Коррозия оборудования причины последствия меры борьбы. Коррозия металла – что это такое и как с ней бороться? Коррозия неметаллических материалов

Коррозия происходит под действием химически агрессивных сред - это вода, органические и неорганические кислоты. В результате на поверхностях деталей образуются оксиды металлов. Коррозия не только портит внешний вид поверхностей, но и снижает механические свойства металлов.

Причиной возникновения коррозии является термодинамическая неустойчивость металлов. Все металлы и сплавы, из которых изготовлен автомобиль, в условиях эксплуатации стремятся перейти в более устойчивое окисленное (ионное) состояние. Самопроизвольный переход металла в такое устойчивое состояние и составляет суть коррозии.

Многие проблемы, имеющие прямое отношение к коррозионной стойкости создаваемых изделий, могут быть решены на стадии их проектирования и изготовления. Например, если будет обеспеченно отсутствие в изделии узких зазоров, щелей или карманов, а там, где этого избежать нельзя, устроены дренажные отверстия, то тем самым будет ликвидирована щелевая коррозия. Следует исключить весьма опасную в коррозионном отношении возможность контакта различных металлов и сплавов, способных образовывать активные гальванические пары и стимулировать коррозию одного из них.

Потери от коррозии стали сравнимыми с вложениями в развитие крупных отраслей промышленности. В США например, в настоящее время эти потери значительно превышают 120 млрд долларов в год. Немалую часть составляют потери косвенные, связанные с вынужденным простоем оборудования, снижением мощности действующего оборудования, ухудшением условий труда. Известны случаи, когда коррозия средств транспорта являлась причиной серьезных аварий, сопровождающихся человеческими жертвами.

Для автомобильного транспорта характерно использование агрессивных средств, высоких температур и давлений, больших скоростей потоков, а также условий, когда изделия эксплуатируются при одновременном воздействии агрессивной среды и больших механических нагрузок, т.е. факторов, способствующих коррозии.

Вследствие коррозии теряется большое количество металла, на восполнение которого в автомобилестроении расходуется до 50% ежегодно производимого металла.

Коррозия многообразна в своем проявлении. Поверхность металла не всегда подвергается равномерному разрушению – так называемой общей коррозии. Чаще процесс сосредоточен на отдельных участках, разрушение носит локальный характер.

Использование металлов в напряженном состоянии, переход на высокопрочные стали и сплавы, характеризующиеся высокими внутренними напряжениями, привели к тому, что одним из опаснейших видов коррозии стало коррозионное растрескивание. Ему сильно подвержены нержавеющие стали, сплавы на основе меди, алюминия, магния. Склонность к коррозионному растрескиванию определяется и составом коррозионной среды. Присутствие отдельных компонентов служит необходимым условием для возникновения коррозионного растрескивания. Для нержавеющих сталей это хлориды и щелочи, и для сплавов на основе меди – аммиак.

Особенно уязвимыми для коррозии являются сварные швы. По характерному виду поражения коррозию этого типа называют ножевой.

Частный вид коррозионного растрескивания – коррозионная усталость, при которой появление трещин и ее развитие вызываются одновременным воздействием агрессивной среды и циклических механических нагрузок.

Сплавы на основе железа, высокопрочные сплавы проявляют склонность к межкристаллической коррозии, при которой разрушение идет по границам зерен и при этом теряется механическая прочность.

Весьма опасной коррозией является питтинговая с поражением отдельных очень небольших участков поверхности вплоть до сквозной перфорации изделий. При определенных условиях ей подвержены железо, никель, алюминий, магний, цирконий, медь, олово, цинк и особенно нержавеющие стали.

Для сплавов на основе железа распространенным и опасным видом локальной коррозии является щелевая коррозия под всевозможными прокладками, наростами, в щелях и узких зазорах. Весьма склонны к этому виду коррозии участки металла, контактирующие с неметаллическими материалами (древесина, пластик, стекло, бетон, асбест, ткани).

Для сплавов на основе меди опасно селективное вытравливание из них определенных компонентов (например – обесцинковывание латуни).

По механизму протекания коррозионные процессы делятся на химические, электрохимические и биохимические.

Химической коррозией называют такой тип коррозии, когда металл вступает в прямое химическое взаимодействие с компонентами окружающей среды. Химическая коррозия протекает в газовых средах при высоких температурах, когда образование пленки влаги на поверхности металла невозможно, а также в растворах, не проводящих тока.

Примером химической коррозии является газовая коррозия выпускного тракта автомобильного двигателя отработавшими газами. В топливной системе двигателя может происходить химическая коррозия металлов за счет их взаимодействия с такими примесями топлив, как сероводород, элементарная сера и меркаптаны. В результате окисления масла при работе двигателя могут образовываться продукты, вызывающие химическую коррозию металла вкладышей подшипников.

При высокотемпературной или газовой коррозии состав продуктов коррозии зависит от состава газовой среды, но чаще всего это оксиды металлов. В качестве агрессивных компонентов газовой среды выступают соединения серы, хлора, азота, а чаще всего кислород и его соединения.

Скорость коррозии обычной стали увеличивается в присутствии углекислого газа, паров воды, двуокиси серы и особенно их смесей. Продукты сжигания жидких топлив снижают защитные свойства пленок образующихся продуктов коррозии. Значительное влияние на скорость коррозии углеродистых и низколегированных сталей оказывает соотношение СО и СО 2 в выхлопных газах. С увеличением содержания СО скорость коррозии снижается и при 14-18% может прекратиться. Образующиеся продукты, как правило, создают на поверхности коррозирующего металла пленку, которая тормозит доставку агрессивных компонентов непосредственно к металлу, что снижает скорость коррозии. Защитные свойства образующихся пленок в первую очередь зависят от ее сплошности, толщины (более защитны - тонкие), сцепления с металлом, прочности, эластичности и т.п. С повышением температуры защитные свойства пленок в большинстве случаев ухудшаются. Увеличение давления и скорости движения газовой среды увеличивает скорость коррозии. Процесс коррозии может сопровождаться эрозионным изнашиванием.

Однако в общем процессе коррозионного разрушения автомобиля основное значение имеет электрохимическая коррозия, главным образом, в связи со значительно большей ее скоростью по сравнению с химической. Электрохимическая коррозия возможна только, когда на поверхности металла имеется электролит, т.е. водный раствор солей, кислот, щелочей, обладающих способностью проводить электрический ток. Электрохимическая коррозия протекает в обычных атмосферных условиях, в растворах и расплавах, проводящих ток.

Многочисленными исследованиями установлено, что на поверхности любого металла, находящегося в атмосфере, образуется тонкая пленка воды. Толщина такой пленки может быть различной в зависимости от температуры и влажности воздуха, а также других атмосферных условий. Газы, находящиеся в воздухе, растворяются в пленке воды и создают электролит на металлической поверхности. Так возникают условия для электрохимической коррозии. Таким образом, условия для этого вида коррозии на незащищенных металлических поверхностях существуют практически всегда.

В подавляющем большинстве случаев коррозия является электрохимической. В этом случае на поверхности металла образуются многочисленные микрогальванопары, работа которых и приводит к разрушению металла. На отдельных участках поверхности (примеси, добавки) локализуются катодные участки, на которых идет восстановление окислителей, находящихся в растворе. Чаще всего это растворенный кислород.

На остальной поверхности и особенно на выступах и искажениях кристаллической решетки локализуются анодные участки, на которых идет растворение металла. Таким образом, весь процесс электрохимической коррозии моделируется работой короткозамкнутого гальванического элемента.

Наряду с образованием многочисленных коррозионных микропар на поверхности одного металла, возможно образование макропар между сопряженными деталями из разных металлов. Металл с более отрицательным потенциалом в такой макропаре будет анодом, и скорость его коррозии при этом возрастает.

С увеличением температуры и электропроводности раствора скорость электрохимической коррозии возрастает. Внутренние напряжения и механические нагрузки, особенно знакопеременные, приводят к появлению коррозионной усталости, сопровождающейся снижением механической прочности и тем более, чем выше электропроводность раствора.

Есть еще биохимическая коррозия, которая происходит под действием микроорганизмов.

Суммарно процесс коррозии железа в большинстве случаев описывается следующим уравнением реакции:

и сводится к образованию гидрида закиси железа или гидратированной закиси железа .

На внешней поверхности образуется пленка, благодаря доступу кислорода происходит дальнейшее окисление

с образованием гидрата окиси железа или водной окиси железа .

Между образующимися гидратированными и часто образуется закись – окись железа . Пленки ржавчины обычно и состоят из этих трех слоев. При контакте железа с медью истинная глубина коррозионного разрушения железа повышается за счет локализации анодного процесса вблизи контакта.

Нержавеющие стали могут находиться в паре с медью, алюминием. Медь в большинстве водных растворов растворяется анодно с образованием двухвалентного иона

(3.6)

Медь в контакте инициирует коррозию железа, алюминия, являясь по отношению к ним катодом.

Алюминий при обычных условиях окисляется с образованием Al 2 O 3 , который резко тормозит дальнейшую коррозию алюминия.

Медь и железо значительно стимулируют растворение алюминия на ограниченных участках.

Сплошная коррозия менее опасна, чем местная, которая приводит к разрушению металлических частей кузова, утрате ими прочности.

По условиям, в которых происходит коррозия автомобилей, различаются следующие виды коррозии:

  • газовая (в камерах сгорания на фасках тарелок выпускных клапанов, выпускной трубе, в глушителе и т.п.);
  • в неэлектролитах (в топливной и масляной системах);
  • атмосферная (в естественных условиях хранения, транспортировки и эксплуатации автомобиля);
  • в электролитах (в местах задержки влаги в карманах кузова);
  • структурная (в местах кузова автомобиля, подвергнутых газоплазменной или электрической сварке, в результате которых возникает неоднородность состава металлов);
  • щелевая (в узких щелях и зазорах под действием разности рН-среды или различного содержания кислорода в электролите);
  • под напряжением (на поверхности деталей, агрегатов и конструкций, находящихся под напряжением);
  • при трении (в узлах трения при наличии коррозионной среды, сопровождается коррозионно-механическим износом);
  • биологическая (протекает при участии продуктов, выделяемых микроорганизмами).

Коррозия кузова автомобиля при несвоевременной защите металла, рассматриваемая как совместный результат химической и электрохимической коррозии, проходит в следующей последовательности:

  • подслойная коррозия развивается под лакокрасочным покрытием;
  • шелушение и вспучивание в поврежденных коррозией местах;
  • сквозная коррозия кузова, особенно на стыках;
  • растрескивание сварных швов в местах соединений деталей пола, порогов, крыльев и попадание, как следствие, влаги, пыли и грязи в салон кузова;
  • появление трещин в усилителях, лонжеронах и поперечинах с потерей жесткости кузова;
  • деформация дверных проемов из-за потери жесткости стоек и порогов кузова;
  • нарушение взаимного расположения агрегатов шасси автомобиля, приводящее к нарушению управляемости и равномерности торможения колес;
  • повреждение металлических трубопроводов тормозного привода вследствие потери жесткости в основании кузова из-за коррозии мест крепления;
  • механические повреждения пола кузова в местах крепления амортизаторов, рессор и других узлов автомобиля в результате коррозии мест их крепления, особенно при резком торможении и движении по пересеченной местности.

Действие коррозионных факторов, таких как влажность, концентрация солевых растворов и серных соединений, образующихся из отработавших газов, особенно сильно проявляется в местах, труднодоступных для осмотра и очистки, в небольших зазорах, а также в отбортовках и загибах кромок, где периодически попадающая в них влага может сохраняться длительное время.

С повышением температуры скорость коррозии возрастает (в особенности при наличии в атмосфере агрессивных примесей и содержания влаги).

Разрушительные процессы на кузове также часто интенсифицируются неблагоприятными условиями хранения автомобиля. Наблюдается усиление коррозионного износа в результате применения на дорогах песочно-солевых смесей для борьбы с гололедицей, а также из-за резких перепадов температуры в салоне и снаружи автомобиля.

Коррозионные разрушения на кузове встречаются к тому же в результате контакта стальных деталей с деталями, изготовленными из некоторых других материалов (дюралюминия, каучуков, содержащих сернистые соединения, пластмасс на основе фенольных смол и т.д.), а также в результате контакта металла с деталями, изготовленными из материала, содержащего заметное количество органических кислот (в частности муравьиную).

Теперь о причинах коррозии, обусловленных воздействием нефтепродуктов на детали автомобиля. Это связано, в первую очередь, с наличием в них воды и агрессивных химических соединений. Вода проникает в топливо, масла и смазки во время их производства, хранения и применения. Агрессивные химические соединения возникают, как правило, во время продолжительного хранения нефтепродуктов, в результате происходящих в них процессов старения, а также при эксплуатации двигателя.

Таким образом, среди причин, способствующих интенсивному развитию коррозии автомобилей, есть основные: неправильное конструктивное решение кузова, его деталей и узлов; технологические недостатки при изготовлении кузова; несоблюдение правил предпродажного хранения и транспортировки автомобиля; неправильный уход за кузовом во время эксплуатации.

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ИЛИ ПРОЦЕССЫ ИЗМЕНЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВТОМОБИЛЕЙ В ЭКСПЛУАТАЦИИ


Какие авто больше подвержены коррозии?

Все автомобили подвержены «рыжей чуме», кто-то в меньшей степени, а кто-то в большей, а некоторые, как оказалось, особенно. И Беларуси в этом плане не сильно повезло с климатом - у нас даже самые нержавеющие автомобили подвергаются коррозии и владельцы автомобилей либо "лечат" авто, либо предпринимают превентивные меры. AUTO.TUT.BY решил выяснить, правда ли, что «фольксвагены не ржавеют», а «внедорожники „тойота“ неубиваемые».

Японская автомобильная компания Toyota Motor Corp. недавно заявила, что выплатит компенсацию в размере 3,4 млрд долларов США владельцам автомобилей ряда моделей, которые подвержены коррозии, угрожающей прочности конструкции. Как передает Reuters, это касается в первую очередь Toyota Tacoma 2005−2010 годов выпуска, модели Tundra 2005−2008 года, а также внедорожников Sequoia, произведенных с 2007 по 2008 год.

А как обстоят дела с этими да и другими марками авто у нас, учитывая то, что в Беларуси не самый благоприятный климат? Чтобы выяснить это, AUTO.TUT.BY встретился с Сергеем Мухлаевым, директором специализированного центра антикоррозийной обработки, и составил свой рейтинг тех автомобилей, владельцы которых чаще всего в силу разных причин обращаются в центр. Обращаются они по двум причинам: превентивная мера либо обработка от коррозии.

Наш рейтинг не претендует на абсолютно объективный и сформирован на основании количества обращений на СТО для антикоррозийной обработки. Возможно, эти данные свидетельствуют о том, что владельцы авто в силу особенностей белорусского климата больше других заботятся о своих машинах и «предупреждают» возможные проблемы.


Сергей Мухлаев: Больше всего обращений у нас по внедорожникам Toyota. Но это не мешает мне быть поклонником марки и ездить на Land Cruiser 100

Наша компания имеет тесные связи с аналогичными авторизованными центрами в странах Балтии, так что для начала предлагаю посмотреть, как дело обстоит там. У них в силу большей развитости рынка статистика обращений куда больше. Центры в Прибалтике работают с 2010 года, а в общей базе порядка 15 000 клиентов.

Так вот, что касается стран Прибалтики, то ситуация там следующая: в Латвии и Эстонии на первом месте по обращениям - марка Mazda, а в Литве - Toyota, - рассказывает Сергей.


Легковые модели Toyota даже в возрасте старше пяти лет не пугают «рыжей чумой»

Что касается японских марок, то в разных странах происходит небольшое смещение в сторону того или иного бренда, но состав участников не меняется. Такие перестановки связаны, скорее всего, с некоторыми особенностями рынка в плане популярности той или иной марки. Но вот пятое место VW характерно для всех четырех стран, - говорит Сергей.

«Французы» не вошли в список ни в одной стране. Это касается как машин российской сборки, так и французской.

Что же касается Беларуси, то, по словам Сергея, у нас тоже накопился достаточный опыт, чтобы составить рейтинг автомобилей, владельцы которых чаще всего обращаются за услугами по антикоррозийному покрытию в силу заботы о своем автомобиле.

Топ-5 самых ржавеющих марок в Беларуси

1-е место - Toyota


Десятилетняя Toyota Land Cruiser 100 снизу выглядит удручающе

В рейтинг входят почти все внедорожники этой марки, так что претензии американских потребителей и белорусских в этом плане полностью совпадают. Модели Land Cruiser 100, 150, 200 имеют одну общую проблему - ржавеющая рама. Первыми сдаются сварные швы, причем уже в первый год эксплуатации, а дальше ржавчина распространяется по всей раме.


Сварные швы на раме годовалого Lexus LX450 уже имеют следы ржавчины

Эти болячки можно в равной степени отнести и к «идентичным» внедорожникам Lexus. Все сварные швы покрываются ржой уже в первый год. Потом ржавчина «грызет» все подвесное оборудование под днищем кузова. Например, в «100-ке» сгнивает блок управления активной подвеской.

А вот, например, кроссовер Lexus RX проблем с коррозией не имеет, равно как и все легковые модели Toyota и Lexus.

2-е место - VW


Среди моделей VW специалисты особо отмечают модель Touran - в некоторых местах краска облущивается большими кусками

Наибольшее количество обращений приходится на модель Touran, затем следует Passat. У Touran самое слабое место - пороги, низ дверей, задние лонжероны. Причем VW не ржавеет снаружи. У него с элементов кузова облущивается краска, обнажая оцинкованные места.

3-е место - Nissan

У этого японского бренда самым проблемным является внедорожник Patrol. Как и у Toyota, ржавчина чаще всего поражает раму.


Нельзя сказать, что Nissan сильно ржавеют, но их владельцы часто делают «антикор»

Кроме того, много обращений от владельцев новых бюджетных автомобилей, недорогих кроссоверов. Но это связано больше с желанием владельцев превентивно защитить машины от последствий эксплуатации в наших условиях.

4-е место - Mazda

Нельзя выделить какие-то сильные и слабые модели. Одинаково подвержены коррозии даже относительно свежие машины.


Задние арки, двери, пороги изъедены ржавчиной. Довести до такого состояния Mazda 6 - не проблема

Откровенное слабые места - пороги, двери, крылья, крышка багажника. Особо страдают ниши за задними колесными арками. Там постоянно скапливается конденсат, а дренажных отверстий нет. Поэтому, как бы ни был хорош металл, он не выдерживает длительного контакта с водой. Не для нашей Беларуси с суровым климатом машина, а жаль.

Коррозия металлов - самопроизвольное разрушение металлов вслед­ствие химического или электрохимического взаимодействия их с внешней средой. Коррозионный процесс - гетерогенный (неоднородный), протекает на границе раздела металл - агрессивная среда, име­ет сложный механизм. При этом атомы металла окисляются, т.е.J теряют валентные электроны, атомы переходят через границу раздела во внешнюю среду, взаимодействуют с ее компонентами и образуют продукты коррозии. В большинстве случаев коррозия металлов пройм ходит неравномерно по поверхности, имеются участки, на которых возникают локальные поражения. Некоторые продукты коррозии, образуя поверхностные пленки, сообщают металлу коррозионную стойкость. Иногда могут появляться рыхлые продукты коррозии, имеющие слабое сцепление с металлом. Разрушение таких пленок вызывает интенсивную коррозию обнажающегося металла. Коррозия металла снижает механическую прочность и меняет другие свойства его. Коррозионные процессы классифицируют по видам коррозионных разру­шений, характеру взаимодействия металла со средой, условиям про­текания.

Коррозия бывает сплошная, общая и местная. Сплошная коррозия протекает по всей поверхности металла. При местной коррозии поражения локализуются на отдельных участках поверхности.

Рис. 1Характер коррозионных разрушений:

I – равномерное; II - неравномерное; III - избирательное; IV - пятна; V - язвы; VI - точками или питтингами; VII - сквозное; VIII - нитевидное; IX - поверхностное; X - межкристаллитное; XI - ножевое; XII - растрескивание

Общая коррозия подразделяется на равномерную, неравномер­ную и избирательную (рис. 1).

Равномерная коррозия протекает с одинаковой скоростью по всей поверхности металла; неравномерная - на различных участках поверхности металла с неодинаковой скоростью. При избирательной кор­розии разрушаются отдельные компоненты сплава.

При коррозии пятнами диаметр коррозионных поражений большой глубины. Для язвенной коррозии характерно глубокое поражение участка поверхности ограниченной площади. Как правило, язва находятся над слоем продуктов коррозии. При точечной (питтинговой) коррозии наблюдаются отдельные точечные поражения поверхности металла, которые имеют малые поперечные размеры при значительной глубине. Сквозная - это местная коррозия, вызывающая разрушение металлического изделия насквозь, в виде свищей. Нитевидная коррозия проявляется под неметаллическими покрытиями и виде нитей. Подповерхностная коррозия начинается с поверхности, пи преимущественно распространяется под поверхностью металла, вызывая его вспучивание и расслоение.

При межкристаллитной коррозии разрушение сосредоточено по границам зерен металла или сплава. Этот вид коррозии опасен тем, что происходит потеря прочности и пластичности металла. Ножевая коррозия имеет вид надреза ножом вдоль сварного соединения в сильно агрессивных средах. Коррозионное растрескивание протекает при одновременном воздействии коррозионной среды и растягивающих остаточных или приложенных механических напряжениях.

Металлические изделия в определенных условиях подвергаются коррозионно-усталостному разрушению, протекающему при одновременном воздействии на металл коррозионной среды и переменных I механических напряжений.

По характеру взаимодействия металла со средой различают хими­ческую и электрохимическую коррозии. Химическая коррозия - раз­рушение металла при химическом взаимодействии с агрессивной сре­дой, которой служат неэлектролиты - жидкости и сухие газы. Электрохимическая коррозия - разрушение металла под воздействием электро­лита при протекании двух самостоятельных, но взаимосвязанных процессов - анодного и катодного. Анодный процесс - окислительный, проходит с растворением металла; катодный процесс - восстановительный, обусловлен электрохимическим восстановлением компонентов среды. Современная теория коррозии металлов не исключает совместного протекания химической и электрохимической коррозии, так как в электролитах при определенных условиях возможен перенос массы металла по химическому механизму.

По условиям протекания коррозионного процесса наиболее часто встречаются следующие виды коррозии:

1) газовая коррозия, протекает при повышенных температурах и полном отсутствии влаги на поверхности; продукт газовой корро­зии - окалина обладает при определенных условиях защитными свой­ствами;

2) атмосферная коррозия, протекает в воздухе; различают три вида атмосферной коррозии: во влажной атмосфере - при относитель­ной влажности воздуха выше 40 %; в мокрой атмосфере - при отно­сительной влажности воздуха, равной 100 %; в сухой атмосфере - при относительной влажности воздуха менее 40 %; атмосферная кор­розия - один из наиболее распространенных видов вследствие того, что основная часть металлического оборудования эксплуатируется в атмосферных условиях;

3) жидкостная коррозия - коррозия металлов в жидкой среде; различают коррозию в электролитах (кислоты, щелочи, солевые раст­воры, морская вода) и в неэлектролитах (нефть, нефтепродукты, ор­ганические соединения);

4) подземная коррозия - коррозия металлов, вызываемая в ос­новном действием растворов солей, содержащихся в почвах и грун­тах; коррозионная агрессивность почвы и грунтов обусловлена струк­турой и влажностью почвы, содержанием кислорода и других хими­ческих соединений, рН, электропроводностью, наличием микроорга­низмов;

5) биокоррозия - коррозия металлов в результате воздействия микроорганизмов или продуктов их жизнедеятельности, в биокорро­зии участвуют аэробные и анаэробные бактерии, приводящие к ло­кализации коррозионных поражений;

6) электрокоррозия, возникает под действием внешнего источника тока или блуждающего тока;

7) щелевая коррозия - коррозия металла в узких щелях, зазорах, м резьбовых и фланцевых соединениях металлического оборудования, аксплуатирующегося в электролитах, в местах неплотного контакта металла с изоляционным материалом;

8) контактная коррозия, возникает при контакте разнородных металлов в электролите;

9) коррозия под напряжением, протекает при совместном воздействии на металл агрессивной среды и механических напряжений - постоянных растягивающих (коррозионное растрескивание) и пере­менных или циклических (коррозионная усталость);

10) коррозионная кавитация - разрушение металла в результате одновременно коррозионного и ударного воздействий. При этом за­щитные пленки на поверхности металла разрушаются, когда лопаются газовые пузырьки на поверхности раздела жидкости с твердым телом;

11) коррозионная эрозия - разрушение металла вследствие одновременного воздействия агрессивной среды и механического износа;

12) фреттинг-коррозия - локальное коррозионное разрушение металлов при воздействии агрессивной среды в условиях колебательного перемещения двух трущихся поверхностей относительно друг друга;

13) структурная коррозия, обусловлена структурной неоднород­ностью сплава; при этом происходит ускоренный процесс коррозионного разрушения вследствие повышенной активности какого-либо компонента сплава;

14) термоконтактная коррозия, возникает за счет температурного градиента, обусловленного неравномерным нагреванием поверхности металла.

Коррозия металла является широко распространенной причиной, приводящей в негодность различные детали из металла. Коррозией металла (или ржавлением) называют разрушение металла под воздействием физических и химических факторов. К факторам, вызывающим коррозию, относят природные осадки, воду, температуру, воздух, различные щелочи и кислоты и т.д.

1

Коррозия металла становится серьезной проблемой при строительстве, в быту и на производствах. Чаще всего конструкторы предусматривают защиту металлических поверхностей от ржавчины, но иногда ржавление происходит на незащищенных поверхностях и на специально обработанных деталях.

Металлические сплавы лежат в основе жизнедеятельности человека, они окружают его практически везде: в быту, на работе, в процессе отдыха. Не всегда люди замечают металлические вещи и детали, но они постоянно им сопутствуют. Различные сплавы и чистые металлы являются самыми производимыми веществами на нашей планете. Современная промышленность выпускает различные сплавы в 20 раз больше (по массе), чем все остальные материалы. Несмотря на то что металлы считаются одними из наиболее прочных веществ на Земле, они могут разрушаться и терять свои характеристики в результате процессов ржавления. Под воздействием воды, воздуха и других факторов происходит процесс окисления металлов, который и называют коррозией. Несмотря на то что корродировать может не только металл, но и каменные породы, ниже будут рассмотрены процессы, связанные именно с металлами. Здесь стоит обратить внимание на то, что некоторые сплавы или металлы больше подвержены коррозии, чем другие. Это обусловлено скоростью протекания процесса окисления.

Процесс окисления металлов

Самое распространенное вещество в сплавах - это железо. Коррозия железа описывается следующим химическим уравнением: 3O 2 +2H 2 O+4Fe=2Fe 2 O 3 . H 2 O. Полученный в результате оксид железа и является той рыжей ржавчиной, портящей предметы. Но рассмотрим виды коррозии:

  1. Водородная коррозия. На металлических поверхностях практически не встречается (хотя теоретически возможна). В связи с этим описываться не будет.
  2. Кислородная коррозия. Аналогична водородной.
  3. Химическая. Реакция происходит из-за воздействия металла с каким-либо фактором (например, воздухом 3O 2 +4Fe=2Fe 2 O 3) и протекает без образования электрохимических процессов. Так, после воздействия кислорода с поверхностью появляется оксидная пленка. На некоторых металлах такая пленка достаточно прочна и не только защищает элемент от разрушительных процессов, но и повышает его прочность (например, алюминий или цинк). На некоторых металлах такая пленка очень быстро отслаивается (разрушается), например, у натрия или калия. А большинство металлов разрушаются достаточно медленно (железо, чугун и т.д.). Так, например, происходит коррозия чугуна. Более часто ржавление происходит при контакте сплава с серой, кислородом, хлором. Из-за химической коррозии ржавеют сопла, арматура и т.д.
  4. Электрохимическая коррозия железа. Данный вид ржавления происходит в средах, которые проводят электричество (проводники). Время разрушения различных материалов при электрохимических реакциях разное. Электрохимические реакции наблюдаются в случаях контакта металлов, которые находятся на расстоянии в ряду напряженности. Например, изделие изготовленное из стали, имеет медные напайки/крепления. При попадании воды на соединения медные части будут катодами, а сталь - анодом (каждая точка имеет свой электрический потенциал). Скорость протекания таких процессов зависит от количества и состава электролита. Для протекания реакций нужно наличие 2 разных металлов и электропроводящей среды. При этом разрушение сплавов прямо пропорционально зависит от силы тока. Чем больше ток, тем быстрее реакция, чем быстрее реакция, тем быстрее разрушение. В некоторых случаях катодами служат примеси сплава.

Электрохимическая коррозия железа

Также стоит отметить подвиды, которые бывают при ржавлении (описывать не будем, только перечислим): подземная, атмосферная, газовая, при разных видах погружения, сплошная, контактная, вызываемая трением и т.д. Все подвиды можно отнести к химическому или электрохимическому ржавлению.

2

При строительстве часто встречается коррозия арматуры и сварных конструкций. Коррозия часто происходит из-за несоблюдения правил хранения материала или невыполнения работ по обработке прутьев. Коррозия арматуры довольно опасна, поскольку арматуру закладывают для усиления конструкций, и в результате разрушения прутьев возможен обвал. Коррозия сварных швов не менее опасно, чем коррозия арматуры. Это также значительно ослабит шов и может привести к разрыву. Есть достаточно много примеров, когда ржавчина на силовых конструкциях приводит к обрушению помещений.

Другие часто встречающиеся в быту случаи ржавления - порча бытовых орудий труда (ножей, столовых приборов, инструмента), порча металлоконструкций, порча средств передвижения (как наземных, так и воздушных и водных) и т.д.

Пожалуй, самые часто встречающиеся ржавые вещи - это ключи, ножи и инструменты. Все эти предметы подвергаются ржавлению из-за того, что трением снимается защитное покрытие, которое оголяет основу.

Основа подвергается процессам разрушения из-за контактов с агрессивными средами (особенно ножи и инструменты).

Разрушения из-за контактов с агрессивными средами

Кстати, разрушения вещей, которые часто используются в быту, можно наблюдать практически повсеместно и регулярно, в то же время некоторые металлические предметы или конструкции могут простоять ржавыми десятилетия и будут исправно выполнять свои функции. Например, ножовка, которой часто пилили бревна и оставили на месяц в сарае, быстро проржавеет и может сломаться в процессе работы, а столб с дорожным знаком может простоять десять, а то и более лет ржавым и не разрушится.

Поэтому все металлические вещи следует защищать от коррозии. Методов защиты несколько, но все это химия. Выбор такой защиты зависит от типа поверхности и действующего на нее разрушительного фактора.

Для этого поверхность тщательно очищают от грязи и пыли, для того чтобы исключить возможность непопадания защитного покрытия на поверхность. Затем ее обезжиривают (для некоторых типов сплава или металла и для некоторых защитных покрытий это является необходимым), после чего наносят защитный слой. Наиболее часто защиту обеспечивают лакокрасочные материалы. В зависимости от металла и факторов используются разные лаки, краски и грунты.

Другой вариант - нанесение тонкого защитного слоя из другого материала. Обычно этот способ практикуется на производстве (например, оцинковка). В итоге потребителю практически ничего не требуется делать после приобретения вещи.

Нанесение тонкого защитного слоя

Другой вариант - создание специальных сплавов, которые не окисляются (например, нержавейка), однако они не гарантируют 100% защиты, более того, некоторые вещи из таких материалов окисляются.

Важными параметрами защитных слоев являются толщина, срок службы и скорость разрушения под активным неблагоприятным воздействием. При нанесении защитного покрытия крайне важно точно вписаться в допустимую толщину слоя. Обычно производители лакокрасочных материалов указывают его на упаковке. Так, если слой будет больше максимально допустимого, то это вызовет перерасход лака (краски), и слой может разрушаться под сильным механическим воздействием, более тонкий слой может стираться и сократить срок защиты основы.

Правильно выбранный защитный материал и правильно нанесенный на поверхность гарантирует на 80% то, что деталь не будет подвержена коррозии.

3

Многие люди в быту не задумываются над тем, как защитить свои вещи ото ржи. И получают проблему в виде испорченного предмета. Как правильно решить эту проблему?

Удаление ржавчины с детали

Для того чтобы произвести восстановление вещи или детали от ржавчины, первым делом следует снять весь рыжий налет до чистой поверхности. Он снимается с помощью наждачной бумаги, напильников, сильными реагентами (кислотами или щелочами), но особую славу в этом заслужили напитки типа «Кока-Колы». Для этого вещь погружают полностью в емкость с чудо-жидкостью и оставляют на некоторое время (от нескольких часов до нескольких суток - время зависит от вещи и поврежденной площади).

Рыжие пятна на стальных изделиях

Согласно данным ООН, каждая страна в год теряет от 0,5 до 7-8% валового национального продукта из-за коррозии. Парадокс заключается в том, что менее развитые страны теряют меньше, чем развитые. А 30% всех выпускаемых стальных изделий на планете идет на замену проржавевшим. Поэтому настоятельно рекомендуется отнестись к этой проблеме серьезно.

ОПРЕДЕЛЕНИЕ

При соприкосновении с окружающей средой многие металлы, а также сплавы на основе металлов могут подвергаться разрушению за счет химического взаимодействия (ОВР с веществами, находящимися в окружающей среде). Такой процесс называется коррозией .

Различают коррозию в газах (газовая коррозия), происходящую при высоких температурах в отсутствии воздействия влаги на поверхности металлов, и электрохимическую коррозию (коррозия в растворах электролитов, а также коррозия во влажной атмосфере). В результате газовой коррозии на поверхности металлов образуются оксидные, сульфидные и т.д. пленки. Этому виду коррозии подвергаются арматура печей, детали двигателей внутреннего сгорания и т.д.

В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов, так и переходу металла в раствор в виде ионов. Этому типу коррозии подвергаются трубопроводы, находящиеся в земле, подводные части кораблей и т.д.

Любой раствор электролита – водный раствор, а в воде содержатся кислород и водород, способные к восстановлению:

O 2 + 4H + +4e = 2H 2 O (1)

2H + +2e=H 2 (2)

Эти элементы являются окислителями, которые вызывают электрохимическую коррозию.

При написании процессов, происходящих при электрохимической коррозии важно учитывать стандартные электродные потенциалы (ЭП). Так, в нейтральной среде ЭП процесса 1 равен 0,8B, поэтому окислению кислородом подвергаются металлы ЭП которых меньше, чем 0,8B (металлы, расположенные в ряду активности от его начала до серебра).

ЭП процесса 2 — -0,41В, значит окислению водородом подвергаются только те металлы, потенциал которых ниже, чем -0,41В (металлы, расположенные в ряду активности от его начала до кадмия).

На скорость коррозии большое влияние оказываю примеси, которые может содержать тот или иной металл. Так, если в металле имеются примеси неметаллического характера, а их ЭП выше, чем ЭП металла, то скорость коррозии существенно повышается.

Виды коррозии

Различают несколько видов коррозии: атмосферную (коррозия во влажном воздухе при н.у.), коррозию в грунте, коррозия при неравномерной аэрации (доступ кислорода к разным частям металлического изделия, находящегося в растворе, неодинаков), контактная коррозия (соприкосновение 2х металлов, с разными ЭП в среде, где присутствует влага).

При коррозии на электродах (аноде и катоде) происходят электрохимические реакции, которые можно записать соответствующими уравнениями. Так, в кислой среде электрохимическая коррозия протекает с водородной деполяризацией, т.е. на катоде выделяется водород (1). В нейтральной среде электрохимическая коррозия протекает с кислородной деполяризацией — на катоде происходит восстановление воды (2).

К (катод) (+):2H + +2e=H 2 — восстановление (1)

А (анод) (-): Me — ne →Me n + – окисление

К (катод) (+): O 2 + 2H 2 O + 4e → 4OH — — восстановление (2)

В случае атмосферной коррозии на электродах происходят следующие электрохимические реакции (причем на катоде, в зависимости от среды могут протекать различные процессы):

А (анод) (-): Me→Me n + +ne

К (катод) (+): O 2 + 2H 2 O + 4e → 4OH — (в щелочной и нейтральной среде)

К (катод) (+): O 2 + 4H + + 4e → 2H 2 O (в кислой среде)

Защита от коррозии

Для защиты от коррозии применяют следующие методы: использование химически стойких сплавов; защита поверхности металлов покрытиями, в качестве которых чаще всего используют металлы, покрывающиеся на воздухе оксидными пленками, устойчивыми к действию внешней среды; обработка коррозионной среды; электрохимические методы (катодная защита, метод протекторов).

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Деталь состоит из сплава железа и никеля. Какой металл будет быстрее разрушаться при коррозии? Запишите уравнения анодного и катодного процессов при атмосферной коррозии. Значения стандартных электродных потенциалов E(Fe 2+ /Fe)= — 0,444В, E(Ni 2+ /Ni)= -0,250В.
Решение В первую очередь коррозии подвергаются активные металлы (обладающие самыми отрицательными значениями стандартных электродных потенциалов), в данном случае – это железо.

Бизнес идеи