Российские атомные станции. Сооружение энергоблоков в россии. Мощность новых и строящихся АЭС

На левом берегу Саратовского водохранилища . Состоит из четырёх блоков ВВЭР-1000 , введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Ежегодно она вырабатывает более 30 миллиардов кВт·ч электроэнергии . В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х , станция могла бы сравняться с самой мощной в Европе Запорожской АЭС .

Балаковская АЭС работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.

Белоярская АЭС

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах . В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно. БН-600 сдан в эксплуатацию в апреле - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Первые два энергоблока с водографитовыми канальными реакторами АМБ-100 и АМБ-200 функционировали в - и -1989 годах и были остановлены в связи с выработкой ресурса. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых обеспечивается круглосуточно квалифицированным персоналом.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа . Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена на севере Тверской области , на южном берегу озера Удомля и около одноимённого города .

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000 , электрической мощностью 1000 МВт, которые были введены в эксплуатацию в , , и 2011 годах .

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области , на берегу озера Имандра . Состоит из четырёх блоков ВВЭР-440 , введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.

Мощность станции - 1760 МВт.

Курская АЭС

Курская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Курчатов Курской области , на берегу реки Сейм . Состоит из четырёх блоков РБМК-1000 , введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Сосновый Бор Ленинградской области , на побережье Финского залива . Состоит из четырёх блоков РБМК-1000 , введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Нововоронежская АЭС

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска () выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Где в россии законсервировали АЭС?

Балтийская АЭС

АЭС в составе двух энергоблоков общей мощностью 2,3 ГВт строилась с 2010 года в Калининградской области, энергетическую безопасность которой она и была призвана обеспечить. Первый объект Росатома, на который планировалось допустить иностранных инвесторов - энергокомпании, заинтересованные в покупке излишков энергии, вырабатываемой АЭС. Стоимость проекта с инфраструктурой оценивалась в 225 млрд рублей. Строительство было заморожено в 2014 году в связи с возможными сложностями со сбытом электроэнергии за границу после обострения внешнеполитической ситуации.

В перспективе возможна достройка АЭС, в том числе с менее мощными реакторами.

Недостроенные АЭС, строительство которых возобновлять не планируется

Все эти АЭС были законсервированы в 1980-х - 1990-х гг. в связи с аварией на Чернобыльской АЭС, экономическим кризисом, последующим развалом СССР и тем, что они оказались на территории вновь образованных государств, которым такое строительство оказалось не по карману. Часть из стройплощадок этих станций на территории России может быть задействовано в строительстве новых АЭС после 2020 года. К таким АЭС относятся:

  • Башкирская АЭС
  • Крымская АЭС
  • Татарская АЭС
  • Чигиринская АЭС (ГРЭС) (осталась на Украине)

Также в то же время по соображениям безопасности под давлением общественного мнения было отменено строительство находившихся в высокой степени готовности атомных станций теплоснабжения и атомных теплоэлектроцентралей, предназначенных для подачи горячей воды в крупные города:

  • Воронежская АСТ
  • Горьковская АСТ
  • Минская АТЭЦ (осталась в Белоруссии, достроена как обычная ТЭЦ - Минская ТЭЦ-5)
  • Одесская АТЭЦ (осталась на Украине).
  • Харьковская АТЭЦ (осталась на Украине)

За пределами бывшего СССР по разным причинам не были достроены ещё несколько АЭС отечественных проектов:

  • АЭС Белене (Болгария
  • АЭС Жарновец (Польша) - строительство остановлено 1990 г. вероятнее всего по экономическим и политическим причинам, включая влияние общественного мнения после аварии Чернобыльской АЭС.
  • АЭС Синпхо (КНДР).
  • АЭС Хурагуа (Куба) - строительство прекращено в очень высокой степени готовности в 1992 году в связи с экономическими сложностями после прекращения помощи СССР.
  • АЭС Штендаль (ГДР , позднее Германия) - строительство отменено в высокой степени готовности с перепрофилированием в целлюлозно-бумажную фабрику в связи с отказом страны от строительства АЭС вообще.

Производство урана

Россия обладает разведанными запасами урановых руд, на 2006 год оцениваемыми в 615 тыс. тонн урана.

Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение , добывает 93 % российского урана, обеспечивая 1/3 потребности в сырьё.

В 2009 году прирост производства урана составил 25 % в сравнении с 2008 годом .

Строительство реакторов

Динамика по количеству энергоблоков (шт)

Динамика по суммарной мощности (ГВт)

В России существует большая национальная программа по развитию атомной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы . Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен был состояться в 2013-2015 годах , однако перенесён минимум на лето 2016 года.

По данным на март 2016 года, в России строится 7 атомных энергоблоков, а также плавучая АЭС .

1 августа 2016 года было утверждено строительство 8 новых АЭС до 2030 года .

Строящиеся АЭС

Балтийская АЭС

Балтийская АЭС строится вблизи города Неман , в Калининградской области. Станция будет состоять из двух энергоблоков ВВЭР-1200 . Строительство первого блока планировалось завершить в 2017 году, второго блока - в 2019 году.

В середине 2013 года было принято решение о заморозке строительства .

В апреле 2014 года строительство станции было приостановлено .

Ленинградская АЭС-2

Прочие

Также прорабатываются планы постройки:

  • Кольской АЭС-2 (в Мурманской области)
  • Приморской АЭС (в Приморском крае)
  • Северской АЭС (в Томской области)

Возможно возобновление строительства на заложенных ещё в 1980-х годах площадках, но по обновлённым проектам:

  • Центральной АЭС (в Костромской области)
  • Южно-Уральская АЭС (в Челябинской области)

Международные проекты России в атомной энергетике

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации

23 сентября 2013 года Россия передала Ирану в эксплуатацию АЭС «Бушер» .

По данным на март 2013 года, российская компания Атомстройэкспорт строит за рубежом 3 атомных энергоблока: два блока АЭС «Куданкулам » в Индии и один блок АЭС «Тяньвань » в Китае. Достройка двух блоков АЭС «Белене » в Болгарии отменена в 2012 году .

В настоящее время Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС . Россия имеет крупные комплексные контракты в области атомной энергетики с Индией , Бангладеш , Китаем , Вьетнамом , Ираном , Турцией ,Финляндией , ЮАР и с рядом стран Восточной Европы . Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной , Белоруссией , Нигерией , Казахстаном , .. СТО 1.1.1.02.001.0673-2006. ПБЯ РУ АС-89 (ПНАЭ Г - 1 - 024 - 90)

В 2011 году российские атомные станции выработали 172,7 млрд кВт ч , что составило 16,6 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 161,6 млрд кВт·ч.

В 2012 году российские атомные станции выработали 177,3 млрд кВт ч, что составило 17,1 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 165,727 млрд кВт·ч.

В 2018 году выработка на АЭС России составила 196,4 млрд кВт ч, что составило 18,7% от общей выработки в Единой энергосистеме России.

Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %.

После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % .

В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Сегодня Россия занимает первое место в мире по строительству атомных электростанций за рубежом. На этот день в разной стадии реализации находятся проекты по сооружению 34 энергоблоков в двенадцати странах мира: в Европе, на Ближнем Востоке, в Северной Африке, в Азиатско-Тихоокеанском регионе.

Портфель зарубежных заказов на десятилетний период, по словам гендиректора «Росатома» Алексея Лихачева, сейчас превышает 133 млрд долларов.



Ранее сданы заказчику два первых энергоблока АЭС «Куданкулам» в Индии. На ее третьем и четвертом блоках в октябре 2016-го залит первый бетон. Акция носила символический характер, а сами работы на площадке развернутся в ближайшее время.

Не так давно состоялась закладка первого камня на втором и третьем энергоблоках АЭС «Бушер-2» в Иране. Полностью готов к подписанию контракт на строительство АЭС по российскому проекту в Египте. До конца нынешнего года ожидается физпуск третьего и четвертого энергоблоков на Тяньваньской АЭС в Китае и заливка первого бетона на АЭС «Руппур» в Бангладеш.

Портфель зарубежных заказов на десятилетний период, по словам гендиректора «Росатома» Алексея Лихачева, сейчас превышает 133 миллиарда долларов. И что особенно симптоматично: только за один 2016 год (пятый после событий на японской АЭС «Фукусима») прирост составил более 23 миллиардов, или 20 процентов! Россия , как и в прежние годы, остается мировым лидером в обогащении урана, входит в тройку по его добыче и поставкам за рубеж, обеспечивает 17 процентов мирового рынка ядерного топлива.

Как удается и что помогает нашим атомщикам, внукам Курчатова и Александрова, ученикам Доллежаля и Африкантова не только удерживать высокую планку российских атомных технологий, но и наращивать конкурентные преимущества?

Представители старшего поколения непременно отметят тот фундаментальный задел, что был создан советской наукой и до сих пор продолжает плодоносить. Яркий пример - реакторные установки академика Федора Митенкова, за которые он удостоен Международной премии «Глобальная энергия» и незадолго до смерти успел ее получить.

Вторым слагаемым успеха, что признают и ветераны, и атомщики среднего поколения, стала эффективная команда управленцев, которая сформирована стараниями Сергея Кириенко и продолжает слаженно работать уже при новом главе «Росатома». А базовый принцип во взаимоотношениях с партнерами понятный и простой: лучшее, что можем, строим у себя. И только после этого, имея референтный объект, предлагаем его потенциальным заказчикам.

Наиболее востребованным стал сегодня российский реактор ВВЭР-1200 поколения 3+. Главная особенность энергоблока АЭС с такой реакторной установкой - в уникальной комбинации активных и пассивных систем безопасности, что заметно снижает влияние человеческого фактора и даже в случае запроектных аварий предотвращает выход радиации в окружающую среду.

По новым стандартам безопасности реакторный зал, так называемый контайнмент, укреплен двойной защитной оболочкой.

В проекте также предусмотрена защита от землетрясения, цунами, урагана, падения самолета. Как уверяют в Российском ядерном обществе, ВВЭР-1200 переходного поколения отвечает всем «постфукусимским» требованиям безопасности, самым строгим рекомендациям МАГАТЭ и Клуба европейских эксплуатирующих организаций (EUR).

Именно такой референтный энергоблок построен и уже введен в промышленную эксплуатацию на Нововоронежской АЭС-2. Там же, в Нововоронеже, готовят к вводу энергоблок-близнец. И совсем неудивительно, что на эту площадку уже выстроились в очередь иностранные делегации с нескрываемым желанием увидеть все своими глазами.

Отметим, что еще в 2012 году на площадке НВАЭС-2 были проведены стресс-тесты с учетом экстремальных ситуаций - более жестких, чем случились на АЭС «Фукусима». Задавались такие маловероятные сценарии, как течь первого контура с полной потерей всех источников электроснабжения и всех конечных поглотителей тепла на время более суток. По результатам был составлен перечень дополнительных мероприятий, повышающих уровень безопасности станции. Во время строительства АЭС и наладки оборудования все они в полном объеме реализованы, включая установку передвижного дизель-генератора с воздушным охлаждением, а также специального контура с воздушной градирней и насосом.

Еще два аналогичных блока Россия строит в Сосновом Бору под Петербургом - для замещения выбывающих мощностей Ленинградской АЭС. А два таких же на Островецкой АЭС в Гродненской области Белоруссии станут первыми объектами атомной генерации на территории соседней республики.

Летом будущего года должны начаться работы по строительству АЭС «Пакш-2» в Венгрии. По сообщениям из Будапешта, официальными властями этой страны получено последнее согласование Европейской комиссии. А еще в марте венгерское Агентство по атомной энергии одобрило заявление компании MVM Paks II о предоставлении лицензии на площадку для строительства новых энергоблоков.

Как заявляют в российской Группе компаний ASE, к началу работ на площадке «Пакш-2» все готово. А в Финляндии, на месте будущей АЭС «Ханхикиви», подготовительные операции уже проводятся.

Это первая стройка за последние несколько десятков лет, которую мы начали в Европе, - отмечает глава «Росатома» Алексей Лихачев. - И это для нас определенный вызов. Ведь тут мы не просто строим станцию, но и являемся соинвестором, владея 34 процентами долей в проектной компании Fennovoima, которая несет ответственность и за сооружение, и будущую эксплуатацию АЭС «Ханхикиви».

Непросто, по словам Лихачева, разворачивался проект АЭС «Аккую» в Турции. Только в июне 2016 года парламент Турции принял изменения в три закона, что облегчило получение лицензионно-разрешительной документации. В феврале 2017-го турецкое Агентство по атомной энергии одобрило проектные параметры площадки для АЭС «Аккую». Две важнейшие лицензии - на генерацию электроэнергии и на само строительство - рассчитывают получить соответственно в первой половине 2017 года и в 2018 году. При этом российские партнеры в Анкаре высказали пожелание ввести первый энергоблок «Аккую» уже в 2023 году - к столетию Турецкой Республики…

А тем временем атомная наука и техническая мысль не стоят на месте и предлагают новые, в том числе уже реализованные проекты. В 2016 году в России на Белоярской АЭС (Свердловская область) сдан в эксплуатацию не имеющий аналогов энергоблок с реактором на быстрых нейтронах БН-800. Специализированный международный журнал POWER Engineering отдал этому объекту безусловное предпочтение в номинации «Станция года».

Такие реакторы, уверяют их создатели, позволят отработать и создать в скором будущем технологии по-настоящему замкнутого топливного цикла, при котором облученное ядерное топливо вовлекается в оборот, а количество радиоактивных отходов сводится к минимуму. В эксплуатации «быстрых» реакторов наши атомщики продвинулись значительно дальше коллег и готовы делиться своими компетенциями с зарубежными партнерами.

Основная масса энергоблоков АЭС России была заложена и построена еще во времена СССР. Однако несколько российских реакторов были построены в постсоветский период и даже несколько новых АЭС были заложены или находятся в стадии строительства именно в период с девяностых годов прошлого века, после распада Советского Союза. Мы представим Вашему вниманию список всех российских АЭС на карте страны.

Список всех АЭС России на 2017 год

№1. Обнинская АЭС

Обнинская атомная электростанция – первая АЭС в мире, была запущена 27 июня 1954 года. Обнинская АЭС была расположена, как видно на карте АЭС России в Калужской области, недалеко от Московской области, поэтому именно ее вспоминают в первую очередь, говоря об . На Обнинской АЭС действовал единственный реактор мощностью 5 МВт. А 29 апреля 2002 года станция была остановлена.

№2. Балаковская АЭС

Балаковская атомная электростанция – крупнейшая АЭС России – расположена в Саратовской области. Мощность Балаковской АЭС, запущенной в 1985 году, составляет 4 000 МВт, что позволяет ей входить в .

№3. Билибинская АЭС

Билибинская атомная электростанция – самая северная АЭС на карте России и всего мира. Билибинская АЭС действует с 1974 года. Четыре реактора, общей мощностью в 48 МВт обеспечивают электроэнергией и теплом замкнутую систему города Билибино и близлежащих районов на севере России, включая местные золотоносные рудники.

№4. Ленинградская АЭС

Ленинградская атомная электростанция расположена под Санкт-Петербургом. Отличительной особенностью ЛАЭС, действующей с 1973 года, является то, что на станции установлены реакторы типа РБМК – аналогичные реакторам на .

№5. Курская АЭС

Курская атомная электростанция также носит неофициальное имя Курчатовской АЭС, так как рядом расположен город атомщиков Курчатов. На станции, запущенной в 1976 году, также установлены реакторы типа РБМК.

№6. Нововоронежская АЭС

Нововоронежская атомная электростанция расположена в Воронежской области России. Нововоронежская АЭС одна из старейших в России, действует с 1964 года и уже находится в стадии постепенного вывода из эксплуатации.

№7. Ростовская АЭС

Ростовская атомная электростанция (ранее носила имя Волгодонской АЭС) – одна из новейших в России. Первый реактор станции был запущен в 2001 году. С тех пор на станции запустили три реактора и четвертый находится в стадии строительства.

№8. Смоленская АЭС

Смоленская атомная электростанция действует с 1982 года. На станции установлены «чернобыльские реакторы» – РБМК.

№9. Калининская АЭС

Калининская атомная электростанция расположена близ города Удомля в 260 километрах от Москвы и 320 километрах от Санкт-Петербурга.

№10. Кольская АЭС

Кольская атомная электростанция – еще одна северная АЭС России, расположенная, как видно на карте АЭС России, в Мурманской области. Станция фигурировала в романах Дмитрия Глуховского «Метро-2033» и «Метро-2034».

№11. Белоярская АЭС

Белоярская атомная электростанция, расположенная в Свердловской области, единственная АЭС России с реакторами на быстрых нейтронах.

№12. Нововоронежская АЭС 2

Нововоронежская АЭС 2 – строящаяся атомная электростанция, на замену выводимым из эксплуатации мощностям первой Нововоронежской АЭС. Первый реактор станции запущен в декабре 2016 года.

№13. Ленинградская АЭС 2

ЛАЭС 2 – строящаяся атомная электростанция, на замену выводимой из эксплуатации первой Ленинградской АЭС.

№14. Балтийская АЭС

Балтийская атомная электростанция расположена на карте России в Калининградской области. Станция была заложена еще в 2010 году и планировалась к запуску в 2016 году. Но процесс строительства был заморожен на неопределенный срок.

Отрадно заметить, что хоть в чем-то мы впереди планеты всей, это космос, военные разработки и мирный атом. Как раз на строительстве новой Атомной Электростанции в Сосновом Бору и расскажу. Если за рубежом Росатом постоянно строит новые станции, то в России это первый проект нового строительства за последние 20 лет. Стройка идет полным ходом.


Торжественная закладка капсулы на месте будущей ЛАЭС-2 состоялась еще в августе 2007 года.
ЛАЭС-2 — результат эволюционного развития наиболее распространенного и наиболее технически совершенного типа станций — АЭС с ВВЭР (водо-водяными энергетическими реакторами). В качестве теплоносителя и в качестве замедлителя нейтронов в таком реакторе используется вода.

Почти готов первый реактор, сейчас там идут монтажные работы и внутрь мы не попали.

Ядерный реактор ВВЭР-1200 размещен в герметичной защитной оболочке, которая защищает его от любых внешних воздействий и препятствует загрязнению окружающей среды. В качестве топлива в активной зоне реактора используется слабообогащенный диоксид урана.

Размеры можете оценить сами.

Почти готовы 2 градирни высотой по 150 метров, они будут охлаждать воду для энергоблока №1. Градирня - это теплообменник, в котором вода отдает тепло воздуху при непосредственном контакте с ним.

Рядом строится еще одна, уже высотой 170 метров

Небо в клеточку)

Машинный зал, где стоит турбогенератор. пар подается на паровую турбину, турбина вращает ротор-магнит. Электрический ток производится благодаря электромагнитной индукции, при вращении ротора-магнита в витках окружающего его статора появляется электрический ток.

Здесь понимаешь масштабы стройки и сложность

Напомню, что все оборудование российского производства.


Пока все еще в пыли и не выглядит красиво.

Скажу несколько слов о безопасности. Основные из них - принцип самозащищенности реакторной установки, наличие нескольких барьеров безопасности и многократное резервирование каналов безопасности. Все самые новейшие разработки учтены при строительстве новой станции.
Например, сам ядерный реактор расчитан на падение самолета массой 5 тонн, смерч, ураган или взрыв.

В здании турбины уже установлен деаэрозатор, смонтирована паровая турбина, 4 ротора цилиндра низкого давления и ротор цилиндра высокого давления и продолжается монтаж остального оборудования

А так будет выглядеть ЛАЭС-2 в скором времени.
По аналогичному проекту сооружаются первая белорусская АЭС, АЭС "Руппур" в Бангладеш, в ближайшее время начнется строительство АЭС в Венгрии и Финляндии.

За минувшие четверть века сменилось несколько поколений не только в нашем обществе. Сегодня строятся АЭС нового поколения. Новейшие российские энергоблоки теперь оснащаются только водо-водяными реакторами поколения 3+. Реакторы этого типа можно без преувеличения назвать самыми безопасными. За всё время работы реакторов не было ни одной серьезной аварии. АЭС нового типа по миру в сумме имеют уже больше 1000 лет стабильной и безаварийной деятельности.

Устройство и работа новейшего реактора 3+

Урановое топливо в реакторе заключено в циркониевые трубки, так называемые тепловыделяющие элементы, или ТВЭЛы. Они составляют реактивную зону самого реактора. Когда происходит извлечение из этой зоны поглотительных стержней, то в реакторе нарастает поток нейтронных частиц, а затем начинается самоподдерживающая цепная реакция деления. При этой связи урана освобождается большая энергия, которая разогревает ТВЭЛы. АЭС, оборудованная ВВЭР, работает по двухконтурной схеме. Сначала сквозь реактор проходит чистая вода, которую подали уже очищенной от разных примесей. Далее она проходит непосредственно через активную зону, где охлаждает и омывает собою ТВЭЛы. Такая вода нагревается, ее температура достигает 320 градусов по Цельсию, чтобы она осталась в жидком состоянии, необходимо ее держать под давлением 160 атмосфер! Потом горячая вода следует в парогенератор, отдавая теплоту. А жидкость второго контура после этого вновь проникает в реактор.

Следующие действия идут в соответствии с привычной нам ТЭЦ. Вода, находящаяся во втором контуре, в парогенераторе превращается, естественно, в пар, газообразное состояние воды вращает турбину. Этот механизм заставляет двигаться электрогенератор, вырабатывающий электроток. Сам реактор и парогенератор находится внутри герметичной бетонной оболочки. В генераторе пара вода первого контура, выходящая из реактора, никаким образом не взаимодействует с жидкостью из второго контура, идущей на турбину. Данная схема работы размещения реактора и парогенератора исключают проникновение радиационных отходов за пределы реакторного зала станции.

Об экономии денежных средств

Новая АЭС в России требует на затраты систем безопасности 40 % от общей стоимости самой станции. Основная доля средств закладывается на автоматику и конструкцию энергоблока, а также на оборудование систем безопасности.

В основу обеспечения безопасности в АЭС нового поколения заложен принцип глубокоэшелонированной защиты, основанной на использовании системы из четырех физических барьеров, препятствующих выходу радиоактивных веществ.

Первый барьер

Он представлен в виде прочности самих таблеток с урановым топливом. После так называемого процесса спекания в печи при температуре 1200 градусов таблетки приобретают высокопрочные динамические свойства. Они не разрушается под воздействием высоких температур. Они помещаются в циркониевые трубки, образующие оболочку тепловыделяющих элементов. В один такой тепловыделяющий элемент вводится автоматом более 200 таблеток. Когда они заполняют циркониевую трубку полностью, то робот-автомат вводит пружину, прижимающую их до отказа. Затем автомат откачивает воздух, а потом и вовсе запечатывает ее.

Второй барьер

Представляет собой герметичность оболочки из циркония Оболочка ТВЭЛа выполнена из циркония ядерной чистоты. Она обладает повышенной коррозионной стойкостью, способна сохранять форму при температуре более 1000 градусов. Контроль качества изготовления проводится на всех этапах его производства. В результате многоступенчатых проверок качества возможность разгерметизации тепловыделяющих элементов крайне низка.

Третий барьер

Выполнен он в виде прочного стального корпуса реактора, толщина которого равна 20 см. Он рассчитан на рабочее давление в 160 атмосфер. Корпус реактора обеспечивает предотвращение выхода продуктов деления под защитную оболочку.

Четвертый барьер

Это герметичная защитная оболочка самого реакторного зала, имеющая еще одно название - контаймент. Он состоит всего из двух частей: внутренняя и внешняя оболочки. Внешняя оболочка обеспечивает защиту от всех внешних воздействий как природного, так и техногенного характера. Толщина внешней оболочки - 80 см высокопрочного бетона.

Внутренняя оболочка с толщиной бетонной стены равна 1 метру 20 см. Ее покрывают сплошным стальным 8-миллиметровым листом. Кроме того, ее стяжку усиливают специальные системы тросов, натянутых внутри самой оболочки. Иными словами, это кокон из стали, который стягивает бетон, усиливая его прочность в три раза.

Нюансы защитного покрытия

Внутренняя защитная оболочка АЭС нового поколения выдерживает давление в 7 килограмм на квадратный сантиметр, а также высокую температуру до 200 градусов Цельсия.

Между внутренней и внешней оболочками существует межоболочное пространство. Оно имеет систему фильтрации газов, которые попадают из реакторного отделения. Мощнейшая железобетонная оболочка сохраняет герметичность при землетрясении в 8 баллов. Выдерживает падение самолёта, вес которого рассчитали до 200 тонн, а также позволяет выдержать экстремальные внешние воздействия, такие как смерч и ураганы, при максимальной скорости ветра 56 метров в секунду, вероятность которых возможна один раз в 10 000 лет. А еще такая оболочка защищает от воздушной ударной волны с давлением во фронте до 30 кПа.

Особенность АЭС поколения 3+

Система из четырех физических барьеров глубокоэшелонированной защиты исключает радиоактивные выбросы за пределы энергоблока в случае чрезвычайных ситуаций. Во всех реакторах ВВЭР существуют пассивные и активные системы безопасности, сочетание которых гарантирует решение трех основных задач, возникающих при аварийной ситуации:

  • остановка и прекращение ядерных реакций;
  • обеспечение постоянного отвода тепла от ядерного топлива и самого энергоблока;
  • предотвращение выхода радионуклидов за пределы контаймента в случае аварийных ситуаций.

ВВЭР-1200 в России и мире

Безопасными стали АЭС нового поколения Японии после аварии на АЭС «Фукусима-1». Японцы тогда решили больше не получать энергию при помощи мирного атома. Однако новое правительство вернулось к ядерной энергетике, так как экономика страны понесла большие убытки. Отечественные инженеры с физиками-ядерщиками начали разрабатывать безопасную АЭС нового поколения. В 2006 году мир узнал о новой сверхмощной и безопасной разработке отечественных ученых.

В мае 2016 года завершилась грандиозная стройка в черноземном регионе и успешное окончание тестирования 6-го энергоблока на Нововоронежской АЭС. Новая система работает стабильно и эффективно! Впервые при возведении станции инженеры спроектировали всего одну и самую высокую в мире градирню для охлаждения воды. В то время как ранее строили две градирни на один энергоблок. Благодаря подобным разработкам удалось сэкономить финансовые средства и сохранить технологии. Еще год на станции будут проводиться работы различного характера. Это необходимо для того, чтобы постепенно ввести в эксплуатацию оставшееся оборудование, так как запускать все и сразу нельзя. Впереди у Нововоронежской АЭС - возведение 7-го энергоблока, оно будет длиться еще два года. После этого Воронеж станет единственным регионом, который реализовал такой масштабный проект. Ежегодно Воронеж посещают различные делегации, изучающие Такая отечественная разработка оставила позади Запад и Восток в сфере энергетики. Сегодня различные государства хотят внедрить, а некоторые уже используют такие АЭС.

Новое поколение реакторов трудится на благо Китая в Тяньване. Сегодня строятся такие станции в Индии, Беларуси, Прибалтике. В Российской Федерации внедряют ВВЭР-1200 в Воронеже, Ленинградской области. В планах - возвести подобное сооружение в энергетической отрасли в республике Бангладеш и Турецком государстве. В марте 2017 года стало известно, что Чехия активно сотрудничает с «Росатомом» для постройки такой же станции на своей земле. В России планируют возводить АЭС (новое поколение) в Северске (Томская область), Нижнем Новгороде и Курске.



Открытие бизнеса