Характер подземных вод. Что такое подземная вода: определение, характеристика и виды. Подземные воды – запасы подземных вод, ресурсы подземных вод

И др.).

Подземные воды, перемещающиеся под влиянием силы тяжести, называются гравитационными или свободными водами , в отличие от связанных вод (гигроскопические, плёночные, капиллярные и кристаллизационные воды). Слои горных пород, насыщенные гравитационной водой , образуют водоносные горизонты , или пласты , составляющие водоносные комплексы , горные породы которых обладают различной степенью влагоемкости , водопроницаемости и водоотдачи .

Глубина залегания грунтовых вод зависит от географических условий, закономерно изменяющихся от полюсов к экватору. В Европейской части средняя глубина зеркала грунтовых вод постепенно увеличивается с севера на юг (в зоне тундр — близ поверхности, в средней полосе — несколько метров, на юге — несколько десятков метров). Нижняя граница грунтовых вод располагается на глубине более 10-12 км. Водоносные горизонты, залегающие ниже грунтовых вод, отделяются от них пластами водонепроницаемых (водоупорных) или слабопроницаемых пород и называются горизонтами межпластовых вод. Они обычно находятся под гидростатическим давлением (артезианские воды), реже имеют свободную поверхность — безнапорные воды . Область питания межпластовых вод находится в местах выхода водовмещающих пород на дневную поверхность (или в местах их неглубокого залегания); питание происходит также и путём перетекания воды из других водоносных горизонтов.

Подземные воды — природные растворы, содержащие свыше 60 химических элементов (в наибольших количествах — К, Na, Ca, Mg, Fe, Cl, S, С, Si, N, О, Н), а также микроорганизмы (окисляющие и восстанавливающие различные вещества). Как правило, подземные воды насыщены газами (CO 2 , О 2 , N 2 , С 2 H 2 и др.). По степени минерализации подземные воды подразделяют (по ) на пресные (до 1 г/л), солоноватые (от 1 до 10 г/л), солёные (от 10 до 50 г/л) и подземные рассолы (свыше 50 г/л); в более поздних классификациях к подземным рассолам относят воды с минерализацией свыше 36 г/л. В зависимости от температуры (°С) различают: переохлаждённые подземные воды (ниже 0), холодные (от 0 до 20), тёплые (от 20 до 37), горячие (от 37 до 50), весьма горячие (от 50 до 100) и перегретые (свыше 100).

По происхождению выделяется несколько типов подземных вод. Инфильтрационные воды образуются благодаря просачиванию с поверхности Земли дождевых, талых и речных вод. По составу они преимущественно гидрокарбонатно-кальциевые и магниевые. При выщелачивании гипсовых пород формируются сульфатно-кальциевые, а при растворении соленосных — хлоридно-натриевые воды. Конденсационные подземные воды образуются в результате конденсации водяных паров в порах или трещинах пород. Седиментационные воды формируются в процессе геологического осадкообразования и обычно представляют собой изменённые захороненные воды морского происхождения (хлоридно-натриевые, хлоридно-кальциево-натриевые и др.). К ним же относятся погребённые рассолы солеродных бассейнов, а также ультрапресные воды песчаных линз в моренных отложениях. Воды, образующиеся из магмы при ее кристаллизации и при метаморфизме горных пород, называются магматогенными или ювенильными водами .

Один из показателей природной обстановки формирования подземных вод — состав растворённых и свободно выделяющихся газов. Для верхних водоносных горизонтов с окислительной обстановкой характерно присутствие кислорода , азота , для нижних частей разреза , где преобладает восстановительная среда, типичны газы биохимического происхождения (сероводород, метан). В очагах интрузий и термометаморфизма распространены воды, насыщенные углекислым газом (углекислые воды Кавказа , Памира, Забайкалья). У кратеров вулканов встречаются кислые сульфатные воды (т.н. фумарольные термы). Во многих водонапорных системах, которыми являются часто крупные артезианские бассейны , выделяют три зоны, различающиеся степенью интенсивности водообмена с поверхностными водами и составом подземных вод. Верхние и краевые части бассейнов заняты обычно инфильтрационными пресными водами зоны активного водообмена (по Н. К. Игнатовичу) или активной циркуляции. В центральных глубоких частях бассейнов выделяется зона весьма замедленного водообмена или застойного режима, где распространены высокоминерализованные воды. В промежуточной зоне относительно замедленного или затруднённого водообмена развиты смешанные воды различного состава.

Многие качественные и количественные показатели параметров подземных вод (уровня, напора, расходов, химического и газового составов, температуры и др.) подвергаются кратковременным, многолетним и вековым изменениям, которые определяют режим подземных вод. Последний отражает процесс формирования подземных вод во времени и на различных территориях под влиянием естественных (климатических, гидрологических, геологических, гидрогеологических) и техногенных факторов. Наибольшие колебания показателей режима происходят при неглубоком залегании подземных вод.

Закономерности распространения подземных вод зависят от многих геологических и физико-географических особенностей территории. В пределах платформ и краевых прогибов развиты и склоны (на территории CCCP, например, Западносибирский артезианский бассейн, Московский артезианский бассейн , Прибалтийский артезианский бассейн). На платформах в районах поднятий докембрийского кристаллического фундамента (Украинский щит, Анабарский массив и др.) и в горноскладчатых областях развиты подземные воды трещинного типа. Своеобразные гидрогеологические условия, определяющие характер циркуляции и состав подземных вод, создаются в областях развития многолетнемёрзлых горных пород, где формируются надмерзлотные, межмерзлотные и

Через толщи песка, гравия, гальки, известняка с трещинами. Пласты, состоящие из этих пород, называют водопроницаемыми .

Но дождевая вода доходит до слоя глины и останавливается: ведь глина почти не пропускает воду. Пласты горных пород, которые не пропускают или очень слабо пропускают через себя воду, называют водоупорными (водонепроницаемыми) . К водоупорным пластам можно отнести гранит, песчаник гли-нистый сланец, но только в том случае, если они не имеют тре-щин.

Над водоупорным слоем подземная вода скапливается, образуя водоносный пласт (горизонт ) — слой водопроницаемой горной породы, за-легающий над водоупорным пластом и содержащий подземные воды.

Родники (ключи)

Если водоупорный пласт име-ет наклон в ту или другую сторону, то вода начинает течь по этому пласту в сторону наклона его и обычно где-нибудь выхо-дит на поверхность в долине реки или в овраге. Место естественного выхода подземной воды на поверхность называют источником , клю-чом или родником (рис. 84). Вода источников, как правило чистая и холодная.

Источников особенно много в оврагах, по берегам рек, в обрывах, так как там выходят на поверхность водоупорные пласты.

Минеральные источники

В некоторых районах земного шара на по-верхность земли выходит вода, в которой в довольно большом количестве растворены соли и газы. Эту воду называют минеральной. Воду минеральных источников используют для лечения разных болезней. Около этих источников возникают лечебницы и курорты. Всемирно известной славой пользуются курорты на Кавказе (Боржоми, Кисловодск и др.).

Горячие источники

  • Скважины.

Картинки (фото, рисунки)

На этой странице материал по темам:

При оценке свойств подземных вод исследуют вкус, запах, цвет, прозрачность, температуру и другие физические свойства подземной воды, которые характеризуют так называемые органолептические свойства воды (определяемые при помощи органов чувств). Органолептические свойства могут резко ухудшаться при попадании в воду естественным или искусственным путем различных примесей (минеральных взвешенных частиц, органических веществ, некоторых химических элементов).

Температура подземных вод колеблется в широких пределах в зависимости от глубины залегания водоносных слоев, особенностей геологического строения, климатических условий и т. д. Различают воды холодные (температура от 0 до 20 °С), теплые, или субтермальные, воды (20-37 °С), термальные (37-Ю0°С), перегретые (свыше 100 °С). Очень холодные подземные воды циркулируют в зоне многолетней мерзлоты, в высокогорных районах; перегретые воды характерны для районов молодой вулканической деятельности. На участках водозаборов чаще всего температура воды 7-11 °С.

Химически чистая вода бесцветна. Окраску воде придают механические примеси (желтоватая, изумрудная и т. д.). Прозрачность воды зависит от цвета и наличия мути. Вкус связан с составом растворенных веществ: соленый - от хлористого натрия, горький - от сульфата магния и т. д. Запах зависит от наличия газов биохимического происхождения (сероводород и др.) или гниющих органических веществ.

Плотность воды - масса воды, находящаяся в единице ее объема. Максимальная она при температуре 4 °С. При повышении температуры до 250 °С плотность воды уменьшается до 0,799 г/см 3 , а при увеличении количества растворенных в ней солей повышается до 1,4 г/см 3 . Сжимаемость подземных вод характеризуется коэффициентом сжимаемости, показывающим, на какую долю первоначального объема жидкости уменьшается объем при увеличении давления на 10 5 Па. Коэффициент сжимаемости подземных вод составляет 2,5 10 -5 ...5 10~ 5 Па, т. е. вода в некоторой степени обладает упругими свойствами, что важно при изучении напорных подземных вод.

Вязкость воды характеризует внутреннее сопротивление частиц ее движению. С повышением температуры вязкость подземных вод уменьшается.

Электропроводность подземных вод зависит от количества растворенных в них солей и выражается величинами удельных сопротивлений от 0,02 до 1,00 Омм.

Радиоактивность подземных вод вызвана присутствием в ней радиоактивных элементов (урана, стронция, цезия, радия, газообразной эманации радия-радона и др.). Даже ничтожно малые концентрации - сотые и тысячные доли (мг/л) некоторых радиоактивных элементов - могут быть вредными для здоровья человека.

Химический состав подземных вод. Все подземные воды всегда содержат в растворенном состоянии большее или меньшее количество солей, газов, а также органических соединений.

Растворенные в воде газы (0 2 , С0 2 , СН 4 , H 2 S и др.) придают ей определенный вкус и свойства. Количество и тип газов обусловливает степень пригодности воды для питьевых и технических целей. Подземные воды у поверхности земли нередко бывают загрязнены органическими примесями (различные болезнетворные бактерии, органические соединения, поступающие из канализационных систем, и т. д.). Такая вода имеет неприятный вкус и опасна для здоровья людей.

Соли. В подземных водах наибольшее распространение имеют хлориды, сульфаты и карбонаты. По общему содержанию растворенных солей подземные воды разделяют на пресные (до 1 г/л растворенных солей), солоноватые (от 1 до 10 г/л), соленые

(10-50 г/л) и рассолы (более 50 г/л). Количество и состав солей устанавливается химическим анализом. Полученные результаты выражают в виде состава катионов и анионов (в мг/л или мг-экв/л).

В природных условиях общая минерализация подземных вод исключительно разнообразна. Встречаются подземные воды с минерализацией от 0,1 г/л (высокогорные источники) до 500-600 г/л (глубокозалегающие воды Ангаро-Ленского артезианского бассейна). Общая минерализация - один из главных показателей качества подземных вод.

В подземных водах присутствует несколько десятков химических элементов периодической системы Менделеева. До 90 % всех растворенных в водах солей ионы С1~, 80^, НСО3, Иа + ,

М§ 2+ , Са 2+ , К + . Железо, нитриты, нитраты, водород, бром, йод, фтор, бор, радиоактивные и другие элементы содержатся в воде в меньших количествах. Однако даже в небольших количествах они могут оказывать существенное влияние на оценку пригодности подземных вод для различных целей. Наилучшими питьевыми качествами обладают воды при pH = 6,5...8,5.

Количество растворенных солей не должно превышать 1,0 г/л. Не допускается содержание вредных для здоровья человека химических элементов (уран, мышьяк и др.) и болезнетворных бактерий. Последнее в известной мере может быть нейтрализовано обработкой воды ультразвуком, хлорированием, озонированием и кипячением. Органические примеси устанавливаются бактериологическим анализом. Вода для питьевых целей должна быть бесцветна, прозрачна, не иметь запаха, быть приятной на вкус.

Жесткость и агрессивность подземных вод связаны с присутствием солей. Жесткость воды - это свойство, обусловленное содержанием ионов кальция и магния, т. е. связанная с карбонатами, и вычисляется расчетным путем по общему содержанию в воде гидрокарбонатных и карбонатных ионов. Жесткая вода дает большую накипь в паровых котлах, плохо мылится и т. д. В настоящее время жесткость принято выражать количеством миллиграмм-эквивалентов кальция и магния, 1 мг-экв жесткости соответствует содержанию в 1 л воды 20,04 мг иона кальция или 12,6 мг иона магния. В других странах жесткость измеряют в градусах (1 мг-экв = 28°). По жесткости воду разделяют на мягкую (менее 3 мг-экв или 8,4°),

средней жесткости (3-6 мг-экв или 8,4°), жесткую (6-9 мг-экв или 16,8-25,2°) и очень жесткую (более 9 мг-экв или 25,2°). Наилучшим качеством обладает вода с жесткостью не более 7 мг-экв. Жесткость бывает постоянной и временной. Временная жесткость связана с присутствием бикарбонатов и может быть устранена кипячением. Постоянная жесткость , обусловленная серно-кислыми и хлористыми солями, кипячением не устраняется. Сумму временной и постоянной жесткости называют общей жесткостью.

Агрессивность подземных вод выражается в разрушительном воздействии растворенных в воде солей на строительные материалы, в частности, на портландцемент. Поэтому при строительстве фундаментов и различных подземных сооружений необходимо уметь оценивать степень агрессивности подземных вод и определять меры борьбы с ней. В существующих нормах, оценивающих степень агрессивности вод по отношению к бетону, кроме химического состава воды, учитывается коэффициент фильтрации пород. Одна и та же вода может быть агрессивной и неагрессивной. Это обусловлено различием в скорости движения воды - чем она выше, тем больше объемов воды войдет в контакт с поверхностью бетона и, следовательно, значительнее будет агрессивность.

По отношению к бетону различают следующие виды агрессивности подземных вод:

  • общекислотная - оценивается величиной pH, в песках вода считается агрессивной, если pH
  • сульфатная - определяется по содержанию иона; при содержании БО 2- в количестве более 200 мг/л вода становится агрессивной;
  • магнезиальная - устанавливается по содержанию иона 1У^ 2+ ;
  • карбонатная - связанная с воздействием на бетоны агрессивной углекислоты, этот вид агрессивности возможен только в песчаных породах.

Агрессивность подземных вод устанавливают сопоставлением данных химических анализов воды с требованиями нормативов. После этого определяют меры борьбы с ней. Для этого используют специальные цементы, производят гидроизоляцию подземных частей зданий и сооружений, понижают уровень грунтовых вод устройством дренажей и т. д.

Агрессивное действие подземных вод на металлы (коррозия металлов). Подземная вода с растворенными в ней солями и газами может обладать интенсивной коррозионной активностью по отношению к железу и другим металлам. Примером может служить окисление (разъедание) металлических поверхностей с образованием ржавчины под действием кислорода, растворенного в воде:

2?е + 0 2 = 2ГеО 4ГеО + 0 2 = 2Ре 2 0 3 Ре 2 0 3 + ЗН 2 0 = 2Ре(ОН) 3

Подземные воды обладают коррозионными свойствами при содержании в них также агрессивной углекислоты, минеральных и органических кислот, солей тяжелых металлов, сероводорода, хлористых и некоторых других солей. Мягкая вода (с общей жесткостью менее 3,0 мг-экв) действует значительно агрессивнее, чем жесткая. Наибольшему разъеданию могут подвергаться металлические конструкции под влиянием сильнокислых (pH 9,0). Коррозии способствует повышение температуры подземной воды, увеличение скорости ее движениями, электрические поля в грунтовых толщах.

Оценка коррозионной активности вод по отношению к некоторым металлам производится по действующему ГОСТу. После этого, согласно СНиПа, выбирают мероприятия по предотвращению возможной коррозии.

Классификация подземных вод. Существует целый ряд классификаций, но главных из них две. Подземные воды подразделяют: по характеру их использования и по условиям залегания в земной коре (рис. 63). В число первых входят хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные. Ко вторым относят: верховодки, грунтовые и межпластовые воды, а также воды трещин, карста, вечной мерзлоты. В инженерно-геологических целях подземные воды целесообразно классифицировать по гидравлическому признаку - безнапорные и напорные.

Хозяйственно-питьевые воды. Подземные воды широко используют для хозяйственно-питьевых целей. Пресные подземные воды -лучший источник питьевого водоснабжения, поэтому использование их для других целей, как правило, не допускается.

Источником хозяйственно-питьевого водоснабжения являются подземные воды зоны интенсивного водообмена. Глубина залегания пресных подземных вод от поверхности земли обычно не превышает нескольких десятков метров. Однако имеются районы, где они залегают на больших глубинах (300-500 м и более).

В последние годы для хозяйственно-питьевого водоснабжения начинают использовать также солоноватые и соленые подземные воды после их искусственного опреснения.

Технические воды - это воды, которые используют в различных отраслях промышленности и сельского хозяйства. Требова-

Атмосферные

ния к подземным техническим водам отражают специфику того или иного вида производства.

Промышленные воды содержат в растворе полезные элементы (бром, йод и др.) в количестве, имеющем промышленное сырьевое значение. Обычно они залегают в зоне весьма замедленного водообмена, минерализация их высокая (от 20 до 600 г/л), состав хлоридно-натриевый, температура нередко достигает 60-80 °С.

Эксплуатация промышленных вод с целью добычи йода и брома рентабельна лишь при глубине залегания вод не более 3 км, уровне воды в скважине не ниже 200 м, количестве извлекаемой воды в сутки не менее 200 м 3 .

Минеральными называют подземные воды, которые имеют повышенное содержание биологически активных микрокомпонентов, газов, радиоактивных элементов и т. д. Они выходят на поверхность земли источниками или вскрываются буровыми скважинами.

Термальные подземные воды имеют температуру более 37 °С. Они залегают повсеместно на глубинах от нескольких десятков и сотен метров (в горно-складчатых районах) до нескольких километров (на платформах).

По трещинам термальные воды часто выходят на поверхность земли, образуя горячие источники с температурой до 100 °С (Камчатка, Кавказ). Запасы этих вод в земной коре очень большие и их активно используют для теплофикации городов и энергетических целей, например, на Камчатке (Паужетская геотермальная станция). На Земле действует несколько районов активной гейзерной деятельности: Камчатка, Исландия, Северо-Восток США, Новая Зеландия.

Классификации подземных вод отражают разнообразие условий их распространения, залегания и формирования, а также особен-ности состава и свойств (В.И. Вернадский, Ф.П. Саваренский,Н.И. Толстихин, Е.В. Пиннекер и др.).

Наиболее полной является классификация, разработанная А.М. Овчинниковым, которая отражает основные типы и подтипы подземных вод и геометрию фильтрационных сред.

Почвенные воды . В почвенном слое содержится влага, назы-ваемая почвенными водами. К ним относится: гигроскопическая, рыхло связанная, капиллярная (поднятая, подвешенная, стыковая) вода. Эти воды, передвигающиеся под действием молекулярных, капиллярных сил и реже сил тяжести, во многом определяют пло-дородие почв. Небольшие постоянные скопления воды образуются лишь в почвах болотного типа; они характеризуются большим со-держанием органических веществ и микроорганизмов.

В почвоведении выделяют следующие виды увлажнения почвы: атмосферное, грунтово-атмосферное, грунтово-атмосферное с до-полнительным поверхностным питанием и грунтово-атмосферное с дополнительным паводковым питанием.

В соответствии с балансом влаги (соотношением между ее по-ступлением и уходом (испарение и отток)) выделяют различные типы водного режима почв с разными значениями коэффициента увлажнения К у: мерзлотный (К у ≥1); промывной (К у > 1, тайга, лес, лесостепь — почвы дерново-подзолистые, лесные, черноземы); непромывной (К у < 1, сухие степи, полупустыни — каштановые почвы, сероземы).

В почвенном разрезе (2,0—2,5 м) выделяют горизонты: поч-венный — корнеобитаемый слой; подпочвенный, куда в некоторых зонах «промокание» не доходит; капиллярной каймы. Геологи-ческая деятельность почвенных вод незначительна, однако агроно-мическое значение этих вод огромно, так как почвенная влага не-обходима для выращивания сельскохозяйственных культур.

Гравитационные подземные воды сосредоточены главным об-разом в зоне насыщения, где они образуют различные по условиям залегания и питания водоносные горизонты и системы водоносных горизонтов (комплексы, этажи, бассейны).

В зоне аэрации свободные гравитационные воды могут образо-вывать временно существующие водоносные горизонты, называ-емые верховодкой.

В зоне насыщения распространены грунтовые и межпластовые напорные или безнапорные подземные воды.

Взаимоотношения и связи верховодки, грунтовых и напорных вод могут быть самыми разнообразными, что зависит от геолого-структурных, геоморфологических, тектонических, литологи-ческих, климатических и других факторов и условий. Общая схема их взаимного расположения в разрезе показана на рис.ниже.

Верховодка — это горизонт, который формируется за счет не-больших скоплений в зоне аэрации вод временного, сезонного ха-рактера, имеющих гидравлическую связь с почвенными водами и залегающих на невыдержанных водонепроницаемых и слабопро-ницаемых слоях вблизи поверхности земли. Зимой она промерзает, а летом пересыхает. Верховодка всегда усложняет инженерно-гео-логические условия строительства, поскольку может быть не заме-чена при изысканиях. Иногда режим верховодки характеризуется относительной устойчивостью, и тогда ее воды используются для местного водоснабжения (например, в Тульской, Калужской и Смоленской областях используются воды, содержащиеся в пок-ровных суглинках водоразделов).

Схема соотношения верховодки, грунтовых и напорных вод

1 — верховодка; 2 — грунтовые воды; 3 — напорные воды; УВ — уровень верховодки; УГВ — уровень грунтовых вод; ПУНВ — пьезометрический уровень напорных вод; стрелками показано направление движения подземных вод

Возникают верховодки вследствие просачивания с поверхности атмосферных осадков, поверхностных и оросительных вод и на-копления их на линзах и прослойках слабопроницаемых пород, иг-рающих роль местных водоупоров. Верховодки обычно залегают неглубоко и расположены в разрезе выше постоянных горизонтов грунтовых вод. Их воды расходуются в основном на испарение, транспирацию и питание грунтовых вод.

Особенности верховодки как своеобразного типа подземных вод:

  • расположение в пределах пород зоны аэрации;
  • временный характер, сезонность (обычно в периоды интенсив-ного выпадения атмосферных осадков и утечек воды из раз-личных систем);
  • ограниченность распространения (локальный характер пред-определяется локальным распространением водоупоров);
  • резкая зависимость ее запасов, режима и качества от климати-ческих условий и хозяйственной деятельности человека;
  • легкая загрязняемость и непригодность для постоянного водо-снабжения.

Накопление верховодки происходит весной при оттаивании почвы и уменьшении мерзлого слоя; осенью — после периода дли-тельных дождей. Необходимым условием задержания влаги в по-родах должно быть переслаивание проницаемых и слабопроница-емых пород. Например, погребенные горизонты почв должны зале-гать в толще лёссов, линзы размытой глинистой морены — среди флювиогляциальных песчаных отложений, линзы и карманы суг-линистых отложений — среди аллювиальных песков и т.д.

Обычно верховодка встречается в суглинках и лёссовидных от-ложениях на водораздельных плато. В районах распространения многолетней мерзлоты верховодка (воды сезонно-талого слоя) весьма своеобразна и широко распространена. Воды верховодки не имеют связи с реками. Уровень ее характеризуется крайней из-менчивостью. В районах больших городов эти воды легко загрязня-ются. Для гидротехнического и гражданского строительства ее при-сутствие неблагоприятно.

По химическому составу воды верховодки неодинаковы: прес-ные и слабоминерализованные с повышенным содержанием крем- некислоты, органического вещества и железа в северных районах и обычно минерализованные в южных районах (из-за испарения). При бурении скважин для целей водоснабжения верховодку необ-ходимо тщательно изолировать при помощи обсадных труб во из-бежание загрязнения ею лежащих ниже водоносных горизонтов.

Грунтовые воды. К грунтовым водам относятся подземные воды первого от поверхности постоянно действующего водоносного го-ризонта, залегающего на относительно выдержанном водоупоре и имеющего свободную поверхность.

Сверху грунтовые воды обычно не перекрыты водоупорными отложениями, поэтому они имеют тесную связь с атмосферой и давление на их поверхности равно атмосферному давлению, т.е. поверхность фунтовых вод при вскрытии их скважинами уста-навливается в них на той глубине, где они были встречены. Не-редко поэтому грунтовые воды называют безнапорными (в отличие от напорных, имеющих избыточный напор над перекрывающей их водоупорной кровлей).

Условия залегания грунтовых вод на первом от поверхности вы-держанном водоупоре предопределяют особенности их питания, распространения, движения и разгрузки. Области питания и рас-пространения грунтовых вод совпадают, т.е. их питание через зону аэрации осуществляется по всей площади их распространения. По-этому расход потока грунтовых вод является величиной переменной (как правило, увеличивается по пути их движения). Основными ис-точниками питания грунтовых вод являются атмосферные осадки, поверхностные и конденсационные воды. Грунтовые воды имеют тесную гидравлическую связь с поверхностными водотоками и во-доемами и в зависимости от соотношения их уровней либо разгру-жаются в них (дренируются), обеспечивая их подземное питание, либо питаются поверхностными водами (особенно при подпорах и в паводки). При изменении уровня воды в поверхностных водо-емах изменяется уровень в гидравлически с ними взаимосвязанных горизонтах фунтовых вод.

Различные соотношения между поверхностными и грунтовыми водами

а — связь между водами отсутствует; б — река питает грунтовые воды; в — грун-товые воды питают реку; г — один берег реки питает грунтовые воды, а другой — дренирует. Стрелками показно направление движения вод, пунктиром — уровень

Характерна также тесная зависимость режима уровней, качества и количества грунтовых вод от климатических факторов, процессов, протекающих в зоне аэрации, и инженерной деятельности человека (повышение уровней и запасов в дождливое время и понижение их в засуху, ухудшение качества вод при инфильтрации сточных вод).

Грунтовые воды разгружаются в виде источников, пластовых выходов, мочажин в местные понижения и поверхностные водо-токи и водоемы. При залегании близко к поверхности (0-4 м) они могут разгружаться путем испарения через зону капиллярной каймы. На отдельных участках возможна гидравлическая взаимо-связь грунтовых вод с лежащими ниже напорными водами через
отдельные литологические окна и участки размыва разделяющих их водоупорных толщ. При этом в зависимости от соотношения уровней взаимосвязанных горизонтов будет происходить либо пи-тание, либо разгрузка грунтовых вод.
Грунтовые воды движутся от мест с их более высоким уровнем к местам с их пониженным уровнем, обычно от участков с повы-шенным рельефом и водоразделов в сторону местных понижений, оврагов, балок и речных долин. Разгружаются грунтовые воды в этих понижениях обычно в виде нисходящих источников. По-верхность грунтовых вод (зеркало), как правило, в несколько сгла-женном виде соответствует рельефу местности. При этом гидравли-ческие уклоны поверхности грунтовых вод обычно невелики и со-ставляют в среднем 0,05—0,001. На отдельных участках уровень грунтовых вод может быть практически горизонтальным, что сви-детельствует о незначительной скорости их фильтрации либо о полном ее отсутствии.

Наглядное представление об условиях распространения и дви-жения грунтовых вод дает карта гидроизогипс , на которой показано положение поверхности грунтовых вод в изолиниях, соединяющих точки с одинаковыми отметками уровня подземных вод. Строят такую карту аналогично карте рельефа земной поверхности в гори-зонталях, используя результаты единовременных замеров уровня грунтовых вод во всех имеющихся скважинах, колодцах и в их есте-ственных выходах.

Если наблюдается резкое изменение уровня грунтовых вод в различные периоды, то карты гидроизогипс составляют на эти ха-рактерные периоды и даты (например, когда уровень грунтовых вод бывает максимальным и минимальным). Для получения данных об изменении данного уровня проводят специальные наблюдения их режима (так называемые режимные наблюдения).

Карта гидроизогипс позволяет определять:

  • направление движения грунтовых вод (по нормалям к гидроизо-гипсам);
  • гидравлические уклоны и скорость фильтрации;
  • глубину залегания грунтовых вод (по разности отметок горизон-талей поверхности Земли и гидроизогипс водной поверхности);
  • характер взаимосвязи грунтовых вод с поверхностными (по ха-рактеру сопряжения гидроизогипс с поверхностными водоемами и направлению движения подземных вод)

и решать другие практические задачи.

Нередко на основе карты гидроизогипс составляют карту глу-бины залегания грунтовых вод (в изолиниях равных глубин или с вы-делением зон определенной глубины залегания грунтовых вод).

Такие карты широко используют при бурении скважин для целей водоснабжения, орошения и осушения.

Грунтовые воды распространены повсеместно там, где темпера-турные условия верхней части литосферы допускают их накопление и существование в жидкой фазе. Изучение условий их формиро-вания и распространения показало, что существуют определенные закономерности зонального распределения различных по проис-хождению типов грунтовых вод.

Грунтовые воды имеют большое народнохозяйственное зна-чение: их широко используют для целей хозяйственно-питьевого и сельскохозяйственного водоснабжения и орошения. Основными типами широко используемых грунтовых вод являются грунтовые воды речных долин, ледниковых отложений, степей, полупустынь и пустынь, конусов выноса и предгорных наклонных равнин, горных районов, песчаных морских побережий.

В гидрогеологии определение грунтовых вод часто дается по С.Н. Никитину, который к этой категории относит только воды первого от поверхности земли выдержанного горизонта подземных вод, залегающего на водоупоре.

Разновидности подземных вод, залегающих вблизи поверхности земли под невыдержанным водоупором, называют водами меж- пластовыми, закрытыми или подземными (например, подземные воды предгорных конусов выноса или ледниковых отложений).

Особенности грунтовых вод следующие:

  • залегание вблизи поверхности земли в рыхлых отложениях из-менчивой мощности, преимущественно четвертичного возраста, дренируемых реками или вскрываемых эрозионной сетью;
  • если пласт первый от поверхности и не полностью насыщен водой, то воды ненапорные, а если пласт перекрыт невыдержан-ными по мощности слоями разной проницаемости, то воды обычно напорные;
  • область питания совпадает с областью распространения, и пи-тание происходит за счет инфильтрации атмосферных осадков и снеговых вод; фильтрации из рек, озер и каналов; конден-сации водяных паров и внутри грунтового испарения; подтока (подпитывания) из более глубоких водоносных горизонтов;
  • глубина залегания уровня, температура, минерализация и расход грунтовых вод подвержены систематическим суточным, ме-сячным, годовым и многолетним колебаниям;
  • подземный сток грунтовых вод обычно направлен от водораз-делов к речным долинам, где осуществляется их разгрузка в реки;
  • режим грунтовых вод (инфильтрация и боковой приток, отток и испарение, а также баланс, условия формирования и стока)
    обычно тесно связан с современным климатом, рельефом и по-верхностными водами.

Межпластовые безнапорные воды . Эти воды, как и грунтовые, имеют свободную поверхность, давление на которой равно атмос-ферному, но залегают они обычно между двумя водоупорными тол-щами.

Из-за этого межпластовые воды питаются на ограниченных участках (в областях выхода водовмещающих отложений на поверх-ность, на участках их взаимосвязи с поверхностными водотоками и напорными водами) и находятся в более благоприятных сани-тарных условиях, чем незащищенные с поверхности фунтовые воды.

В периоды интенсивного выпадения осадков и половодий уровни межпластовых вод могут повышаться вплоть до появления избыточных напоров над перекрывающей их водоупорной кровлей, тогда межпластовые безнапорные воды могут становиться напор-ными водами .

Таким образом, межпластовые безнапорные воды являются как бы промежуточным типом подземных вод — по гидравлическому характеру они безнапорные и аналогичны грунтовым водам, однако по условиям залегания близки к напорным водам.

Артезианские воды и бассейны . Под Парижем, в предместье Артуа, в 1126 г. неожиданно при бурении скважин были вскрыты фонта-нирующие воды, которые получили название артезианских вод. В первое время артезианскими водами называли только воды, фон-танирующие выше поверхности земли, — «водометы», позднее этим понятием стали объединять все межпластовые напорные воды, залегающие в тектонических структурах, вогнутых или наклонных пластах, поднимающиеся над кровлей пласта в стволе скважины.

Для образования артезианских вод необходимы следующие условия:

  • обилие атмосферных осадков в области питания, т.е. приурочен-ность ее к поясу избыточного увлажнения;
  • породы области питания должны выходить на поверхность выше пунктов заложения скважин, т.е. необходимы наклон и изогну-тость пластов, обусловливающие гидравлический, артезианский напор;
  • оптимальные возможности водопоглощения, наличие хорошо проницаемых почв, в зоне аэрации — малое количество и не-большая мощность глинистых водоупорных горизонтов и толщ;
  • наличие в области распространения или напора выдержанной глинистой кровли;
  • высокая пористость, трещиноватость и водопроницаемость во-довмещающих пород.

Грунтовые и межпластовые ненапорные воды

1 — грунтовые воды; 2 — межпластовые ненапорные воды; 3 — разгрузка грун¬товых вод в виде источников; W — инфильтрационное питание; УГВ — уровень грунтовых вод; УМНВ — уровень межпластовых ненапорных вод

Отличительная черта артезианских вод — это наличие избыточ-ного напора над поверхностью кровли водосодержащего пласта. При вскрытии напорных вод горными выработками их уровень под действием избыточного напора поднимается и устанавливается выше водоупорной кровли, соответственно положению пьезометрической поверхности напорного водоносного горизонта.

Схема артезианского бассейна

а — область питания; б — область напора; в — область разгрузки; г — область воз-можного самоизлива напорных вод; 1,2 — пьезометрический уровень напорных вод первого горизонта; 3 — восходящий источник; 4 — участок возможной гидрав-лической взаимосвязи напорных горизонтов (гидрогеологическое «окно»); 5 — на-порные водоносные горизонты

Величину напора обычно определяют по положению пьезомет-рического уровня водоносного горизонта относительно горизон-тальной плоскости сравнения О — О. Напорные воды располо-жены, как правило, ниже горизонтов грунтовых вод и характеризу-ются своеобразными условиями залегания, распространения, питания и разгрузки. Наличие водоупорной кровли, перекрыва-ющей водоносный пласт, затрудняет питание и разгрузку напорных вод и их взаимосвязь с поверхностными водами и атмосферой.

Питание напорных водоносных горизонтов оказывается воз-можным лишь в области выхода водопроницаемого пласта на по-верхность, где создаются условия для проникновения в пласт путем инфильтрации атмосферных осадков и поверхностных вод. Как уже говорилось, эта область, имеющая меньшие размеры, чем область распространения напорных вод, называется областью питания . Она обычно расположена на наиболее высоких отметках, нередко на значительном удалении от областей распространения и раз-грузки напорных вод.

В области питания подземные воды имеют свободную поверх-ность и тесную гидравлическую взаимосвязь с поверхностными во-дами. Область, в пределах которой подземные воды имеют избы-точный над перекрывающей их водоупорной кровлей напор, назы-вается областью напора (или областью распространения напорных вод). В этой области подземные воды, как правило, не получают питания по пути их движения (так как они изолированы в разрезе водоупорами) и расход их не изменяется. На отдельных участках возможен самоизлив напорных вод при вскрытии их скважинами там, где отметки пьезометрического уровня превышают отметки земной поверхности.

Разгрузка напорных вод происходит в области их выхода на по-верхность (на пониженных по сравнению с областью питания участках), а также на участках естественного (реки, овраги, балки и т.п.) и искусственного (скважины, колодцы, шахты, карьеры и т.п.) вскрытия напорных вод.

В естественных условиях напорные воды, разгружаясь, образуют восходящие источники, ключи, грифоны и т.п., питают реки и другие поверхностные водоемы. Движутся напорные воды в на-правлении от областей питания к областям разгрузки. Интенсив-ность их движения уменьшается по мере увеличения глубины и удаления от областей питания.

Положение пьезометрической поверхности напорных вод ха-рактеризуется картой пьезоизогипс (гидроизопьез), которая состав-ляется аналогично карте гидроизогипс грунтовых вод и представ-ляет собой систему изолиний, соединяющих точки с одинаковыми отметками пьезометрического уровня. На карты пьезоизогипс на-носят также изолинии отметок поверхности кровли и подошвы рас-сматриваемого напорного горизонта, что облегчает решение многих практических задач. Например, по карте пьезоизогипс определяют направления движения напорных вод, гидравлические уклоны, на-поры, участки возможного самоизлива вод. Если известны мощ-ность напорного горизонта и его фильтрационные свойства, то можно определить скорость фильтрации подземных вод и расход потока.

Напорные воды, изолированные от атмосферы (связь имеется лишь в области питания и разгрузки), характеризуются меньшей зависимостью их режима от климатических факторов, относи-тельным постоянством уровней температуры и химического со-става, меньшей загрязненностью и лучшим санитарным качеством воды. Поэтому их можно использовать для различных видов водо-снабжения (хозяйственно-питьевого, производственно-техничес-кого, лечебно-питьевого, термального и др.) и орошения. При экс-плуатации высоконапорных вод, находящихся в пластах под значи-тельным давлением, большое практическое значение имеют их упругие запасы, высвобождающиеся из водоносных пластов при частичном снятии давления благодаря разуплотнению ранее сжатых пород и воды. Несмотря на незначительную сжимаемость воды и горных пород, упругие запасы напорных вод довольно велики, так как содержащие их водонапорные системы занимают значи-тельные пространства.

В реальных природных условиях схема распространения, пи-тания и разгрузки напорных вод зависит от геолого-структурных, тектонических, литологических, климатических и других особен-ностей того или иного района. В частности, напорные воды могут питаться и разгружаться на участках, где возможна их гидравли-ческая взаимосвязь с соседними напорными и безнапорными водо-носными горизонтами через литологические гидрогеологические «окна», тектонические нарушения и участки с размывом разделя-ющих их водоупорных отложений.

Их интенсивная разгрузка возможна также на участках, где на-порные воды вскрываются карьерами, котлованами, шахтами, во-дозаборными сооружениями, а в естественных условиях — через русловые и донные отложения рек, озер, морей (скрытая разгрузка). Пласты с напорными водами могут соединяться друг с другом или выклиниваться (исчезать), что обеспечивает своеобразные условия накопления и распространения напорных вод.

Напорные воды часто называют артезианскими, а вмещающие их геологические структуры (мульды, синклинали, моноклинали, впадины и др.) — артезианскими бассейнами.

В пределах артезианского бассейна могут иметься один или не-сколько напорных водоносных горизонтов или комплексов, взаи-мосвязанных или изолированных друг от друга водоупорными от-ложениями. Положение пьезометрических поверхностей, входящих в состав бассейна напорных водоносных горизонтов, зависит от вы-сотного расположения областей их питания и разгрузки, а также от степени гидравлической взаимосвязи напорных горизонтов.

Пьезометрическая поверхность глубоко залегающих водоносных горизонтов в значительной мере определяется геостатическим дав-лением толщи вышележащих отложений. Значительно более вы-сокие давления в центральных частях бассейнов, чем в краевых, могут вызывать движение подземных вод от центральных частей к краевым, т.е. к периферийным областям питания артезианских бассейнов.

Своеобразные бассейны напорных вод встречаются в пред-горных и горных районах, где имеются моноклинальное залегание и выклинивание водовмещающих отложений, способствующие об-разованию так называемых артезианских склонов.

Схема артезианского склона

а — область питания; 6 — область напора; в — область разгрузки; 7 — свободный уровень подземных вод в области питания; 2 — пьезометрический уровень под¬земных вод в области напора; 3 — источники нисходящего и восходящего типов в области разгрузки

Формирующиеся в области питания артезианского склона под-земные воды разгружаются в виде источников восходящего и нис-ходящего типов в непосредственной близости от области питания. Напорный характер воды артезианского склона имеют в зоне их пе-рекрытия водоупорными отложениями. Гипсометрически область напора находится на более низких абсолютных отметках, чем об-ласть разгрузки. В артезианских бассейнах с интенсивным движе-нием подземных вод распространены, как правило, пресные ин- фильтрационные воды с невысокой минерализацией (зона интен-сивного водообмена) . Мощность зоны интенсивного водообмена в благоприятных условиях может составлять 1000 м и более.

В крупных артезианских бассейнах с небольшими по площади областями питания пресные воды приурочены к неглубоко залега-ющим водоносным горизонтам и комплексам. В более глубоко за-легающих горизонтах, не охваченных интенсивным водообменом, широко распространены минерализованные и высокоминерализо-ванные подземные воды различного состава (гидрокарбонатно-сульфатные, сульфатные, сульфатно-хлоридные). Обычно эту зону называют зоной затрудненного водообмена.

В артезианских бассейнах с неблагоприятными условиями водо-обмена (незначительная разница в высотном положении областей питания и разгрузки, глубокое залегание и широкое региональное распространение напорных вод, закрытый характер водовмеща-ющих структур и т.д.) ниже этой зоны находится зона весьма за-трудненного водообмена , в пределах которой в водоносных гори-зонтах сохраняются седиментационные древние воды (воды мор-ского происхождения). Таким образом, для артезианских бассейнов характерны определенные гидродинамическая и гидрохимическая зональности. Наличие и мощность каждой из зон и их взаимное расположение зависят от конкретных условий бассейна и совокуп-ности факторов, определяющих формирование, накопление, дви-жение и расходование подземных вод.

Напорные воды артезианских бассейнов имеют большое прак-тическое значение не только как источник водоснабжения. В зави-симости от их химического и газового состава, наличия в них био-логически активных и промышленных микрокомпонентов, их тем-пературы и других показателей напорные подземные воды широко используют в курортно-санаторном деле (минеральные воды), для промышленного извлечения солей и ценных микрокомпонентов (промышленные воды), для целей теплофикации, теплоэнергетики и теплично-парникового хозяйства (термальные воды). Примерами крупных артезианских бассейнов платформенного типа являются Западно-Сибирский, Московский, Прибалтийский, Днепровско- Донецкий и др.

Поровые воды — это воды, которые насыщают пористые породы (галечники, пески, слабо сцементированные песчаники, супеси, суглинки и т.п.). Количество воды, которое можно извлечь из таких пород в единицу времени, т.е. их дебит, зависит от гранулометри-ческого состава, структуры и типа пористости породы, которые определяют скорость подтока воды к колодцу или скважине. Чем больше пор в горных породах, тем быстрее откачивается из им* вода, так как ее движение происходит свободнее. Скорость дни жения подземного потока обычно достигает в лёссе и суглинистыч породах 0,1—0,3 м/сут, в супесях и мелкозернистых песках — 0,5—1,0 м/сут, в грубозернистых песках и мелком галечнике — от 1,5 до 10 м/сут.

Тема: Основные разновидности подземных вод. Условия формирования. Геологическая деятельность подземных вод

2. Основные типы подземных вод.

1. Классификация подземных вод.

Подземные воды весьма разнообразны по химическому составу, температуре, происхождению, назначению и т. д. По общему содержанию растворенных солей они делятся на четыре группы: пресные, солоноватые, соленые и рассолы. Пресные воды содержат менее 1 г/л растворенных солей; солоноватые воды - от 1 до 10 г/л; соленые - от 10 до 50 г/л; рассолы - более 50 г/л.

По химическому составу растворенных солей подземные воды делятся на гидрокарбонатные, сульфатные, хлоридные и сложного состава (сульфатные гидрокарбонатные, хлоридные гидрокарбонатные и т.д.).

Воды, имеющие лечебное значение, называются минеральными. Минеральные воды выходят на поверхность в виде источников или выводятся на поверхность искусственно с помощью буровых скважин. По химическому составу, газоносности и температуре минеральные воды делят на углекислые, сероводородные, радиоактивные и термальные.

Углекислые воды широко распространены на Кавказе, Памире, в Забайкалье, на Камчатке. Содержание углекислого газа в углекислых водах колеблется от 500 до 3500 мг/л и более. Газ присутствует в воде в растворенном виде.

Сероводородные воды также распространены довольно широко и связаны в основном с осадочными породами. Общее содержание сероводорода в воде обычно невелико, однако лечебное действие сероводородных вод настолько значительно, что содержание Н2 более 10 мг/л уже придает им лечебные свойства. В отдельных случаях содержание сероводорода достигает 140-150 мг/л (например, известные источники Мацесты на Кавказе).

Радиоактивные воды делятся на радоновые, содержащие радон, и радиевые, содержащие соли радия. Лечебное действие радиоактивных вод очень высоко.

По температуре термальные воды делятся на холодные (ниже 20°С), теплые (20-30°С), горячие (37-42°С) и очень горячие (свыше 42°С). Они распространены в областях молодого вулканизма (на Кавказе, Камчатке, в Средней Азии).

2. Основные типы подземных вод

По условиям залегания выделяют следующие типы подземных вод:

· почвенные;

· верховодка;

· грунтовые;

· межпластовые;

· карстовые;

· трещинные.

Почвенные воды располагаются у поверхности и заполняют пустоты в почве. Влага, содержащаяся в почвенном слое, называется почвенными водами. Передвигаются они под действием молекулярных, капиллярных сил и сил тяжести.

В поясе аэрации выделяют 3 слоя почвенных вод:

1. почвенный горизонт переменной влажности - корнеобитаемый слой. В нем совершается обмен влагой между атмосферой, почвой и растениями.

2. подпочвенный горизонт, часто сюда «промокание» не доходит и он остается «сухим».

горизонт капиллярной влаги - капиллярная кайма.

Верховодка - временное скопление подземных вод в близповерхностном слое водоносных отложений в пределах зоны аэрации, лежащих на линзовидном, выклинивающемся водоупоре.

Верховодка - безнапорные подземные воды, залегающие наиболее близко к земной поверхности и не имеющие сплошного распространения. Образуются за счёт инфильтрации атмосферных и поверхностных вод, задержанных непроницаемыми или слабо проницаемыми выклинивающимися пластами и линзами, а также в результате конденсации водяных паров в горных породах. Характеризуются сезонностью существования: в засушливое время они нередко исчезают, а в периоды дождей и интенсивного снеготаяния возникают вновь. Подвержены резким колебаниям в зависимости от гидрометеорологических условий (количества атмосферных осадков, влажности воздуха, температуры и др.). К верховодке относятся также воды, временно появляющиеся в болотных образованиях вследствие избыточного питания болот. Нередко верховодка возникает в результате утечек воды из водопровода, канализации, бассейнов и др. водонесущих устройств, следствием чего может быть заболачивание местности, подтопление фундаментов и подвальных помещений. В области распространения многолетнемёрзлых горных пород верховодка относится к надмерзлотным водам. Воды верховодке обычно пресные, слабоминерализованные, но часто бывают загрязнены органическими веществами и содержат повышенные количества железа и кремнекислоты. Верховодка, как правило, не может служить хорошим источником водоснабжения. Однако при необходимости принимаются меры для искусственного сохранения: устройство прудов; отводы из рек, обеспечивающие постоянным питанием эксплуатируемые колодцы; насаждение растительности, задерживающей снеготаяние; создание водоупорных перемычек и т.п. В пустынных районах путём устройства канавок на глинистых участках - такырах, атмосферные воды отводятся в прилегающий участок песков, где создаётся линза верховодке, представляющая собой некоторый запас пресных вод.

Грунтовые воды залегают в виде постоянного водоносного горизонта на первом от поверхности, более или менее выдержанном, водонепроницаемом слое. Грунтовые воды имеют свободную поверхность, которая называется зеркалом, или уровнем, грунтовых вод.

Межпластовые воды заключены между водоупорными слоями (пластами). Межпластовые воды, находящиеся под напором, называются напорными, или артезианскими. При вскрытии скважинами артезианские воды поднимаются выше кровли водоносного пласта и, если отметка напорного уровня (пьезометрическая поверхность) превышает отметку поверхности Земли в данном пункте, то вода будет изливаться (фонтанировать). Условная плоскость, определяющая положение напорного уровня в водоносном пласте (см. рис. 2), называется пьезометрическим уровнем. Высота подъема воды выше водоупорной кровли называется напором.

Артезианские воды залегают в водопроницаемых отложениях, заключенных между водонепроницаемыми, полностью заполняют пустоты в пласте и находятся под напором. Установившийся в скважине УВ называют пьезометрическим, который выражается в абсолютных отметках. Самоизливающиеся напорные воды имеют локальное распространение и больше известны у садоводов как «ключи». Геологические структуры, к которым приурочены артезианские водоносные горизонты, называются артезианскими бассейнами.

Рис. 1. Типы подземных вод: 1 - почвенные; 2 - верховодка; 3 - грунтовые; 4 ~ межпластовые; 5 - водонепроницаемый горизонт; 6 - водопроницаемый горизонт

Рис. 2. Схема строения артезианского бассейна:

1 - водонепроницаемые породы; 2 - водопроницаемые породы с напорной водой; 4 - направление стока подземных вод; 5 – скважина.

Карстовые воды залегают в карстовых пустотах, образовавшихся за счет растворения и выщелачивания горных пород.

Трещинные воды заполняют трещины горных пород и могут быть как напорными, так и безнапорными.

3. Условия образования грунтовых вод

Грунтовые воды являются первым от поверхности земли постоянным водоносным горизонтом . Около 80% сельских населенных пунктов используют для водоснабжения грунтовые воды. ГВ издавна используются для орошения.

Если воды пресные, то при глубине залегания 1- 3 м они служат источником увлажнения почв. При высоте 1-1,2 м они могут вызывать заболачивание. Если грунтовые воды сильно минерализованы, то при высоте 2,5 - 3,0 м они могут вызвать вторичное засоление почв. Наконец, грунтовые воды могут затруднять проходку строительных котлованов, подпаливать застроенные территории, агрессивно воздействовать на подземные части сооружений и т.д.

Подземные воды формируются разными способами. Часть из них образуется в результате просачивания атмосферных осадков и поверхностных вод по порам и трещинам горных пород . Такие воды называются инфильтрационными (слово "инфильтрация" обозначает просачивание).

Однако существование подземных вод не всегда можно объяснить инфильтрацией атмосферных осадков. Например, в районах пустынь и полупустынь выпадает очень мало осадков, причем они быстро испаряются. Вместе с тем даже в пустынных областях на некоторой глубине присутствуют подземные воды. Образование таких вод можно объяснить лишь конденсацией водяных паров в почве . Упругость водяного пара в теплое время года в атмосфере больше, чем в почве и горных породах, поэтому пары воды непрерывно поступают из атмосферы в почву и формируют там подземные воды. В пустынях, полупустынях и сухих степях вода конденсационного происхождения в знойное время является единственным источником влаги для растительности.

Подземные воды могут формироваться за счет захоронения вод древних морских бассейнов совместно с накапливающимися в них осадками . Воды этих древних морей и озер могли сохраниться в захороненных осадках, а затем просачиваться в окружающие породы или выходить на поверхность Земли. Такие подземные воды носят название седиментационных вод .

Часть подземных вод по происхождению может быть связана с остыванием расплавленной магмы . Выделение водяных паров из магмы подтверждается образованием облаков и ливней при извержениях вулканов. Подземные воды магматического происхождения называются ювенильными (от лат. "ювеналис" - девственный). Как считает океанолог X. Райт, обширные водные пространства, которые существуют в настоящее время, "вырастали капля за каплей на протяжении всей жизни нашей планеты за счет воды, просачивающейся из недр Земли".

Условия залегания, распространения и образования ГВ зависят от климата, рельефа, геологического строения, влияния рек, почвенного и растительного покрова, от хозяйственных факторов.

а) Связь ГВ с климатом.

В образовании горных вод важная роль принадлежит осадкам и испаряемости.

Чтобы проанализировать изменение этого соотношения, целесообразно воспользоваться картой обеспеченности растений влагой. По отношению осадков к испаряемости выделены 3 зоны (области):

1. достаточного увлажнения

2. недостаточного

3. незначительного увлажнения

В первой зоне сосредоточены основные площади переувлажненных земель, требующие осушения (в отдельные периоды здесь необходимо увлажнение). Области недостаточного и незначительного увлажнения нуждаются в искусственном увлажнении.

В трех областях питания ГВ осадками и теплоты их в зону аэрации различны.

В области достаточного увлажнения инфильтрационное питание грунтовых вод при глубине залегания более 0,5 - 0,7 м преобладает над тепловым их в зону аэрации. Эта закономерность наблюдается в невегетационный и в вегетационный периоды, за исключением сильно засушливых лет.

В области недостаточного увлажнения соотношение инфильтрации осадков с испарением ГВ при неглубоком залегании их различно в лесостепной и степной зонах.

В лесостепях в суглинистых породах во влажные годы инфильтрация преобладает над тепловым ГВ в зону аэрации, в засушливые годы - соотношение обратное. В степной зоне в суглинистых породах в невегетационый период инфильтрационное питание преобладает над тепловым ГВ, а в вегетационный период - меньше расхода. В целом за год инфильтрационное питание начинает преобладать над тепловым грунтовых вод.

В области незначительного увлажнения - в полупустынях и пустынях - инфильтрация в суглинистых породах при неглубоком залегании УГВ несоизмеримо мала по сравнению с расходом в зону аэрации. В песчаных породах инфильтрация начинает увеличиваться.

Таким образом, питание ГВ за счет осадков уменьшается, а расход в зону аэрации возрастает с переходом от области достаточного к области незначительного увлажнения.

б) Связь грунтовых вод с реками.

Формы связи грунтовых вод с реками определяются рельефом и геоморфологическими условиями.

Глубоко врезанные речные долины служат приемником грунтовых вод, дренируя прилегающие земли. Напротив при небольшом врезе, свойственном низовьям рек, реки питают грунтовые воды.

Различные случаи соотношения поверхностных и грунтовых вод показаны на схеме.

Принципиальная расчетная схема взаимодействия подземных и поверхностных вод в условиях изменчивости поверхностного стока.


а - межень; б - восходящая фаза половодья; в - нисходящая фаза половодья.

в) Связь грунтовых вод с напорными.

Если между грунтовыми водами и нижележащим напорным горизонтом нет абсолютноводонепроницаемого слоя, то между ними возможны следующие формы гидравлической связи:

1) УГВ выше уровня напорных вод, вследствие чего возможно перетекание ГВ в напорные.

2) Уровни практически совпадают. При снижении УГВ, например, дренами, будет происходить подпитывание ГВ напорными.

3) УГВ периодически превышают уровень напорных вод (во время поливов, осадков), в остальное время ГВ подпитываются осадками.

4) УГВ постоянно ниже УНВ, поэтому последние подпитывают грунтовые воды.

Грунтовые воды могут получать питание из артезианских вод и через так называемые гидрогеологические окна - участки, где нарушается сплошность водоупорного пласта.

Возможно подпитывание УВ напорными через тектонические разломы .

Гидродинамические зоны ГВ, определяемые рельефом и геологическим строением, тесно связаны с геоструктурными условиями территории. Зоны высокой дренированности свойственны горным и предгорным областям. Зоны низкой дренированности характерны для прогибов и впадин платформенных равнин.

Зональность питания ГВ наиболее отчетливо проявляется в зоне низкой дренированности аридных областей. Она заключается в последовательном увеличении минерализации ГВ с удалением от источника питания реки, канала и др. Поэтому в засушливых районах колодцы для водоснабжения обычно размещают вдоль каналов, рек.

4. Условия образования и залегания артезианских вод.

Артезианские воды образуются при определенном геологическом строении - чередовании водопроницаемых пластов водоупорными. Они приурочены в основном к синклинально или моноклинально залегающим свитам пластов.

Площадь развития одного или нескольких артезианских пластов называется артезианским бассейном. АБ могут занимать от нескольких десятков до сотен тысяч км 2 .

Источники питания напорных вод - осадки, фильтрационные воды рек, водохранилищ, оросительных каналов и др. Напорные воды в определенных условиях пополняются грунтовыми водами.

Расходование их возможно путем разгрузки их в речные долины, выхода на поверхность в форме родников, медленного высачивания через пласты, заключающие напорный слой, с перетеканием в грунтовые воды. Отбор АВ для водоснабжения и орошения также составляют статьи их расходования.

В артезианских бассейнах различают области питания, напора и разгрузки.

Область питания - площадь выхода артезианского пласта на поверхность земли, где происходит его питание. Она располагается на самых высоких отметках рельефа артезианского бассейна в горных областях и водоразделах и т.д.

Область напора - основная площадь распространения артезианского бассейна. В ее пределах подземные воды обладают напором.

Область разгрузки - площадь выхода напорных вод на поверхность - открытая разгрузка (в форме восходящих родников или площадь скрытой разгрузки, например в русле рек и т.д.)

Скважины, вскрывающие АВ фонтанируют, это пример искусственной разгрузки напорных вод.

В пластах, содержащих гипсы, ангидриды, соли, артезианские воды имеют повышенную минерализацию.

Типы и зональность артезианских вод

Артезианские бассейны обычно типизируют по геоструктуре водовмещающих и водоупорных пород.

По этому признаку выделяют два типа артезианских бассейнов (по Н.И. Толстихину):

1. артезианские бассейны платформ, характеризующиеся обычно весьма значительной площадью развития и наличием нескольких напорных водоносных горизонтов (это Московский, Прибалтийский, Днепро-Донецкий и др.)

2. артезианские бассейны складчатых областей, приуроченные к интенсивно дислоцированным осадочным, магматическим и метаморфическим породам. Отличаются меньшей площадью развития. Примеры - Ферганский, Чуйский и др. бассейны.

5. Геологическая деятельность подземных вод.

Подземные воды проводят разрушительную и созидательную работу. Разрушительная деятельность подземных вод проявляется главным образом в растворении водорастворимых горных пород, чему способствует содержание в воде растворенных солей и газов. Среди геологических процессов, обусловленных деятельностью ПВ, прежде всего следует называть карстовые явления.

Карст.

Карстом называется процесс растворения горных пород передвигающимся в них подземным и просачивающимся поверхностными водами. В результате карста в породах образуются пещеры и пустоты различной формы и размера. Протяженность их может достигать многих километров.

Из карстовых систем наибольшую протяженность имеет Мамонтова пещера (США), общая длина ходов которой составляет около 200 км.

Карсту подвержены соленосные породы, гипсы, ангидриды и карбонатные породы. Соответственно и различают карст: соляной, гипсовый, карбонатный. Развитие карста начинается с расширения (под влиянием выщелачивания) трещин. Карст обуславливает специфические формы рельефа. Главная особенность его - наличие карстовых воронок диаметром от нескольких до сотен метров и глубиной до 20 - 30 м. Карст развивается тем интенсивнее, чем больше выпадает осадков и чем больше скорость движения подземных потоков.

Районы, подверженные карсту, характеризуются быстрым поглощением осадков.

В пределах массивов закарстованных пород выделяют зоны нисходящего движения воды и горизонтального - в сторону речных долин, моря и т.д.

В карстовых пещерах наблюдаются натечные образования преимущественного карбонатного состава - сталактиты (нарастающие вниз) и сталагмиты (растущие снизу). Карст ослабляет горные породы, снижает их количество как основание для ГТС. По карстовым пустотам возможна значительная утечка воды из водохранилищ и каналов. И в то же время подземные воды, заключенные в закарстованных породах, могут быть ценным источником для водоснабжения и орошения.

К разрушительной деятельности подземных вод относится суффозия (подкапывание) - это механический вынос мелких частиц из рыхлых пород, который приводит к образованию пустот. Такие процессы могут наблюдаться в лессах и лессовидных породах. Кроме механической различают химическую суффозию, примером которой является карст.

Созидательная работа подземных вод проявляется в отложении ими различных соединений, цементирующих трещины в горных породах.

Контрольные вопросы:

1 Дайте классификацию подземных вод.

2. При каких условиях образуются грунтовые воды?

3. При каких условиях образуются артезианские грунтовые воды?

4. В чем проявляется геологическая деятельность подземных вод?

5. Назовите основные типы подземных вод.

6. Как влияет верховодка на строительство?



Доверенности