях подразумевает использование смягчителей, дополнительных фильтрующих систем. Каждый этап очистки включает прохождение воды через фильтры, без них процесс невозможен.

Этапы водоочистки:

  1. Первый этап – осветление. В первую очередь вода осветляется, так как она поступает в систему мини ТЭЦ очень грязная. На этом этапе находят применение отстойники и механические фильтры. Принцип работы отстойников в том, что твердые примеси опускаются книзу. Фильтры состоят из нержавеющих решеток и имеют разные размеры. Первыми улавливаются крупные примеси, далее идут решетки среднего размера. Последними улавливаются самые мелкие примеси. Также важным является применение коагулянтов и флокулянтов, с помощью которых уничтожаются разного рода бактерии. Благодаря промывке чистой водой такие фильтры могут быть готовы к следующему использованию.
  2. Второй этап – это дезинфекция и обеззараживание воды. На данной стадии применяется ультрафиолетовая лампа, обеспечивающая полное облучение всего объема воды. Благодаря ультрафиолету гибнут все болезнетворные микроорганизмы. Второй этап также включает в себя дезинфекцию, в процессе которой используют хлорку или же безвредный озон.
  3. Третий этап – смягчение воды. Для него характерно применение в домашних условиях ионообменных систем, электромагнитных смягчителей. Каждый имеет свои достоинства и недостатки. Популярным является реагентное отстаивание, недостатком которого является формирование отложений. Эти нерастворимые примеси в дальнейшем очень сложно удалить.
  4. Четвертый этап – обессоливание воды. На этом этапе применяются анионные фильтры: декарбонизаторы, электродиадизаторы, обратный осмос и нанофильтрация. Процесс обессоливания возможен любым из вышеперечисленных стандартных способов.
  5. Пятый этап – это деаэрация. Это обязательный этап, который следует после тонкой очистки. Системы для очистки от газовых примесей бывают вакуумного типа, а также атмосферные и термические. В результате действия деаэраторов происходит устранение растворенных газов.

Пожалуй, это все самые важные и нужные процессы, которые проводятся для подпиточной воды. Далее следуют общие процессы для подготовки системы и ее отдельных компонентов. После всего вышеперечисленного следует продувка котла, в ходе которой используются промывные фильтры. По окончанию водоподготовка мини ТЭЦ включает промывку пара. В ходе этого процесса используются химические реагенты, обессоливающие воды. Они достаточно разнообразны.

В Европе водоподготовка на мини ТЭЦ нашла очень широкое применение. Благодаря качественному проведению этого процесса увеличивается коэффициент полезного действия. Для лучшего эффекта необходимо комбинировать традиционные, проверенные методы очистки и новые, современные. Только тогда можно достичь высокого результата и качественной водоподготовки системы. При грамотном использовании и постоянном усовершенствовании система мини ТЭЦ будет служить долго и качественно, а главное без перебоев и поломок. Не меняя элементов, и без ремонтов срок эксплуатации от тридцати до пятидесяти лет.

Системы водоподготовки для ТЭЦ

Еще некоторая важная информация, которую хотелось бы донести до читателя по поводу системы водоподготовки на ТЭЦ и их водоподготовительных установках. В данном процессе используются разные виды фильтров, важно ответственно отнестись к его выбору и использовать подходящий. Зачастую применяются несколько разных фильтров, которые последовательно соединены. Это делается для того, чтобы стадии смягчения воды и удаления из нее солей, прошли хорошо и эффективно. Применение ионообменной установки чаще всего осуществляется при очистке воды с высокой жесткостью. Визуально он имеет вид высокого цилиндрического бака и часто используется в промышленности. В состав такого фильтра входит еще один, но уже меньшего размера, он называется баком регенерации. Так как работа ТЭЦ беспрерывная, установка с ионообменным механизмом является многоступенчатой и имеет в своем составе до четырех разных фильтров. Система оборудована контроллером и одним блоком управления. Любой используемый фильтр оснащен личным регенерационным баком.

Задачей контролера является отслеживать количество воды, прошедшее сквозь систему. Также он контролирует объем воды, очищенный каждым фильтром, регистрирует период очистки, объем работы и ее скорость за определенное время. Контроллер передает сигнал далее по установке. Вода с высокой жесткостью следует на другие фильтры, а использованный картридж восстанавливают для последующего использования. Последний вынимается и переносится в бак для регенерации.

Схема водоподготовки на ТЭЦ

Основой ионообменного картриджа является смола. Ее обогащают несильным натрием. Когда вода вступает в контакт со смолой, обогащенной натрием, происходят трансформации и перевоплощения. Натрий замещается сильными жесткими солями. Со временем картридж наполняется солями, так и происходит процесс восстановления. Он переносится в регенерационный бак, где расположены соли. Раствор, в состав которого входит соль, очень насыщен (≈ 10%). Именно благодаря такому высокому содержанию солей жесткость устраняется из съемного элемента. После процесса промывки картридж снова наполнен натрием и готов к использованию. Отходы с высоким содержанием солей повторно очищают и только после этого могут быть утилизированы. Это является одним из недостатков подобных установок, так как требует значительных материальных затрат. Плюс же в том, что скорость очистки воды выше, чем у других подобных установок.

Смягчению воды нужно уделять особое внимание. Если подготовку воды сделать не качественно и сэкономить, то можно потерять намного больше и получить затраты несоизмеримые с экономией на водоподготовке.

Возник вопрос подоподготовки на ТЭЦ!? Не знаете куда обращаться?



Справочники