Общий вид производственной функции. Понятие производственной функции. Практическое применение производственной функции


ПРИНЦИП ВЫНЕСЕНИЯ

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

ПРИМЕРЫ

Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что, с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки, оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.

Целесообразность этой идеи очевидна.

Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году; между тем это простое и нужное изобретение могло быть сделано значительно раньше.

Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно, обычный вертолет вынужден возить горючее.

Еще один ПРИМЕР.
Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т.д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанное на магнитофонную ленту.

Отделить птичий крик от птиц - решение конечно, необычное, но характерное для принципа вынесения.

ПРИЕМ 3
ПРИНЦИП МЕСТНОГО КАЧЕСТВА
а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
б) Разные части объекта должны иметь (выполнять) различные функции.
в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что, с целью предотвращения распространения тумана по выработкам и сноса его с источника пылеобразования вентиляционным потоком, подавление пыли производят одновременно тонкодиспергированной и грубодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.

Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что, с целью уменьшения образования трещиноватых зерен, рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.

Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились, и для каждой части создавались наиболее благоприятные местные условия.

Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.

Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.

Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг - отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джеймс Уатт. Вот что он рассказывает:

"После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того, чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов...

Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день. Я проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремиться туда, и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!"

ПРИЕМ 4
ПРИНЦИП АССИМЕТРИИ
Перейти от симметричной формы объекта к асимметричной.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.85:
а) Перейти от симметричной формы объекта к асимметричной.
б) Если объект асимметричен, увеличить степень асимметрии.)

Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.

Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.

Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая - так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая - значительно дальше.

Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.

ПРИЕМ 5
ПРИНЦИП ОБЪЕДИНЕНИЯ

а) Соединить однородные или предназначенные для смежных операций объекты.
б) Объединить во времени однородные или смежные операции.

ПРИЕМ 6
ПРИНЦИП УНИВЕРСАЛЬНОСТИ

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта - совмещение во времени процессов транспортировки и переработки нефти.

Авторское свидетельство № 160100. Способ транспортировки материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что, с целью одновременного осуществления промывки табачных листьев и фиксации их цвета, используют воду, нагретую до 80-85 C.

Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что, с целью упрощения элемента, сама пленка служит шиной записи-считывания.

ПРИЕМ 7
ПРИНЦИП "МАТРЕШКИ"

а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
б) Один объект проходит сквозь полость в другом объекте.

Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких продуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.


ПРИЕМ 8
ПРИНЦИП АНТИВЕСА

а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппаратуры, отличающийся тем, что, с целью удешевления и упрощения прострелочных и взрывных работ, спуск стреляющей и взрывной аппаратуры производят свободно под действием собственного веса, а подъем к устью скважины - с помощью встроенного в корпус реактивного двигателя.

При создании сверхмощных турбогенераторов возникла сложная задача: как уменьшить давление ротора на подшипники? Решение нашли в том, что над турбогенератором установили сильный электромагнит, компенсирующий давление ротора на подшипники.

Иногда приходится решать обратную задачу: компенсировать недостаток веса. При создании и эксплуатации шахтных электровозов возникает явное техническое противоречие: для увеличения тяги нужно утяжелять электровоз, а для уменьшения его мертвого веса следует делать электровоз возможно более легким. Группа сотрудников Ленинградского горного института разработала и успешно применила простое устройство, позволяющее снять это техническое противоречие и в полтора раза увеличить производительность рудничных электровозов: в ведущих колесах монтируется мощный электромагнит; создается магнитное поле, охватывающее колеса и рельсы; сила сцепления резко возрастает, а вес электровоза может быть снижен.

ПРИЕМ 9
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ
Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО АНТИДЕЙСТВИЯ
а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)

ПРИМЕРЫ
Авторское свидетельство № 84355. Заготовку турбинного диска устанавливают на вращающийся поддон. Нагретая заготовка по мере охлаждения сжимается. Но центробежные силы (пока заготовка не потеряла пластичности) как бы отштамповывают заготовку. Когда же деталь остынет, в ней появятся сжимающие усилия.

На этом принципе основана вся технология предварительного напряжения железобетона: чтобы бетон лучше работал на растяжение, его предварительно укорачивают. Это едва ли не единственный случай, когда строительная техника использует более передовые методы, нежели машиностроение. Предварительно напряженные конструкции применяются в машиностроении еще очень редко, между тем использование этого приема могло бы дать колоссальные результаты.

Рис. 15
Принцип предварительного напряжения: трубы составного вала заранее скручены в направлении, противоположном рабочей деформации.

Как, например, сделать вал прочнее, не увеличивая его наружный диаметр? Решение этой задачи показано на Рис. 15. Вал составлен из вставленных одна в другую труб, предварительно закрученных на определенные расчетом углы. Иными словами, вал предварительно получает деформацию, противоположную по знаку той деформации, какую он получает во время работы. Крутящий момент должен сначала снять эту предварительную деформацию, только после этого начнется деформация вала в "нормальном" направлении. Составной вал весит вдвое меньше равного ему по прочности обычного монолитного.


ПРИЕМ 10
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ИСПОЛНЕНИЯ
а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку.

(Название приема в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ДЕЙСТВИЯ )

Авторское свидетельство № 61056. Черенки многих плодово-ягодных и других культур, посаженные в почву, не укореняются вследствие недостатка питательных веществ в черенке. По данному изобретению предлагается создавать запас питательных веществ заранее, насыщая перед посадкой черенки в ванне с питательной смесью.

Авторское свидетельство № 162919. Способ снятия гипсовых повязок с помощью проволочной пилы, отличающийся тем, что, с целью предупреждения травм и облегчения снятия повязки, пилу помещают в предварительно смазанную подходящей смазкой трубку, выполненную, например, из полиэтилена, и заранее загипсовывают под повязку при ее наложении. Благодаря этому распиливать повязку можно от тела наружу - без опасения задеть тело.

Любопытный случай использования этого же принципа - окраска древесины до того, как дерево срубили: красители поступают под кору дерева и разносятся соками по всему стволу.

ПРИЕМ 11
ПРИНЦИП "ЗАРАНЕЕ ПОДЛОЖЕННОЙ ПОДУШКИ"

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

ПРИМЕРЫ

Авторское свидетельство № 264626. Способ снижения токсического действия химических соединений с помощью присадок, отличающийся тем, что, с целью уменьшения опасности отравления химическими веществами, а также продуктами их превращений в организме, присадки добавляют непосредственно в исходные токсичные химические соединения при их изготовлении.

Авторское свидетельство № 297361. Способ предотвращения распространения лесного пожара посредством создания заградительных полос из растений, отличающийся тем, что, с целью придания огнестойкости растениям, образующим заградительную полосу, в почву вносят биологически усваиваемые или химические элементы, тормозящие процесс их воспламенения.

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шины и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Принцип "заранее подложенной подушки" можно использовать не только для повышения надежности. Вот характерный пример. В связи с тем, что в американских библиотеках часто пропадают книги, изобретатель Эмануэль Трикилис предложил прятать в переплеты кусочек намагниченного метала. При выдаче книги библиотекарь размагничивает этот металлический вкладыш, проталкивая книгу под специальной электрической спиралью. Если посетитель попытается уйти, взяв незарегистрированную книгу, то спрятанный в двери прибор среагирует на магнитный вкладыш в переплете.

Горноальпийская спасательная станция в Швейцарии применила аналогичный метод для быстрого обнаружения людей, попавших в снежную лавину. Теперь лыжник или житель местности, в которой часты лавины, носит небольшой магнит. При несчастном случае этот магнит помогает легко обнаружить пострадавшего с помощью искателя даже под трехметровым покровом снега.

ПРИЕМ 12
ПРИНЦИП ЭКВИПОТЕНЦИАЛЬНОСТИ

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Авторское свидетельство № 110661. Контейнеровоз, в котором груз не поднимается в кузов, а только приподнимается гидроприводом и устанавливается на опорную скобу. Такая машина работает без крана и перевозит значительно более высокие контейнеры.

ПРИЕМ 13
ПРИНЦИП "НАОБОРОТ"

а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную - движущейся.
в) Перевернуть объект "вверх ногами".

Авторское свидетельство № 184649. Способ вибрационной очистки металлоизделий в абразивной среде, отличающийся тем, что, с целью упрощения процесса очистки, движения вибрации сообщают обрабатываемой детали.

Изобретатель решил эту задачу просто и изящно: металл идет по трубкам, опущенным ко дну литейной формы. По мере заполнения форма движется вниз, и, таким образом, каждая порция металла подается именно туда, где она должна застыть (см. Рис. 16).

Рис. 16
Принцип "наоборот": в отличие от обычного способа заливки, движется форма, а поступающий в нее металл остается неподвижным.

Авторское свидетельство № 109942. Это изобретение решает важную проблему отливки крупногабаритных тонкостенных деталей. При отливке таких деталей желательно, чтобы металл поступал в форму сверху, и затвердение шло снизу вверх. Но лить металл в форму ("дождевой" способ) допустимо с высоты не более пятнадцати сантиметров, иначе металл сгорит или пропитается газами. А как быть, если форма имеет высоту два-три метра? Если подавать металл снизу, то первые порции его затвердеют, не успев подняться к верхней части формы.

Литье всегда осуществлялось так, что двигался металл, а форма была неподвижной. Здесь все наоборот: движется форма, а залитый в нее металл остается неподвижным. Это позволило "совместить несовместимое": плавность заполнения формы и затвердевание металла снизу вверх, как при литье "дождевым" способом.

ПРИЕМ 14
ПРИНЦИП СФЕРОИДАЛЬНОСТИ

а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б) Использовать ролики, шарики, спирали.
в) Перейти к вращательному движению, использовать центробежную силу.

Патент ФРГ № 1085073. Устройство для вварки труб в трубную решетку, в котором электродами служат катящиеся шарики.

Авторское свидетельство № 262045. Исполнительный орган проходческого комбайна, включающий породоразрушающие электроды, отличающийся тем, что с целью повышения эффективности разрушения крепких горных пород породоразрушающие электроды выполнены в виде свободно вращающихся клиновых роликов, установленных на изолирующей оси.

Авторское свидетельство № 260874. Способ отделения нитей корда от резины, например, в каркасе изношенных покрышек, включающий выдержку покрышки в углеводородах, обработку ее высоконапорными струями жидкости, механическое расчесывание нитей и их обрезку, отличающийся тем, что, с целью повышения производительности труда, обработку покрышки ведут в процессе ее вращения со скоростью, ослабляющей связь между частицами резины.

ПРИЕМ 15
ПРИНЦИП ДИНАМИЧНОСТИ

а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б) Разделить объект на части, способные перемещаться относительно друг друга.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.87 имеет подпункт: в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.)

Авторское свидетельство № 317390. Ласта плавательная резиновая, отличающаяся тем, что, с целью обеспечения регулирования жесткости ее рабочей лопасти для различных по скорости и длительности плавания режимов, она имеет внутренние продольные полости, весь объем которых заполнен инертной несжимаемой жидкостью, статическое давление которой по необходимости изменяется на берегу или под водой.

Авторское свидетельство № 161247. Транспортное судно, корпус которого имеет цилиндрическую форму, отличающееся тем, что, с целью уменьшения осадки судна при полной загрузке, его корпус выполнен из двух раскрывающихся, шарнирно сочлененных полуцилиндров.

Патент СССР № 174748. Автомобиль с шарнирно соединенными секциями рамы, которые могут поворачиваться при помощи гидроцилиндров. Такой автомобиль обладает повышенной проходимостью.

Авторское свидетельство № 162580. Способ изготовления полых кабелей с каналами, образованными трубками, скрученными с токоведущими жилами, с предварительным заполнением трубок веществом, удаляемым из них после изготовления кабеля. Чтобы упростить технологию, в качестве заполняющего вещества применяют парафин, который после изготовления кабеля расплавляют и выливают из трубок.

ПРИЕМ 16
ПРИНЦИП ЧАСТИЧНОГО ИЛИ ИЗБЫТОЧНОГО РЕШЕНИЯ
Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше". Задача при этом может существенно упроститься.

Рис. 17
Принцип избыточного действия: чтобы подавать порошок по трубке 1 равномерно, его насыпают в воронке 2 с избытком; лишний порошок высыпается в бункер 3, а воронка всегда заполнена до краев.

Авторское свидетельство № 181897. Способ борьбы с градом, основанный на кристаллизации с помощью реагента (например йодистого серебра) градового облака, отличающийся тем, что, с целью резкого сокращения расхода реагента и средств его доставки, осуществляют кристаллизацию не всего облака, а крупнокапельной (локально) его части.

Авторское свидетельство № 262333. Устройство для дозирования металлических порошков, содержащее бункер с дозатором, отличающееся тем, что, с целью обеспечения равномерной подачи порошка к дозатору, бункер снабжен внутренней приемной воронкой и каналом с электромагнитным насосом для подачи (с избытком) порошка к воронке (см. Рис. 17).

ПРИЕМ 17
ПРИНЦИП ПЕРЕХОДА В ДРУГОЕ ИЗМЕРЕНИЕ

а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б) Многоэтажная компоновка объектов вместо одноэтажной.
в) Наклонить объект или положить его "набок".
г) Использовать обратную сторону данной площади.
д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Авторское свидетельство № 150938. Полупроводниковый диод, отличающийся тем, что, с целью увеличения мощности диода, в нем применен профилированный электронно-дырочный переход и профилированный омический контакт без увеличения периметра полупроводниковой пластины. Переход от плоского контакта к объемному позволяет при прежних габаритах диода получить большую площадь пластины полупроводника и, следовательно, большую мощность, снимаемую с электронно-дырочного перехода.

Известный советский изобретатель Д. Киселев, долгое время работавший над совершенствованием долота для бурения нефтяных скважин, рассказывает в своей книге "Поиски конструктора": "В долоте также каждый подшипник обладает определенной грузоподъемностью, и если увеличить их число, дать меньшую нагрузку каждому, можно улучшить условия их работы, предотвратить износ. Именно по этому пути шла все время моя мысль в поисках различных схем размещения подшипников. Но мешали габариты долота, малое пространство, на котором я имел возможность располагать необходимое мне количество шариков и роликов. Теперь же я вдруг увидел решение, вот оно, рядом. На одном и том же участке поверхности можно разместить большее количество "элементов" подшипников в два яруса, как размещаются люди и вещи в купе пассажирских вагонов. Я даже рассмеялся: так просто было это решение, тщетно разыскиваемое много месяцев".

Авторское свидетельство № 180555. Способ механизации обмена вагонеток в горизонтальном проходческом забое, отличающийся тем, что, с целью устранения подрыва кровли и устройства разъездов, обмен груженых вагонеток на порожние производят посредством перенесения порожней вагонетки с возможным поворотом ее на угол 90 над составом под погрузку.

Авторское свидетельство № 259449. Устройство для магнитографической дефектоскопии, отличающееся тем, что, с целью повышения срока службы, кольцевая магнитная лента выполнена с двусторонним магниточувствительным покрытием и изогнута в виде листа Мёбиуса.

Авторское свидетельство № 244783. Теплица для круглогодичного выращивания овощных культур, отличающаяся тем, что, с целью улучшения светового режима растений за счет использования солнечных лучей, она снабжена вогнутым отражательным экраном, установленным поворотно с северной стороны теплицы.

ПРИЕМ 18
ИСПОЛЬЗОВАНИЕ МЕХАНИЧЕСКИХ КОЛЕБАНИЙ
а) Привести объект в колебательное движение.
б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в) Использовать резонансную частоту.
г) Применить вместо механических вибраторов пьезовибраторы.
д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Авторское свидетельство № 220380. Способ вибродуговой наплавки и сварки деталей под слоем флюса с низкочастотными колебаниями электрода, отличающийся тем, что, с целью повышения качества наплавленного металла, на низкочастотные колебания накладывают высокочастотные ультразвуковые колебания порядка, например, 20 кГц.

Авторское свидетельство № 307896. Способ безопилочного резания древесины при помощи изменяющего свои геометрические размеры режущего инструмента, отличающийся тем, что, с целью снижения усилия внедрения инструмента в древесину, резание осуществляют инструментом, частота импульсов которого близка к собственной частоте колебаний перерезаемой древесины.

Патент США № 3239283. Трение покоя резко снижает чувствительность тонких приборов, мешает стрелкам, маятникам и другим подвижным частям легко поворачиваться в подшипниках. Чтобы избежать этого, подшипники заставляют вибрировать, и элементы прибора все время совершают осциллирующее движение относительно друг друга. В качестве источника вибрации обычно используют электромотор. При этом кинематика прибора существенно усложняется, а вес увеличивается. Американские изобретатели Джон Броз и Вильям Лаубендорфер разработали конструкцию подшипника, в котором втулки выполняются из пьезоэлектрического материала и с обеих сторон покрываются тонкой электропроводной фольгой. К фольге припаиваются электроды, по которым подводится переменный ток, создающий вибрацию.

ПРИЕМ 19
ПРИНЦИП ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ
а) Перейти от непрерывного действия к периодическому (импульсному).
б) Если действие уже осуществляется периодически - изменить периодичность.
в) Использовать паузы между импульсами для другого действия.

Авторское свидетельство № 267772. Известен способ исследования процесса дуговой сварки с использованием дополнительного осветителя. Однако при дополнительном освещении наряду с улучшением видимости твердого и жидкого материала, находящегося в области дуги, ухудшается видимость плазменно-газовой фазы столба дуги (явно техническое противоречие!). Предложенный способ отличается тем, что яркость дополнительного осветителя периодически изменяют от нуля до величины, превышающей яркость дуги. Это позволяет совместить наблюдение как за самой дугой, так и за процессом плавления электрода и переноса металла.

Авторское свидетельство № 302622. Способ контроля исправности термопары путем подогрева ее и проверки наличия в цепи э.д.с., отличающийся тем, что, с целью уменьшения времени контроля, нагревают термопару периодическими импульсами тока, а в промежутки времени между импульсами проверяют наличие термо э.д.с.

ПРИЕМ 20
ПРИНЦИП НЕПРЕРЫВНОСТИ ПОЛЕЗНОГО ДЕЙСТВИЯ

а) Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б) Устранить холостые и промежуточные ходы.

Авторское свидетельство № 126440. Способ многоствольного бурения скважин двумя комплектами труб. При одновременном бурении двух-трех скважин применяется ротор с несколькими стволами, включаемыми в работу независимо друг от друга, и два комплекта бурильных труб, поочередно поднимаемых и опускаемых в скважины для смены отработанных долот. Операции по смене долот совмещаются во времени с автоматическим бурением в одной из скважин.

Авторское свидетельство № 268926. Способ транспортировки сахара-сырца на судах, отличающийся тем, что, с целью снижения стоимости транспортировки путем утилизации свободных пробегов, используют танкеры, которые после разгрузки от нефтепродуктов или других жидких грузов, очистки и обработки моющими средствами загружают сахаром-сырцом.

ПРИЕМ 21
ПРИНЦИП ПРОСКОКА
Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

ПРИМЕРЫ
Авторское свидетельство № 241484. Способ скоростного нагрева металлических заготовок в потоке газа, отличающийся тем, что, с целью повышения производительности и уменьшения обезуглероживания, газ подают со скоростью не менее 200 м/с, при сохранении потока постоянным на всем протяжении его контакта с заготовками.

Авторское свидетельство № 112889. При разгрузке палубного лесовоза его накреняют с помощью судна-кренователя. Чтобы в воду свалился весь лес, приходиться создавать большой крен лесовоза, а это опасно. Предлагаемый способ состоит в том, что лесовоз быстро (рывком) накреняют на небольшой угол. Возникает динамическая нагрузка, и лес разгружается при небольшом угле крена.

Патент ФРГ № 1134821. Устройство для разрезания тонкостенных пластмассовых труб большого диаметра. Особенность устройства - нож рассекает трубу так быстро, что она не успевает деформироваться.

ПРИЕМ 22
ПРИНЦИП "ОБРАТИТЬ ВРЕД В ПОЛЬЗУ"

а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б) Устранить вредный фактор за счет сложения с другим вредным фактором.
в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

ПРИМЕРЫ
Член-корреспондент Академии наук СССР П. Вологдин в статье "Путь ученого" ("Ленинградский альманах", 1953, № 5) писал, что еще в двадцатых годах он задался целью применить токи высокой частоты для нагрева металла. Опыты показали, что металл нагревается лишь с поверхности. Ток высокой частоты никак не удавалось "загнать" в глубь заготовки, и опыты прекратили. Впоследствии Вологдин не раз сожалел, что не использовал этот "отрицательный эффект": промышленность могла бы получить метод высокочастотной закалки стальных деталей на много лет раньше, чем он был предложен в действительности.

По-иному сложилась судьба другого выдающегося изобретения - электроискровой обработки металла.

Б.Р. Лазаренко и И.Н. Лазаренко работали над проблемой борьбы с электроэрозией металлов. Электрический ток "разъедал" металл в месте соприкосновения контактов реле, и с этим ничего не удавалось сделать. Были испробованы твердые и сверхтвердые сплавы - и все безрезультатно. Исследователи пытались помещать контакты в различные жидкости, но разрушение шло еще интенсивнее.

Однажды изобретатели поняли, что этот "отрицательный эффект" можно где-то применить с пользой, и вся работа теперь пошла в другом направлении. 3 апреля 1943 года изобретатели получили авторское свидетельство на электроискровой способ обработки металла.


Сам по себе этот принцип прост: надо допустить то, что кажется недопустимым, - пусть случится! Но тут мысль изобретателя часто наталкивается на психологический барьер...

ПРИЕМ 23
ПРИНЦИП ОБРАТНОЙ СВЯЗИ
а) Ввести обратную связь.
б) Если обратная часть есть - изменить ее.

ПРИМЕРЫ
Авторское свидетельство № 283997. Внутри градирни ветер образует циркуляционные зоны, что снижает глубину охлаждения воды. Чтобы повысить эффективность охлаждения, в секциях градирни устанавливают температурные датчики и по их сигналам автоматически изменяют количество подаваемой воды.

Авторское свидетельство № 167229. Способ автоматического запуска конвейера, отличающийся тем, что, с целью экономии электроэнергии, потребляемой в момент запуска конвейерного двигателя, измеряют мощность, потребляемую двигателем конвейера во время работы, фиксируют ее в момент остановки конвейера и полученный сигнал, обратно пропорциональный весу материала на конвейере, подают на пусковой двигатель в момент запуска конвейера.

Авторское свидетельство № 239245. Способ автоматического регулирования процесса ректификации путем воздействия на расход орошения в колонну в зависимости от температуры и давления на выходе продукта, отличающийся тем, что, с целью стабилизации содержания одного из компонентов в трехкомпонентной смеси, дополнительно вводят коррекцию по удельному весу выходного продукта.

ПРИЕM 24
ПРИНЦИП "ПОСРЕДНИКА"

Использовать промежуточный объект-переносчик.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.89:
а) Использовать промежуточный объект, переносящий или передающий действие.
б) На время присоединить к объекту другой (легко удаляемый) объект.)

ПРИМЕРЫ
Авторское свидетельство № 177436. Способ подвода электрического тока в жидкий металл, отличающийся тем, что, с целью снижения электрических потерь, ток к основному металлу подводят охлаждаемыми электродами через промежуточный жидкий металл, температура плавления которого ниже, а плотность и температура кипения выше, чем у основного металла.

Авторское свидетельство № 178005. Способ нанесения летучего ингибитора атмосферной коррозии на защищаемую поверхность, отличающийся тем, что, с целью получения равномерного покрытия внутренних поверхностей сложных деталей, через последние продувают нагретый воздух, насыщенный парами ингибитора.


ПРИЕМ 25
ПРИНЦИП САМООБСЛУЖИВАНИЯ

а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б) Использовать отходы (энергии, вещества).

ПРИМЕРЫ
Авторское свидетельство № 261207. Дробеметный аппарат, корпус которого облицован изнутри износоустойчивыми плитами, отличающийся тем, что, с целью повышения стойкости облицовки, плиты выполнены в виде магнитов, удерживающих на своей поверхности защитный слой дроби. На стенках дробемета возникает, таким образом, постоянно обновляемый защитный слой дроби.

Авторское свидетельство № 307584. Способ сооружения каналов оросительных систем из сборных элементов, отличающийся тем, что, с целью упрощения транспортировки изделий после монтажа начального участка канала, его торцы закрывают временными диафрагмами, готовый участок канала затопляют водой и последующие элементы, также закрытые с торцов временными диафрагмами, сплавляют по этому участку канала.

Авторское свидетельство № 108625. Способ охлаждения полупроводниковых диодов, отличающийся тем, что, с целью улучшения условий теплообмена, применяется полупроводниковый термоэлемент, рабочим током которого является ток, проходящий через диод в прямом направлении.

ПРИЕМ 26
ПРИНЦИП КОПИРОВАНИЯ

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

ПРИМЕРЫ
Авторское свидетельство № 86560. Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающееся тем, что, с целью последующей геодезической съемки с панно изображения местности, оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками.

Иногда необходимо (для измерения или контроля) совместить два объекта, которые физически совместить невозможно. В этих случаях целесообразно применять оптические копии. Так была, например, решена задача пространственных измерений на рентгеновских снимках. Обычный рентгеновский снимок не позволяет определить, на каком расстоянии от поверхности тела находиться очаг заболевания. Стереоскопические снимки дают объемное изображение, но и в этом случае измерения приходится вести на глаз: ведь внутри тела нет масштабной линейки! Нужно, таким образом, "совместить несовместимое": тело человека, подвергнутого просвечиванию, и масштабную линейку.

Новосибирский изобретатель Ф.И. Аксенов решил эту задачу, применив метод оптического совмещения. По способу Ф.И. Аксенова стереоскопические рентгеновские снимки совмещаются со стереоскопическими же снимками решетчатого куба. Рассматривая в стереоскоп совмещенные снимки, врач видит "внутри" больного решетчатый куб, играющий роль пространственного масштаба.

Вообще, во многих случая выгоднее оперировать не с объектами, а с их оптическими копиями. Например, канадская фирма "Крютер Палп" пользуется специальной фотоустановкой для обмера бревен, перевозимых на железнодорожных платформах. По данным фирмы, фотографический обмер балансов раз в 50-60 быстрее ручного, отклонение же результатов фотообмера от данных точного подсчета не превышает 1-2%.

Еще один интересный ПРИМЕР:

Авторское свидетельство № 180829 - новый способ контроля поверхности внутренних полостей сферических деталей. В деталь наливают малоотражающую жидкость и, последовательно меняя ее уровень, производят фотографирование на один и тот же кадр цветной пленки. На снимке получаются концентрические окружности. Сравнивая после увеличения (в проекционной системе) полученные этим способом линии с теоретическими линиями чертежа, с большой точностью определяют величину отклонения формы детали.

ПРИЕМ 27
ДЕШЕВАЯ НЕДОЛГОВЕЧНОСТЬ ВЗАМЕН ДОРОГОЙ ДОЛГОВЕЧНОСТИ
Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

ПРИМЕРЫ
Правила асептики требуют, чтобы кипячение шприца с иглами для инъекции продолжалось не менее 45 минут. Между тем во многих случаях бывает необходимо ввести лекарство как можно быстрее. Во Всесоюзном научно-исследовательском институте медицинских инструментов и оборудования создан шприц-тюбик для одноразового использования. Это тонкостенный сосуд из пластмассы, на горловине которого укреплена стерильная игла, защищенная колпачком. Корпус шприца-тюбика в заводских условиях заполняется лекарственным препаратом и запаивается. Такой шприц можно привести в готовность буквально за считанные доли секунды - для этого достаточно лишь снять колпачок, прикрывающий иглу. Во время инъекции лекарство из тюбика выдавливается, после чего использованный шприц-тюбик выбрасывают.

Патент США № 3430629. Пеленка одноразового использования. Содержит наполнитель типа промокашки.

Существует много патентов такого типа: на одноразовые термометры, мусорные мешки, зубные щетки и т.д.

ПРИЕМ 28
ЗАМЕНА МЕХАНИЧЕСКОЙ СХЕМЫ

а) Заменить механическую систему оптической, акустической или "запаховой".
б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в) Перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся по времени, от неструктурных - к имеющим определенную структуру.
г) Использовать поля в сочетании с ферромагнитными частицами.

Рис. 20
В этой винтовой паре гайка движется без трения, за счет взаимодействия электромагнитных полей.

Авторское свидетельство № 163559. Способ контроля износа породоразрушающего инструмента, например буровых долот, отличающийся тем, что, с целью упрощения контроля, в качестве сигнализации износа применяют монтируемые в болота ампулы с резко пахучими химическими веществами, например с этилмеркаптаном.

Авторское свидетельство № 154459. Неизнашиваемая винтовая пара (Рис. 20). Винтовая пара состоит из винта 1, в резьбу которого уложена обмотка 2, и гайки 3 с обмоткой 4. Винт и гайка расположены с зазором между ними. Гайка 3 жестко связана с подвижным узлом станка или прибора. При прохождении тока по обмоткам 2 и 4 вокруг них создаются электромагнитные поля. Замыкание этих полей происходит соответственно через гайку и винт, причем магнитный поток достигает максимальной величины при совмещении витков винта и гайки.

При вращении винта магнитный поток между сместившимися один относительно другого витками обмоток винта и гайки искривляется и, как следствие, возникает усилие, стремящееся восстановить первоначальное взаимное расположение витков. Это усилие и будет вызывать поступательное перемещение гайки с подвижным узлом.

Наличие зазора между винтом и гайкой позволяет значительно продлить срок службы винтовой пары, сделать их практически неизнашиваемыми.

"На одном заводе делали сверхъювелирную по тонкости работу: шлифовали стенки отверстия диаметром в полмиллиметра.

Для такой операции изготовили миниатюрный шлифовальник диаметром в две десятых миллиметра, осыпанный алмазной пылью.

Инструмент этот вращала пневматическая турбина со скоростью 1000 оборотов в секунду! Кроме того, шлифовальник двигался по контуру отверстия, обходя его каждую минуту 150 раз. Рабочий был не в силах проникнуть взглядом в зону обработки, не мог уловить момент, когда крохотный инструмент касался детали. Рабочий то затягивал процесс обработки, то кончал его слишком рано, в обоих случаях детали шли в брак.

Собирались уже конструировать уникальный станок-автомат. Но изобретательская мысль нашла простой выход: деталь изолировали от станка, присоединили к ней один полюс электробатарейки, а другой полюс подвели к станку. В цепь включили усилитель и громкоговоритель. Теперь, как только инструмент касался детали, громкоговоритель "вскрикивал". Кричащий станок издавал звуки, по которым можно было судить и о том, когда началась шлифовка, и о том, как она проходит, - тональность звука менялась".

Авторское свидетельство № 261372. Способ проведения процессов, например каталитических, в системах с движущимся катализатором, отличающийся тем, что, с целью расширения области применения, создают движущееся магнитное поле и применяют катализатор с ферромагнитными свойствами.

Авторское свидетельство № 144500. Способ интенсификации теплообмена в трубчатых элементах поверхностных теплообменников... отличающийся тем, что, с целью повышения коэффициента теплоотдачи, в поток теплоносителя вводят ферромагнитные частицы, перемещающиеся под действием вращающегося магнитного поля преимущественно у стенок теплообменника, для разрушения и турбулизации пограничного слоя.

Французский патент № 1499276. После обработки деталей в галтовочных барабанах или вибрационных установках детали нужно отделить от абразивных зерен. Если детали крупные, это сделать нетрудно, если они ферромагнитные, их можно выловить на магнитных сепараторах. Но если детали не обладают магнитными свойствами, а по размерам не отличаются от абразивных зернышек? По данному изобретению задача решается тем, что абразиву придают магнитные свойства. Это можно сделать спрессовыванием или спеканием смеси абразивных зерен и магнитных частиц - стружек, крупинок и т.п., а также внедрением их в поры абразивов.


ПРИЕМ 29
ИСПОЛЬЗОВАНИЕ ПНЕВМО- И ГИДРОКОНСТРУКЦИЙ

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Рис. 21
Вместо массивной дымовой трубы - ажурное сооружение: полая спираль, имеющая на витках сопла, через которые подается сжатый воздух, образующий "стенку".

Авторское свидетельство № 243809.Цель изобретения - улучшение тяги и увеличение высоты рассеивания отводимых газов. Это достигается тем, что корпус трубы (Рис. 21) образован конической спиралью 1, полые витки которой имеют сопла 2 и соединены с полыми опорами 3, свободные концы которых, в свою очередь, присоединены к компрессору 4.

При включении компрессора 4 воздух, поднимаясь под давлением по опорам 3, попадает на спиральные витки корпуса и, вырываясь из сопел 2, создает воздушную "стенку".

Авторское свидетельство № 312630. Способ окраски крупногабаритных изделий распылением с удалением паров растворителя и окрасочного тумана через вентиляционную засасывающую систему, отличающийся тем, что, с целью уменьшения производственных площадей, вокруг окрашиваемого изделия создают восходящую на высоту, превышающую высоту изделия, воздушную завесу, верхние концы которой завихряют посредством напольной вентиляционной засасывающей системы.

Изобретение это преодолевает такое же техническое противоречие, что и в предыдущем случае. Поэтому похожи и решения: пневмостенка вместо жесткой трубообразной ограды.

Авторское свидетельство № 264675. Опора для сферического резервуара, включающая основание, отличающаяся тем, что, с целью снижения напряжения в оболочке резервуара, основание опоры выполнено в виде заполненного жидкостью сосуда с вогнутой крышкой из эластичного материала, принимающей форму опираемой на нее оболочки резервуара.

А вот двойник этого изобретения - авторское свидетельство № 243177. Устройство для передачи усилий от опоры копра на фундамент, отличающийся тем, что, с целью обеспечения равномерности передачи давления на фундамент, оно выполнено в виде плоского замкнутого сосуда, заполненного жидкостью.

ПРИЕМ 30
ИСПОЛЬЗОВАНИЕ ГИБКИХ ОБОЛОЧЕК И ТОНКИХ ПЛЕНОК

а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

ПРИМЕРЫ
Чтобы уменьшить потери влаги, испаряющейся через листья деревьев, американские исследователи опрыскивают их полиэтиленовым "дождем". На листьях создается тончайшая пластмассовая пленка. Растение, укрытое пластмассовым одеялом, развивается нормально благодаря тому, что полиэтилен значительно лучше пропускает кислород и углекислый газ, чем пары воды.

Авторское свидетельство № 312826. Способ экстракции в системе жидкость - жидкость, отличающийся тем, что, с целью интенсификации процесса массообмена, струю одной фазы подают через слой газа на поверхность другой фазы, перемещаемой пленкой по твердой поверхности.


ПРИЕМ 31
ПРИМЕНЕНИЕ ПОРИСТЫХ МАТЕРИАЛОВ
а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Машины всегда строились из плотных (непроницаемых) материалов. Инерция мышления приводит к тому, что задачи, легко решаемые при использовании пористых материалов, зачастую пытаются решить введением специальных устройств и систем, сохраняя все элементы конструкции непроницаемыми. Между тем высокоорганизованной машине присуща проницаемость - примером может служить любой живой организм, начиная с клетки и кончая человеком.

Внутреннее перемещение вещества - одна из важных функций многих машин. "Грубая" машина осуществляет эту функцию с помощью труб, насосов и т.п., "тонкая" машина - с помощью пористых материалов и молекулярных сил.

ПРИМЕРЫ
Авторское свидетельство № 262092. Способ защиты внутренних поверхностей стенок емкости от отложений твердых и вязких частиц из находящегося в емкости продукта, отличающийся тем, что, с целью повышения эффективности защиты и снижения энергозатрат внутрь емкости, изготовленной из пористого материала, подают через ее стенки не образующую отложений жидкость под давлением, превосходящим давление внутри емкости.

Авторское свидетельство № 283264. Способ внесения добавок в жидкий металл с помощью огнеупорных материалов, отличающийся тем, что, с целью улучшения режима внесения добавок, в металл погружают пористый огнеупор, предварительно пропитанный материалом добавки.

Авторское свидетельство № 187135. Система испарительного охлаждения электрических машин, отличающаяся тем, что, с целью исключения необходимости подвода охлаждающего агента к машине, активные части и отдельные конструктивные элементы ее выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение.


ПРИЕМ 32
ПРИНЦИП ИЗМЕНЕНИЯ ОКРАСКИ

а) Изменить окраску объекта или внешней среды.
б) Изменить степень прозрачности объекта или внешней среды.
в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г) Если такие добавки уже применяются, использовать меченые атомы.

ПРИМЕРЫ
В кузнечных и литейных цехах, на металлургических заводах, всюду, где необходимо защитить рабочих от действия жары, применяют водяные завесы. Такие завесы отлично защищают рабочих от невидимых тепловых (инфракрасных) лучей, однако слепяще-яркие лучи от расплавленного металла беспрепятственно проходят сквозь тонкую жидкую пленку. Чтобы защитить рабочих от них, сотрудники польского Института охраны труда предложили окрашивать воду, из которой создается водяная завеса, - оставаясь прозрачной, она полностью задерживает тепловые лучи и в нужной степени ослабляет силу видимого излучения.

Авторское свидетельство № 165645. В фиксирующий раствор вводят краситель, который обратимо абсорбируется фотографическим слоем и не закрашивает подложку-бумагу или целлулоид. Краситель при последующей промывке водой должен удаляться из слоя. Скорость вымывания красителя из фотографического слоя примерно равна скорости вымывания тиосульфата натрия или несколько меньше ее. Обесцвечивание фотографического изображения свидетельствует о полноте промывки слоя от остатков солей, при помощи которых производилось фиксирование фотографического материала.


ПРИЕМ 33
ПРИНЦИП ОДНОРОДНОСТИ

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

ПРИМЕРЫ
Патент ФРГ № 957599. Литейный желоб для обработки расплавленного металла звуком или ультразвуком с помощью звукоизлучателя, помещенного в расплавленный металл, отличающийся тем, что находящаяся в соприкосновении с расплавленным металлом часть звукоизлучателя выполнена из того же металла, что и обрабатываемый металл, или из одного из его легирующих компонентов, и частично расплавляется этим расплавленным металлом, а остальная часть звукоизлучателя принудительно охлаждается и остается прочной.

Авторское свидетельство № 234800. Способ смазывания охлаждаемого подшипника скольжения, отличающийся тем, что, с целью улучшения смазывания при повышенных температурах, в качестве смазывающего вещества берут тот же материал, что и материал вкладыша подшипника.

Авторское свидетельство № 180340. Способ очистки газов от пыли, содержащей расплавленные частицы, отличающийся тем, что, с целью повышения эффективности процесса, исходные газы барботируют в среде, образованной при слиянии этих же частиц в расплав.

Авторское свидетельство № 259298. Способ сварки металлов, при котором свариваемые кромки устанавливают с зазором и подают в него присадочный материал с последующим нагревом свариваемых кромок, отличающийся тем, что, с целью улучшения сварки, в качестве присадочного материала используют летучие соединения тех же металлов, что и свариваемые.

ПРИЕМ 34
ПРИНЦИП ОТБРОСА И РЕГЕНЕРАЦИИ ЧАСТЕЙ
а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

ПРИМЕРЫ
Патент США № 3174550. При аварийной посадке самолета бензин вспенивают с помощью специальных химических веществ, переводя его в негорючее состояние.

Патент США № 3160950. Чтобы при резком старте ракеты не пострадали чувствительные приборы, их погружают в пенопласт, который, выполнив роль амортизатора, быстро испаряется в космосе.

Нетрудно заметить, что этот принцип - дальнейшее развитие принципа динамизации: объект изменяется в процессе действия, но изменяется сильнее. Самолет с меняющейся в полете геометрией крыла - это принцип динамизации. Ракета, отбрасывающая отработанные ступени, - принцип отброса.

А вот изобретения-близнецы.

Авторское свидетельство № 222322. Способ изготовления винтовых микропружин, отличающийся тем, что, с целью повышения производительности, оправку выполняют из эластичного материала и удаляют путем погружения ее вместе с пружиной в состав, растворяющий эластичный материал.

Авторское свидетельство № 235979. Способ изготовления резиновых шаров-разделителей, отличающийся тем, что, с целью придания шару необходимых размеров, ядро формируют из смеси измельченного мела с водой с последующей просушкой и разрушением твердого ядра после вулканизации жидкостью, вводимой с помощью иглы.

Авторское свидетельство № 159783. Способ производства полых профилей, отличающийся тем, что, с целью получения разнообразных по размерам и форме профилей на сортовых станах, прокатке подвергают сварные пакеты, наполненные огнеупорным материалом, например, магнезитовым порошком, с последующим удалением наполнителя.

Можно привести сотни подобных изобретений. Трудно представить, сколько времени потеряли изобретатели на поиски, каждый раз отыскивая идею "с нуля". А ведь здесь один типовой прием: изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т.д.

Антипод принципа отброса - принцип регенерации.

Авторское свидетельство № 182492. Способ компенсации износа непрофилированного электрода-инструмента при электроэрозионной обработке токопроводящих материалов, отличающийся тем, что, с целью увеличения срока службы электрода-инструмента, на его рабочую поверхность в процессе обработки непрерывно напыляют слой металла.

Авторское свидетельство № 212672. При гидротранспортировании кислых гидросмесей с абразивными материалами внутренние стенки трубопроводов быстро изнашиваются. Защита их футеровки сложна, трудоемка, ведет к увеличению наружного диаметра труб. Описываемый способ защиты труб предусматривает образование на внутренних стенках трубы защитного слоя (гарниссажа). Для этого в транспортируемую гидросмесь периодически вводят известковый раствор. Таким образом, внутренние стенки трубопровода всегда защищены от износа, а сечение трубопровода уменьшается незначительно, так как гарниссаж изнашивается под действием абразивной кислой смеси.


ПРИЕМ 35
ИЗМЕНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА

а) Изменить агрегатное состояние объекта.
б) Изменить концентрацию или консистенцию.
в) Изменить степень гибкости.
г) Изменить температуру.

ПРИМЕРЫ
Авторское свидетельство № 265068. Способ проведения массообменных процессов в системе газ-вязкая жидкость, отличающийся тем, что, с целью интенсификации процесса, вязкую жидкость перед подачей в аппарат предварительно газируют.

ПРИЕМ 36
ПРИМЕНЕНИЕ ФАЗОВЫХ ПЕРЕХОДОВ
Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

ПРИМЕРЫ
Авторское свидетельство № 190855. Способ изготовления ребристых труб, заключающийся в раздаче заглушенных труб водой, подаваемой под давлением, отличающийся тем, что, с целью удешевления и ускорения процесса изготовления, поданную под давлением воду замораживают.

Может возникнуть вопрос: чем прием № 36 отличается от приемов № 35-а (изменение агрегатного состояния) и № 15 (принцип динамичности)? Прием № 35-а заключается в том, что вместо агрегатного состояния А объект используют в агрегатном состоянии Б и именно за счет особенностей состояния Б получают нужный результат.

Суть приема № 15 в том, что мы пользуемся то свойствами, присущими состоянию А, то свойствами, присущими состоянию Б.

При использовании приема № 36 задача решается за счет явлений, связанных с переходом от А к Б или обратно. Если, например, мы наполним трубу не водой, а льдом, ничего с трубой не произойдет. Требуемый эффект достигается за счет увеличения объема воды при замерзании.

Авторское свидетельство № 225851. Способ охлаждения различных объектов с помощью циркулирующего по замкнутому кругу жидкого теплоносителя, отличающийся тем, что, с целью уменьшения количества циркулирующего теплоносителя и снижения энергетических затрат, часть теплоносителя переводят в твердую фазу и охлаждение ведут полученной смесью.

"Фазовый переход" - понятие более широкое, чем "изменение агрегатного состояния". К фазовым переходам, в частности, относятся и изменения кристаллической структуры вещества. Так, олово может существовать в виде белого олова (плотность 7,31) и серого олова (плотность 5,75). Переход - при 18 С - сопровождается резким увеличением объема (значительно большим, чем при замерзании воды; поэтому усилия здесь могут быть получены намного большие).

Полиморфизм (кристаллизация в нескольких формах) присущ многим веществам. Явления, сопровождающие полиморфные переходы, могут быть использованы при решении самых различных изобретательских задач. Например, в патенте США № 3156974 используются полиморфные трансформации висмута и церия.


ПРИЕМ 37
ПРИМЕНЕНИЕ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ

а) Использовать термическое расширение (или сжатие) материалов.
б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

ПРИМЕРЫ
Авторское свидетельство № 309758. Способ волочения труб на подвижной оправке при пониженных температурах, отличающийся тем, что, с целью создания зазора между трубой и оправкой после волочения для извлечения последней из трубы без обкатки, в охлажденную трубу перед волочением вводят предварительно подогретую, например, до температуры 50-100 С оправку, извлечение которой после деформации производят после выравнивания температур трубы и оправки.

Авторское свидетельство № 312642. Заготовка для горячего прессования многослойных изделий, выполненных в виде концентрично расположенных втулок, изготовленных из различных материалов, отличающаяся тем, что, с целью получения многослойных изделий с напряженными слоями, каждая втулка изготовлена из материала, имеющего температурный коэффициент линейного расширения выше температурного коэффициента линейного расширения материала втулки, расположенной внутри нее.

Смысл приема - в переходе от "грубого" движения на макроуровне к "тонкому" движению на молекулярном уровне. С помощью термического расширения можно создавать большие усилия и давления. Термическое расширение позволяет очень точно "дозировать" движение объекта.

Авторское свидетельство № 242127. Устройство для микроперемещения рабочего объекта, например кристаллодержателя с затравкой, отличающееся тем, что, с целью обеспечения максимальной плавности, оно содержит два стержня, подвергаемых электронагреву и охлаждению по заданной программе, находящихся в закрепленных на суппортах термостатируемых камерах и поочередно перемещающих объект в нужном направлении.


ПРИEM 38
ПРИМЕНЕНИЕ СИЛЬНЫХ ОКИСЛИТЕЛЕЙ

а) Заменить обычный воздух обогащенным.
б) Заменить обогащенный воздух кислородом.
в) Воздействовать на воздух или кислород ионизирующими излучениями.
г) Использовать озонированный кислород.
д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов - повысить интенсивность процессов. В качестве примеров можно назвать способ спекания и обжига дисперсного материала с применением интенсификации процесса горения путем продувки воздухом, обогащенным кислородом; плазменно-дуговую резку нержавеющих сталей, при которой в качестве режущего газа берут чистый кислород; интенсификацию процесса агломерации руд путем ионизации окислителя и газообразного топлива перед подачей в слой шихты и т.д.


ПРИЕМ 39
ПРИМЕНЕНИЕ ИНЕРТНОЙ СРЕДЫ
а) Заменить обычную среду инертной.
б) Вести процесс в вакууме.
ПРИЕМ 40
ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Перейти от однородных материалов к композиционным.

ПРИМЕРЫ
Патент США № 3553820. Легкие прочные тугоплавкие изделия выполнены на основе алюминия и упрочнены множеством покрытых танталом волокон углерода. Такие изделия характеризуются высоким модулем упругости и используются в качестве материалов для конструирования кораблей воздушного и морского флотов.

Композиционные материалы - составные материалы, которые обладают свойствами, не присущими их частям. Например, пористые материалы, о которых шла речь в приеме № 31, представляют собой композицию из твердого вещества и воздуха; ни твердое вещество, ни воздух порознь не обладают теми свойствами, которые есть у пористых веществ.

Композиционные материалы изобретены природой и широко ею используются. Так, древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются. Лигнин связывает их в единое целое и сообщает материалу жесткость.

Интересный композиционный материал представляет сочетание легкоплавкого вещества (например, сплава Вуда) с волокнами тугоплавкого материала (например, стали). Такой материал легко плавиться, а застыв, обладает высокой прочностью. Постепенно происходит взаимная диффузия частиц припоя и волокон, в результате чего образуется сплав с высокой температурой плавления.

Другой композиционный материал - взвесь частиц кремния в масле - способен твердеть в электрическом поле.

  • Антиполия-противоречие в в законе. Противоречие разрешаясь делает чего то возможным. Отрицание-отрицания (разрешение противоречия (синтез))
  • Билет № 27. Технические средства и технологии на предприятиях отдыха и развлечений.
  • Билет № 29. Технические средства и технологии на предприятиях размещения (в гостиницах)
  • Внешняя политика СССР в 1953- 1965 гг.: достижения противоречия во взаимоотношениях со странами «социалистического лагеря».
  • Возникали противоречия между приборными служилыми людьми и более богатыми детьми боярскими.
  • Попытаемся решить задачу о дождевателе обычными приемами. Нужно втрое увеличить размах крыльев; что ж, сделать трехсотметровую ферму технически вполне осуществимо. Что мы при этом проиграем? Возрастет вес. Если размах крыльев увеличить втрое, ферма станет тяжелее в 27 раз.

    У машин и механизмов (вообще у технических объектов) есть несколько важнейших показателей, характеризующих степень их совершенства: вес, габариты, мощность, надежность и др. Между этими показателями существуют определенные взаимозависимости. Скажем, на одну единицу мощности требуется определенный вес конструкции. Чтобы увеличить одии из показателей уже известными в данной отрасли техники путями, приходится «платить» ухудшением другого.

    Вот типичный пример из авиаконструкторской практики: «Увеличение в 2 раза площади вертикального оперения одного из типов самолетов уменьшило амплитуду колебаний самолета всего лишь на 50%. Но это, в свою очередь, повысило восприимчивость самолета к порывам ветра, увеличило лобовое сопротивление, утяжелило конструкцию самолета, -что выдвинуло дополнительные сложные задачи К

    Конструктор, учитывая конкретные условия, выбирает наиболее благоприятное сочетание характеристик: что-то выигрывает, а что-то проигрывает. «Когда вы обдумываете решение и технические условия,- говорит известный авиаконструктор О. Антонов,- которые, может быть, и не будут никогда записаны на бумаге, выделите самое главное. Только в крайнем случае, если что-нибудь не удается выполнить, идите к допустимому. Допустимое - это некоторое невыполнение заданных технических условий, так сказать, компромиссное решение. Предположим, конструируя самолет, вы выполните требования по грузоподъемности и скорости, но у вас немножко не выйдет с длиной разбега. Тогда вы начнете взвешивать эти три важных требования и, возможно, несколько поступитесь разбегом - пусть разбег будет не 500, а 550 метров, зато все остальные качества будут достигнуты. Это как раз то, что допустимо».

    Академик А. Н. Крылов в своих воспоминаниях рассказывает о таком эпизоде. В 1924 году ученый работал в составе советско-французской комиссии, осматривавшей в гавани Бизерты русские военные корабли, уведенные туда Врангелем. Здесь бок о бок с русским эсминцем стоял эсминец французский - примерно того же возраста и размеров. Разница в боевой мощи кораблей была настолько велика, что адмирал Буи - председатель комиссии- не выдержал и воскликнул: «У вас пушки, а у нас пукалки! Каким образом вы достигли такой разницы в вооружении эсминцев?» Крылов ответил так: «Взгляните, адмирал, на палубу: кроме стрингера, в котором вся крепость, все остальное, представляющее как бы крышу, проржавело почти насквозь, трубы, их кожухи, рубки и т. п.- все изношено. Посмотрите на ваш эсминец, на нем все как новенькое, правда, наш миноносец шесть лет без ухода и без окраски, но не в этом главная суть. Ваш миноносец построен из обыкновенной стали и на нем взято расчетное напряжение в 7 кг на 1 мм2, как будто бы это был коммерческий корабль, который должен служить не менее 24 лет. Hauf построен целиком из стали высокого сопротивления, напряжение допущено в 12 кг и больше - местами по 23 кг/мм2. Миноносец строится на 10-12 лет, ибо за это время он успевает настолько устареть, что не представляет более истинной боевой силы. Весь выигрыш в весе корпуса и употреблен на усиление боевого вооружения, и вы видите, что в артиллерийском бою наш миноносец разнесет вдребезги, по меньшей мере, четыре, т. е. дивизию ваших, раньше, чем они приблизятся на дальность выстрела своих пукалок». «Как это просто!» - сказал адмирал»2.

    Искусство конструктора во многом зависит от умения определить, что надо выиграть и чем можно за это поступиться. Изобретательское творчество состоит в том, чтобы найти такой путь, при котором уступки вообще не требуется (или она непропорционально мала по сравнению с получаемым результатом).

    Предположим, для ускорения погрузки-разгрузки на необорудованных аэродромах необходимо создать портативное подъемное устройство, монтируемое на тяжелых транспортных самолетах. Такую задачу вполне можно решить уже имеющимися в современной технике средствами. Основываясь на общих принципах конструирования подъемных устройств и используя, скажем, опыт создания легких автокранов, квалифицированный конструктор в состоянии спроектировать требуемое устройство. Понятно, что это увеличит в той или иной мере «мертвый вес самолета. Выигрывая в одном, конструктор одновременно проигрывает в чем-то другом. Зачастую с этим можно смириться, и задача конструктора сводится к тому, чтобы побольше выиграть и поменьше проиграть.

    Необходимость в изобретении возникает в тех случаях, когда задача содержит дополнительное требование: выиграть и… ничего не проиграть. Например, подъемное устройство должно быть достаточно мощным и в то же время не должно утяжелять самолет. Решить эту задачу известными приемами невозможно: даже лучшие передвижные краны имеют немалый вес. Здесь нужен новый подход, нужно изобретение.

    Таким образом, обычная задача переходит в разряд изобретательских в тех случаях, когда необходимым условием ее решения является устранение технического противоречия.

    Нетрудно создать новую машину, игнорируя технические противоречия. Но тогда машина окажется неработоспособной и нежизненной.

    Всегда ли изобретение состоит в устранении технического противоречия?

    Надо сказать, что существуют два понятия «изобретение»- правовое (патентное) и техническое. Правовой понятие различно в разных странах, к тому же оно чаете! меняется.

    Правовое понятие стремится возможно точнее отразить границы, в которых в данный момент экономически целесообразна юридическая защита новых инженерных конструкций. Для технического же понятия важны не столько эти границы, сколько сердцевина изобретения, его исторически устойчивая сущность.

    С точки зрения инженера, создание нового изобретения всегда сводится к преодолению (полному или частичному) технического противоречия.

    Возникновение и преодоление противоречия - одна из главных особенностей технического прогресса. Анализируя развитие мельниц, Маркс писал в «Капитале»: «Увеличение размеров рабочей машины и количества ее одновременно действующих орудий требует более крупного двигательного механизма… Уже в XVIII веке была сделана попытка приводить в движение два бегуна и два же постава посредством одного водяного колеса. Но увеличение размеров передаточного механизма вступило в конфликт с недостаточной силой воды…»

    Это яркий пример технического противоречия: попытка улучшить какое-либо свойство машины вступает в конфликт с другим ее свойством.

    Многочисленные примеры технических противоречий приводит Фридрих Энгельс в статье «История винтовки» В сущности, вся эта статья представляет собой анализ внутренних противоречий, определяющих историческое развитие винтовки. Энгельс показывает, например, что с» момента появления винтовки и до изобретения винтовок, заряжающихся с казенной части, главное противоречие состояло в том, что для усиления огневых свойств требовалось укорачивание ствола (заряжение производилось со ствола и при коротком стволе облегчалось), а для усиления «штыковых» свойств винтовки нужно было, наоборот, удлинять ствол. Эти противоречивые качества были соединены в винтовке, заряжающейся с казенной части.

    Вот несколько задач из разных отраслей техники, содержащих технические противоречия. Задачи эти не придуманы автором, а взяты из газет, журналов, книг.

    Горное дело

    С давних пор для изоляции района подземного пожара шахтеры возводят перемычки - Специальные стенки из кирпича, бетона или брусчатки. Сооружение перемычек сильно осложняется, если в шахте выделяются газы. В таком случае перемычку нужно делать герметичной, тщательно заделывать каждую щелку, и все это под постоянной угрозой взрыва. Чтобы уберечься, горняки стали сооружать по две перемычки. Первую - временную- кладут наспех. Она пропускает воздух и служит лишь баррикадой, под прикрытием которой можно, уже не торопясь, сооружать вторую, постоянную. Таким образом, горняки выиграли в безопасности, но проиграли в трудоемкости.


    Введение

    1. Понятие производства и производственных функций

    2. Виды и типы производственных функций

    2.1 Изокванта и ее типы

    2.2 Оптимальная комбинация ресурсов

    2.3 Функции предложения и их свойства

    3. Практическое применение производственной функции

    3.1 Моделирование издержек и прибыли предприятия (фирмы)

    3.2 Методы учета научно-технического прогресса

    Заключение

    Список литературы

    Введение


    Мной выбрана тема «Сущность, модели, границы применения метода производственной функции». Эта тема актуальна из – за того, что этот метод позволяет ответить на главный вопрос, который стоит перед экономистами на предприятиях и предпринимателями – «А что будет, если…». Именно благодаря этому методу можно произвести расчёты получения возможной прибыли в различных условиях, и понять какую прибыль мы можем получить – от гарантированного минимума до возможного максимума, не проводя эксперименты в реальном времени и не рискуя своими финансами.

    А что же такое производственная функция? Обратимся к словарю яндекса и получим следующее:

    ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ (ПФ) (то же: функция производства) - экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов на объем выпуска в определенный момент времени (статический вариант П. ф.) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант Пф.) на различных уровнях экономики - от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой выпуском служит показатель совокупного общественного продукта или национального дохода и т. п.). В отдельной фирме, корпорации и т. п. ПФ описывает максимальный объем выпуска продукции, которую они в состоянии произвести при каждом сочетании используемых факторов производства. Она может быть представлена множеством изоквант, связанных с различными уровнями объема производства.

    Такой вид ПФ, когда устанавливается явная зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска.

    В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, напр., разные виды и составы удобрений, методы обработки почвы. Наряду с подобными ПФ используются обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к ПФ с взаимозаменяемыми ресурсами). Частными случаями ПФ можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию (зависимость потребных капиталовложений от производственной мощности будущего предприятия) и др.

    Математически ПФ могут быть представлены в различных формах - от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени.

    Наиболее широко распространены мультипликативно-степенные формы представления ПФ. Их особенность состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так:



    Здесь коэффициент А, стоящий перед знаком умножения, учитывает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Напр., в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей - численность занятого населения x 1 , сумму основных и оборотных фондов x 2 , площадь используемой земли x 3 . Только два сомножителя у функции Кобба-Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20-30-е гг. ХХ в.:


    N = A · L α · K β ,


    где N - национальный доход; L и K - соответственно объемы приложенного труда и капитала.

    Степенные коэффициенты (параметры) мультипликативно-степенной ПФ показывают ту долю в процентном приросте конечного продукта, которую вносит каждый из сомножителей (или на сколько процентов возрастет продукт, если затраты соответствующего ресурса увеличить на один процент); они являются коэффициентами эластичности производства относительно затрат соответствующего ресурса. Если сумма коэффициентов составляет 1, это означает однородность функции: она возрастает пропорционально росту количества ресурсов. Но возможны и такие случаи, когда сумма параметров больше или меньше единицы; это показывает, что увеличение затрат приводит к непропорционально большему или непропорционально меньшему росту выпуска (Эффект масштаба).

    В динамическом варианте применяются разные формы ПФ. Напр., (в 2-факторном случае): Y(t) = A(t) L α (t) K β (t), где множитель A(t) обычно возрастает во времени, отражая общий рост эффективности производственных факторов в динамике.

    Логарифмируя, а затем, дифференцируя по t указанную функцию, можно получить соотношения между темпами прироста конечного продукта (национального дохода) и прироста производственных факторов (темпы прироста переменных принято здесь описывать в процентах).

    Дальнейшая “динамизация” ПФ может заключаться в использовании переменных коэффициентов эластичности.

    Описываемые ПФ соотношения носят статистический характер, т. е. проявляются только в среднем, в большой массе наблюдений, поскольку реально на результат производства воздействуют не только анализируемые факторы, но и множество неучитываемых. Кроме того, применяемые показатели как затрат, так и результатов неизбежно являются продуктами сложного агрегирования (напр., обобщенный показатель трудовых затрат в макроэкономической функции вбирает в себя затраты труда разной производительности, интенсивности, квалификации и т. д.).

    Особая проблема - учет в макроэкономических ПФ фактора технического прогресса (подробнее см. в ст. “Научно-технический прогресс”). С помощью ПФ изучается также эквивалентная взаимозаменяемость факторов производства (см. Эластичность замещения ресурсов), которая может быть либо неизменной, либо переменной (т. е. зависимой от объемов ресурсов). Соответственно функции делят на два вида: с постоянной эластичностью замены (CES - Constant Elasticity of Substitution) и с переменной (VES - Variable Elasticity of Substitution) (см. ниже).

    На практике применяются три основных метода определения параметров макроэкономических ПФ: на основе обработки временных рядов, на основе данных о структурных элементах агрегатов и о распределении национального дохода. Последний метод называется распределительным.

    При построении ПФ необходимо избавляться от явлений мультиколлинеарности параметров и автокорреляции - в противном случае неизбежны грубые ошибки.

    Приведем некоторые важные ПФ (см. также Кобба-Дугласа функция).

    Линейная п. ф.:


    P = a 1 x 1 + ... + a n x n ,


    где a 1 , ..., a n - оцениваемые параметры модели: здесь факторы производства замещаемы в любых пропорциях.

    Функция CES:


    P = A [(1 – α) K -b + αL -b ] -c/b ,


    в этом случае эластичность замещения ресурсов не зависит ни от K, ни от L и, следовательно, постоянна:

    Отсюда и происходит название функции.

    Функция CES, как и функция Кобба- Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем эластичность замещения капитала трудом и, наоборот, труда капиталом в функции Кобба-Дугласа, равная единице, здесь может принимать различные значения, не равные единице, хотя и является постоянной. Наконец, в отличие от функции Кобба-Дугласа логарифмирование функции CES не приводит ее к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа.

    1. Понятие производства и производственных функций

    Под производством понимается любая деятельность по использованию природных, материально-технических и интеллектуальных ресурсов для получения как материальных, так и нематериальных благ.

    С развитием человеческого общества характер производства меняется. На ранних стадиях развития человечества господствовали природные, натуральные, естественно возникшие элементы производительных сил. Да и сам человек в это время в большей степени был продуктом природы. Производство в этот период получило название натурального.

    С развитием средств производства начинают преобладать исторически созданные материально-технические элементы производительных сил. Это эпоха капитала. В настоящее время решающее значение имеют знания, технологии, интеллектуальные ресурсы самого человека. Наша эпоха это эпоха информатизации, эпоха господства научно-технических элементов производительных сил. Владение знаниями, новыми технологиями имеет решающее значение для производства. Во многих развитых странах ставится задача всеобщей информатизации общества. Потрясающими темпами развивается всемирная компьютерная сеть Internet.

    Традиционно роль общей теории производства выполняет теория материального производства, понимаемая как процесс превращения производственных ресурсов в продукт. Основными производственными ресурсами являются труд (L ) и капитал (K ). Способы производства или существующие производственные технологии определяют, какой объем продукции производится при заданных количествах труда и капитала. Математически существующие технологии выражаются через производственную функцию . Если обозначить объем выпускаемой продукции через Y , то производственную функцию можно записать


    Y = f (K , L ).

    Это выражение означает, что объем выпуска является функцией количества капитала и количества труда. Производственная функция описывает множество существующих в данный момент технологий. Если изобретается лучшая технология, то при тех же затратах труда и капитала объем выпуска увеличивается. Следовательно, изменения в технологии изменяют и производственную функцию. Методологически теория производства во многом симметрична теории потребления. Однако если в теории потребления основные категории измеряются лишь субъективно или вообще пока не подлежат измерению, то основные категории теории производства имеют объективную основу и могут быть измерены в определенных натуральных или стоимостных единицах.

    Несмотря на то, что понятие производство может представиться очень широким, нечетко выраженным и даже расплывчатым, поскольку в реальной жизни под производством понимается и предприятие, и стройка, и сельскохозяйственная ферма, и транспортное предприятие, и очень крупная организация типа отрасли народного хозяйства, тем не менее, экономико-математическое моделирование выделяет нечто общее, присущее всем этим объектам. Этим общим является процесс преобразования первичных ресурсов (производственных факторов) в конечные результаты процесса. Поэтому основным исходным понятием в описании экономического объекта становится технологический способ, который представляется обычно как вектор v затратвыпуска, включающий в себя перечисление объемов затрачиваемых ресурсов (вектор x ) и сведения о результатах их преобразования в конечные продукты или другие характеристики (прибыль, рентабельность и т.п.) (вектор y ):


    v = (x ; y ).


    Размерность векторов x и y , а также способы их измерения (в натуральных или стоимостных единицах) существенно зависят от изучаемой проблемы, от уровней, на которых ставятся те или иные задачи экономического планирования и управления. Совокупность векторов технологических способов, которые могут служить описанием (с допустимой точки зрения исследователя точностью) производственного процесса, реально осуществимого на некотором объекте, называется технологическим множеством V данного объекта. Для определенности мы будем полагать, что размерность вектора затрат x равна N , а вектора выпуска y соответственно M . Таким образом, технологический способ v является вектором размерности (M + N ), а технологическое множество Среди всех технологических способов, осуществимых на объекте, особое место занимают способы, которые выгодно отличаются от всех прочих тем, что они требуют либо меньших затрат при одинаковом выпуске, либо соответствуют большему выпуску при одинаковых затратах. Те из них, которые занимают в определенном смысле предельное положение в множестве V , представляют особый интерес, поскольку они являются описанием допустимого и предельно выгодного реального производственного процесса.

    Скажем, что вектор предпочтительнее, чем вектор с обозначением если выполняются следующие условия:



    и при этом имеет место по крайней мере одно из двух:

    а) существует такой номер i 0 , что

    б) существует такой номер j 0 , что

    Технологический способ называется эффективным, если он принадлежит технологическому множеству V и не существует другого вектора который был бы предпочтительнее. Приведенное определение означает, что эффективными считаются те способы, которые не могут быть улучшены ни по одной затратной компоненте, ни по одной позиции выпускаемой продукции, без того чтобы не перестать быть допустимыми. Множество всех технологически эффективных способов обозначим через V* . Оно является подмножеством технологического множества V или совпадает с ним. По существу задача планирования хозяйственной деятельности производственного объекта может быть интерпретирована как задача выбора эффективного технологического способа, наилучшим образом соответствующего некоторым внешним условиям. При решении такой задачи выбора достаточно существенным оказывается представление о самом характере технологического множества V , а также его эффективного подмножества V* .

    В ряде случаев оказывается возможным допустить в рамках фиксированного производства возможность взаимозаменяемости некоторых ресурсов (различных видов топлива, машин и работников и т.п.). При этом математический анализ подобных производств основывается на предпосылке о континуальном характере множества V , а следовательно, на принципиальной возможности представления вариантов взаимной замены при помощи непрерывных и даже дифференцируемых функций, определенных на V . Указанный подход получил свое наибольшее развитие в теории производственных функций.

    С помощью понятия эффективного технологического множества производственную функцию (ПФ) можно определить как отображение


    y = f (x ),


    где V* .

    Указанное отображение, вообще говоря, является многозначным, т.е. множество f (x ) содержит более чем одну точку. Однако для многих реалистичных ситуаций производственные функции оказываются однозначными и даже, как сказано выше, дифференцируемыми. В наиболее простом случае производственная функция есть скалярная функция N аргументов:

    Здесь величина y имеет, как правило, стоимостный характер, выражая объем производимой продукции в денежном выражении. В качестве аргументов выступают объемы затрачиваемых ресурсов при реализации соответствующего эффективного технологического способа. Таким образом, приведенное соотношение описывает границу технологического множества V ,поскольку при данном векторе затрат (x 1 , ..., x N ) производить продукции, в количестве большем, чем y , невозможно, а производство продукции в количестве меньшем, чем указанное, соответствует неэффективному технологическому способу. Выражение для производственной функции оказывается возможным использовать для оценки эффективности принятого на данном предприятии методе хозяйствования. В самом деле, для заданного набора ресурсов можно определить фактический выпуск продукции и сравнить его с рассчитанным по производственной функции. Полученная разница дает полезный материал для оценки эффективности в абсолютном и относительном измерении.

    Производственная функция представляет собой очень полезный аппарат плановых расчетов, и поэтому в настоящее время развит статистический подход к построению производственных функций для конкретных хозяйственных единиц. При этом обычно используется некоторый стандартный набор алгебраических выражений, параметры которых находятся при помощи методов математической статистики. Такой подход означает, в сущности, оценку производственной функции на основе неявного предположения о том, что наблюдаемые производственные процессы являются эффективными. Среди разнообразных типов производственных функций наиболее часто применяются линейные функции вида

    поскольку для них легко решается задача оценивания коэффициентов по статистическим данным, а также степенные функции

    для которых задача нахождения параметров сводится к оцениванию линейной формы путем перехода к логарифмам.

    В предположении о дифференцируемости производственной функции в каждой точке множества X возможных комбинаций затрачиваемых ресурсов полезно рассмотреть некоторые связанные с ПФ величины.

    В частности, дифференциал

    представляет собой изменение стоимости выпускаемой продукции при переходе от затрат набора ресурсов x = (x 1 , ..., x N ) к набору x + dx = (x 1 + dx 1 , ..., x N + dx N ) при условии сохранения свойства эффективности соответствующих технологических способов. Тогда величину частной производной


    можно трактовать как предельную (дифференциальную) ресурсоотдачу или, иными словами, коэффициент предельной продуктивности, который показывает, на сколько увеличится выпуск продукции в связи с увеличением затрат ресурса с номером j на малую единицу. Величина предельной продуктивности ресурса допускает истолкование как верхний предел цены p j , которую производственный объект может уплатить за дополнительную единицу j -того ресурса с тем, чтобы не оказаться в убытках после ее приобретения и использования. В самом деле, ожидаемый прирост продукции в этом случае составит

    и, следовательно, соотношение

    позволит получить дополнительную прибыль.

    В коротком периоде, когда один ресурс рассматривается как постоянный, а другой как переменный, большинство производственных функций обладают свойством убывающего предельного продукта. Предельным продуктом переменного ресурса называют прирост общего продукта в связи с увеличением применения данного переменного ресурса на единицу.

    Предельный продукт труда можно записать как разность


    MPL = F (K , L + 1) - F (K , L ),

    где MPL предельный продукт труда.

    Предельный продукт капитала можно также записать как разность


    MPK = F (K + 1, L ) - F (K , L ),


    где MPK предельный продукт капитала.

    Характеристикой производственного объекта является также величина средней ресурсоотдачи (продуктивности производственного фактора)

    имеющего ясный экономический смысл количества выпускаемой продукции в расчете на единицу используемого ресурса (производственного фактора). Величина, обратная к ресурсоотдаче

    обычно называется ресурсоемкостью, поскольку она выражает количество ресурса j , необходимое для производства одной единицы продукции в стоимостном выражении. Весьма употребительны и понятны такие термины, как фондоемкость, материалоемкость, энергоемкость, трудоемкость, рост которых обычно связывают с ухудшением состояния экономики, а их снижение рассматривается как благоприятный результат.

    Частное от деления дифференциальной продуктивности на среднюю


    называется коэффициентом эластичности продукции по производственному фактору j и дает выражение относительного прироста продукции (в процентах) при относительном приросте затрат фактора на 1%. Если E j ё 0, то происходит абсолютное снижение выпуска продукции при увеличении потребления фактора j ; такая ситуация может иметь место при использовании технологически неподходящих продуктов или режимов. Например, излишнее потребление топлива приведет к излишнему повышению температуры и необходимая для производства продукта химическая реакция не пойдет. Если 0 < E j ё 1, то каждая последующая дополнительная единица затрачиваемого ресурса вызывает меньший дополнительный прирост продукции, чем предыдущая.

    Если E j > 1, то величина приростной (дифференциальной) продуктивности превосходит среднюю продуктивность. Таким образом, дополнительная единица ресурса увеличивает не только объем выпускаемой продукции, но и среднюю характеристику ресурсоотдачи. Так процесс повышения фондоотдачи происходит, когда вводятся в действие весьма прогрессивные, эффективные машины и приборы. Для линейной производственной функции коэффициент a j численно равен величине дифференциальной продуктивности j -того фактора, а для степенной функции показатель степени a j имеет смысл коэффициента эластичности по j -тому ресурсу.

    2. Виды и типы производственных функций

    При моделировании потребительского спроса один и тот же уровень полезности различных комбинаций потребительских благ графически отображается с помощью кривой безразличия.

    В экономико-математических моделях производства каждая технология графически может быть представлена точкой, координаты которой отражают минимально необходимые затраты ресурсов K и L для производства данного объема выпуска. Множество таких точек образуют линию равного выпуска, или изокванту . Таким образом, производственная функция графически представляется семейством изоквант. Чем дальше от начала координат расположена изокванта, тем больший объем производства она отражает. В отличие от кривой безразличия, каждая изокванта характеризует количественно определенный объем выпуска.


    Рис. 1. Изокванты, соответствующие различному объему производства


    На рис. 1 представлено три изокванты, соответствующие объему производства в 200, 300 и 400 единиц продукции. Можно сказать, что для выпуска 300 единиц продукции необходимо K 1 единиц капитала и L 1 единиц труда или K 2 единиц капитала и L 2 единиц труда, или любая другая их комбинация из того множества, которое представлено изоквантой Y 2 = 300.

    В общем случае в множестве X допустимых наборов производственных факторов выделяется подмножество X c , называемое изоквантой производственной функции, которое характеризуется тем, что для всякого вектора справедливо равенство

    Таким образом, для всех наборов ресурсов, соответствующих изокванте, оказываются равными объемы выпускаемой продукции. По существу изокванта представляет собой описание возможности взаимной замены факторов в процессе производства продукции, обеспечивающей неизменный объем производства. В связи с этим оказывается возможным определить коэффициент взаимной замены ресурсов, используя дифференциальное соотношение вдоль любой изокванты

    Отсюда коэффициент эквивалентной замены пары факторов j и k равен:

    Полученное соотношение показывает, что если производственные ресурсы замещаются в отношении, равном отношению приростных продуктивностей, то количество производимой продукции остается неизменным. Нужно сказать, что знание производственной функции позволяет охарактеризовать масштабы возможности осуществить взаимную замену ресурсов в эффективных технологических способах. Для достижения этой цели служит коэффициент эластичности замены ресурсов по продукции

    который вычисляется вдоль изокванты при неизменном уровне затрат прочих производственных факторов. Величина s jk представляет собой характеристику относительного изменения коэффициента взаимной замены ресурсов при изменении соотношения между ними. Если отношение взаимозаменяемых ресурсов изменится на s jk процентов, то коэффициент взаимной замены sjk изменится на один процент. В случае линейной производственной функции коэффициент взаимной замены остается неизменным при любом соотношении используемых ресурсов и поэтому можно считать, что эластичность s jk = 1. Соответственно большие значения s jk свидетельствуют о том, что возможна большая свобода в замене производственных факторов вдоль изокванты и при этом основные характеристики производственной функции (продуктивности, коэффициент взаимозамены) будут меняться очень слабо.

    Для степенных производственных функций для любой пары взаимозаменяемых ресурсов справедливо равенство s jk = 1. В практике прогнозирования и предплановых расчетов часто используются функции постоянной эластичности замены (СЕS), имеющие вид:

    Для такой функции коэффициент эластичности замены ресурсов


    и не меняется в зависимости от объема и отношения затрачиваемых ресурсов. При малых значениях s jk ресурсы могут заменять друг друга лишь в незначительных размерах, а в пределе при s jk = 0 они теряют свойство взаимозаменяемости и выступают в процессе производства лишь в постоянном отношении, т.е. являются взаимодополняющими. Примером производственной функции, описывающей производство в условиях использования взаимодополняющих ресурсов, является функция выпусказатрат, которая имеет вид

    где a j постоянный коэффициент ресурсоотдачи j -того производственного фактора. Нетрудно видеть, что производственная функция такого типа определяет выпуск по узкому месту на множестве используемых производственных факторов. Различные случаи поведения изоквант производственных функций для различных значений коэффициентов эластичности замены представлены на графике (рис. 2).

    Представление эффективного технологического множества с помощью скалярной производственной функции оказывается недостаточным в тех случаях, когда нельзя обойтись единственным показателем, описывающим результаты деятельности производственного объекта, но необходимо использовать несколько (М ) выходных показателей. В этих условиях можно использовать векторную производственную функцию


    Рис. 2. Различные случаи поведения изоквант


    Важное понятие предельной (дифференциальной) продуктивности вводится соотношением

    Аналогичное обобщение допускают все остальные главные характеристики скалярных ПФ.

    Подобно кривым безразличия изокванты также подразделяются на различные типы.

    Для линейной производственной функции вида

    где Y объем производства; A , b 1 , b 2 параметры; K , L затраты капитала и труда, и полном замещении одного ресурса другим изокванта будет иметь линейную форму (рис. 3).

    Для степенной производственной функции


    изокванты будут иметь вид кривых (рис. 4).

    Если изокванта отражает лишьодин технологический способ производства данного продукта, то труд и капитал комбинируются в единственно возможном сочетании (рис. 5).


    Рис. 6. Ломаные изокванты


    Такие изокванты иногда называют изоквантами леонтьевского типа по имени американского экономиста В.В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода inputoutput (затратывыпуск).

    Ломаная изокванта предполагает наличие ограниченного количества технологий F (рис. 6).

    Изокванты подобной конфигурации используются в линейном программировании для обоснования теории оптимального распределения ресурсов. Ломаные изокванты наиболее реалистично представляют технологические возможности многих производственных объектов. Однако в экономической теории традиционно используют главным образом кривые изокванты, которые получаются из ломаных при увеличении числа технологий и увеличении соответственно точек излома.

    2.2 Оптимальная комбинация ресурсов

    Использование аппарата производственных функций дает возможность решения задачи об оптимальном использовании средств, предназначенных для приобретения производственных факторов.

    Предположим, что факторы (x 1 , ..., x N ) могут быть закуплены по ценам (p 1 , ..., p N ), а объем имеющихся средств для приобретения составляет b (руб.). Тогда соотношение, описывающее множество допустимых наборов факторов, имеет вид

    Граничная линия этого множества, соответствующая полному использованию имеющихся средств, т.е.

    называется изокостой , поскольку ей отвечают наборы, имеющие одинаковую стоимость b . Задача об оптимальном использовании средств формулируется так: требуется найти набор факторов, который дает наибольший выпуск продукции при ограниченных финансовых средствах b . Таким образом, требуется найти решение задачи:


    Искомое решение находится из системы уравнений:

    где l множитель Лагранжа.

    В частности, если число факторов N = 2, задача допускает наглядную геометрическую интерпретацию (рис. 7).


    Рис. 7. Оптимальная комбинация ресурсов


    Здесь отрезок АВ есть изокоста, кривая R изокванта, касающаяся изокосты в точке D , которая и соответствует оптимальному набору факторов ().

    Полезно привести полное решение поставленной задачи для случая двух факторов, т.е. N = 2.

    Пусть x 1 = K капитал (основные фонды),

    x 2 = L труд (рабочая сила);

    производственная функция

    условие ограниченности ресурса

    где r цена использования машин и оборудования (т.е. услуг капитала), равная норме банковского процента; w ставка оплаты труда.

    Условия оптимальности имеют вид



    Это условие означает, что объем используемого капитала должен быть принят на том уровне, когда маргинальная фондоотдача (y / K ) равна норме процента; дальнейшее увеличение капитала приведет к снижению его эффективности;



    Это условие требует, чтобы количество занятой рабочей силы было взято на уровне, когда маргинальная производительность труда (y / L ) равна ставке заработной платы, так как дальнейшее увеличение количества занятых приводит к убыткам (точка на рис. 8).

    Рис. 8. Оптимальное количество занятых


    Здесь угловой коэффициент касательной в точке А равен w .

    Для ПФ типа КоббаДугласа задача имеет вид

    при условии

    Получим следующее решение

    Множитель характеризует здесь предельную продуктивность финансовых средств, т.е. показывает, на какую величину D y изменится максимальный выпуск продукции если объем средств b увеличится на малую единицу.

    Заметим, что сумма эластичностей капитала (иa) характеризует так называемый удельный выпуск (отдачу) приbтруда (изменении масштаба производства, т.е. когда расход ресурсов (K и L ) увеличивается в одинаковое число раз. Если a + b > 1, то отдача возрастает, если a + b = 1, то отдача постоянная, если a + b < 1, то отдача убывает, а производственная функция является выпуклой вверх.



    Функция предложения S (p ) описывает зависимость между рыночной ценой товара и его предложением на изолированном рынке этого товара. В общем случае следует исходить из того, что рассматриваемый продукт производится на достаточно большом количестве конкурирующих между собой предприятий. В такой ситуации естественно считать, что каждый производитель стремится к наибольшей прибыли, и его индивидуальный выпуск продукта увеличивается по мере роста цены на этот продукт. Но тогда и общее предложение товара на рынке S (p ), как сумма индивидуальных выпусков, является возрастающей функцией цены, т.е. S" (p ) > 0.

    В более специфических ситуациях (олигополия, монополия) поведение предприятия необязательно определяется стремлением к максимальной прибыли, поскольку при повышении цены производитель может обеспечить себе заметный прирост прибыли и без увеличения объема выпуска. Таким образом, строго говоря, должны быть исследованы случаи, когда S (p ) = const или даже S" (p ) < 0 (рис. 9).

    На рис. 9 представлено семейство функций предложения. Линия AB соответствует совершенной конкуренции и стремлению производителей к получению максимальной прибыли, линия AC отвечает неизменному выпуску, который тем не менее дает возможность вести хозяйство с приличной прибылью в условиях несовершенной конкуренции; линия АD представляет снижающийся объем производства, что возможно в условиях монополии и резкого роста цен.


    Рис. 9. Возрастающая, неизменная и убывающая функции предложения


    В дальнейшем анализе в качестве основного рассматривается состояние совершенной конкуренции и рост предложения в зависимости от роста цен. Для практических расчетов применяются функции предложения двух основных видов, параметры которых определяются путем обработки статистических данных:

    1) линейная функция


    2) степенная функция

    Коэффициент эластичности предложения по цене (E Sp ) показывает, на сколько процентов увеличится предложение товара, если его цена вырастает на 1%.

    Для линейной функции предложения


    где средние значения цены и предложения по таблице наблюдений.

    Для степенной функции

    Для функции предложения, определяемой как решение рассмотренной ниже (5) задачи оптимизации прибыли (см. формулу на с. 90, помеченную звездочкой), имеем

    Эластичность предложения по цене

    т.е. полностью определяется характером постоянных и переменных издержек.

    В более общем случае объем предложения j -того товара рассматривается не только в зависимости от его цены (p j ), но и от цен на другие товары. В этой ситуации система функций предложения имеет вид


    где n количество наименований товаров.

    Товары i и j называются конкурирующими, если перекрестная эластичность

    т.е. при увеличении цены p i уменьшается выпуск j -того товара; товары являются комплектными, если

    В этом случае рост производства одного товара необходимо вызывает увеличение выпуска другого.

    3. Практическое применение производственной функции

    В основе построения моделей поведения производителя (отдельного предприятия или фирмы; объединения или отрасли) лежит представление о том, что производитель стремится к достижению такого состояния, при котором ему была бы обеспечена наибольшая прибыль при сложившихся рыночных условиях, т.е. прежде всего при имеющейся системе цен.

    Наиболее простая модель оптимального поведения производителя в условиях совершенной конкуренции имеет следующий вид: пусть предприятие (фирма) производит один продукт в количествеy физических единиц. Если p экзогенно заданная цена этого продукта и фирма реализует свой выпуск полностью, то она получает валовой доход (выручку) в размере

    В процессе создания этого количества продукта фирма несет производственные издержки в размере C (y ). При этом естественно считать, что C" (y ) > 0, т.е. издержки возрастают с увеличением объема производства. Также обычно полагают, что C"" (y ) > 0. Это означает, что дополнительные (маргинальные) издержки на производство каждой дополнительной единицы продукции возрастают по мере увеличения объема производства. Это предположение связано с тем, что при рационально организованном производстве, при малых объемах могут быть использованы лучшие машины и высококвалифицированные работники, которых уже не окажется в распоряжении фирмы,когда объем производства вырастет. На рис. 4.10 представлены типичные графики функций R (y ) и C (y ). Производственные издержки состоят из следующих составных частей:

    1) материальные затраты C m , в число которых входят расходы на сырье, материалы, полуфабрикаты и т.п.

    Разность между валовым доходом и материальными затратами называется добавленной стоимостью (условно чистой продукцией):

    2) расходы на оплату труда C L ;


    Рис. 10. Линии выручки и издержек предприятия


    3) расходы, связанные с использованием, ремонтом машин и оборудования, амортизация, так называемая оплата услуг капитала C k ;

    4) дополнительные расходы C r , связанные с расширением производства, строительством новых зданий, подъездных путей, линий связи и т.д.

    Совокупные производственные издержки:

    Как уже было отмечено выше,


    однако эта зависимость от объема выпуска (у ) для разных видов издержек различна. А именно имеют место:

    а) постоянные расходы C 0 , которые практически не зависят от y , в т.ч. оплата административного персонала, аренда и содержание зданий и помещений, амортизационные отчисления, проценты за кредит, услуги связи и т.п.;

    б) пропорциональные объему выпуска (линейные) затраты C 1 , сюда входят материальные затраты C m , оплата труда производственного персонала (часть C L ), расходы по содержанию действующего оборудования и машин (часть C k ) и т.п.:

    где а обобщенный показатель затрат указанных видов в расчете на одно изделие;

    в) сверхпропорциональные (нелинейные) затраты С 2 , в составе которых выступают приобретение новых машин и технологий (т.е. затраты типа С r ), оплата сверхурочного труда и т.п. Для математического описания этого вида затрат обычно используется степенная зависимость

    Таким образом, для представления совокупных издержек можно использовать модель

    (Заметим, что условия C" (y ) > 0, C"" (y ) > 0 для этой функции выполнены.)


    Общепризнанным следует считать тот факт, что с течением времени на предприятии, сохраняющем фиксированную численность работников и постоянный объем основных фондов, выпуск продукции увеличивается. Это означает, что помимо обычных производственных факторов, связанных с затратами ресурсов, существует фактор, который обычно называют научно-техническим прогрессом (НТП). Этот фактор можно рассматривать как синтетическую характеристику, отражающую совместное влияние на экономический рост многих существенных явлений, среди которых нужно отметить следующие:

    а) улучшение со временем качества рабочей силы вследствие повышения квалификации работников и освоения ими методов использования более совершенной техники;

    б) улучшение качества машин и оборудования приводит к тому, что определенная сумма капитальных вложений (в неизменных ценах) позволяет по прошествии времени приобрести более эффективную машину;

    в) улучшение многих сторон организации производства, в том числе снабжения и сбыта, банковских операций и других взаимных расчетов, развитие информационной базы, образование различного рода объединений, развитие международной специализации и торговли и т.п.

    В связи с этим термин научно-технический прогресс можно интерпретировать как совокупность всех явлений, которые при фиксированных количествах затрачиваемых производственных факторов дают возможность увеличить выпуск качественной, конкурентоспособной продукции. Весьма расплывчатый характер такого определения приводит к тому, что исследование влияния НТП проводится лишь как анализ того дополнительного увеличения продукции, которое не может быть объяснено чисто количественным ростом производственных факторов. Главный подход к учету НТП сводится к тому, что в совокупность характеристик выпуска или затрат вводится время (t ) как независимый производственный фактор и рассматривается преобразование во времени либо производственной функции, либо технологического множества.

    При построении моделей производства с учетом НТП в основном используются следующие подходы:

    а) представление об экзогенном (или автономном) техническом прогрессе, который существует также в том случае, когда основные производственные факторы не изменяются. Частным случаем такого НТП является нейтральный прогресс по Хиксу, который обычно учитывается с помощью экспоненциального множителя, например:

    Здесь l > 0, характеризует темп НТП. Нетрудно видеть, что время здесь выступает как независимый фактор роста производства, однако при этом создается впечатление, что НТП происходит сам по себе, не требуя дополнительных затрат труда и капиталовложений;

    б) представление о техническом прогрессе, овеществленном в капитале, связывает рост влияний НТП с ростом капитальных вложений. Для формализации этого подхода за основу берется модель прогресса, нейтрального по Солоу:

    которая записывается в виде

    где K 0 основные фонды на начало периода,D K накопление капитала в течение периода, равное сумме инвестиций.

    Очевидно, что если инвестирование не производится, тоD K = 0, и увеличение выпуска продукции за счет НТП не происходит;

    в) рассмотренные выше подходы к моделированию НТП обладают общей чертой: прогресс выступает как заданная экзогенно величина, которая влияет на производительность труда или фондоотдачу и посредством этого сказывается на экономическом росте.

    Однако в долгосрочном плане НТП является и результатом развития, и, в значительной мере, его причиной. Поскольку именно экономическое развитие позволяет богатым обществам финансировать создание новых образцов техники, а затем уже пожинать плоды научно-технической революции. Поэтому вполне правомерен подход к НТП как эндогенному явлению, вызванному (индуцированному) экономическим ростом.

    Здесь выделяются два основных направления моделирования НТП:

    1) модель индуцированного прогресса основана на формуле

    причем предполагается, что общество может распределять предназначенные для НТП инвестиции между его различными направлениями. Например, между ростом фондоотдачи (k (t )) (улучшение качества машин) и ростом производительности труда (l (t )) (повышение квалификации работников) или выбором наилучшего (оптимального) направления технического развития при данном объеме выделенных капитальных вложений;

    2) модель процесса обучения в ходе производства, предложенная К. Эрроу, основана на наблюдаемом факте взаимного влияния роста производительности труда и количества новых изобретений. В ходе производства работники приобретают опыт, и время на изготовление изделия уменьшается, т.е. производительность труда и сам трудовой вклад зависят от объема производства

    В свою очередь, рост трудового фактора, согласно производственной функции


    приводит к росту производства. В простейшем варианте модели используются формулы:

    (производственная функция Кобба - Дугласа).

    Отсюда имеем соотношение

    которое при заданных функциях K (t ) и L 0 (t ) показывает более быстрый рост y , обусловленный отмеченным выше взаимным влиянием НТП и экономического развития.

    Пусть, например:

    Тогда рост без учета взаимного влияния описывается уравнением

    а рост с учетом взаимного влияния уравнением



    т.е. оказывается существенно более быстрым.

    Для линейной модели:

    т.е. фондоотдача увеличивается.

    Заключение


    В заключении хотелось бы рассказать о производственной функции Кобба – Дугласа.

    Возникновение теории производственных функций принято относить к 1927 г., когда появилась статья американских ученых экономиста П. Дугласа (P. Douglas) и математика Д. Кобба (D. Cobb) «Теория производства». В этой статье, была предпринята попытка, эмпирическим путем определить влияние затрачиваемого капитала и труда на объем выпускаемой продукции в обрабатывающей промышленности США.

    Как уже было сказано, производственная функция отражает функциональную связь между объёмом эффективно используемых факторов производства (трудом и имущественным капиталом) и с их помощью достигаемым выпуском при существующем техническом и организационном знании.

    При субституционной производственной функции производство может быть увеличено за счёт повышения количественной характеристики одного из факторов, в то время как количественная характеристика другого фактора остаётся без изменения, в другом варианте же производство остаётся без изменения при различных количественных комбинациях факторов труда и имущественного капитала.

    Субстиционная производственная функция имеет, в общем следующее выражение:

    K – число производственного капитала

    L – число производственных трудовых часов или, другими словами, число производственных единиц гуманного капитала

    На основе условно введённой субстиционности факторов производства можно сделать следующие два вывода относительно функциональной взаимосвязи данных факторов:

    При прочих равных увеличение одного из факторов производства ведёт к увеличению выпуска – первая производная положительна.

    Однако предельная производительность возрастающего фактора уменьшается с увеличением величины данного фактора – вторая производная отрицательна.

    Уровень организационных и технических знаний отображается в соответствующих формах взаимодействий факторов. В рассматриваемом случае уровень знаний постоянен, т.е. в данных рамках предполагается отсутствие технического прогресса. Таким образом, субстиционная функция производства может быть представлена в виде следующего изображения, отражающего взаимосвязь между количеством труда и выпуском при заданном количестве имущественного капитала (рисунок 1):


    Рис. 17. Связь между производством и производственным трудом


    Каждое увеличение количественного параметра имущественного капитала означает смещение кривой вверх и одновременного увеличения предельной производительности труда при заданном количестве рабочей силы, т.е. на основе вытекающего непосредственно из описанного вывода означает и более высокую величину выпуска при увеличении производственного фактора «труд»: кривая OK 1 на рисунке показывает более крутой наклон по сравнению с кривой OK 0 при любом числе занятых трудом.

    С увеличением количественного параметра имущественного капитала увеличивается и средняя производительности труда, которая является частным от деления величины выпуска на величину затраченного труда. Однако при этом уменьшается коэффициент труда, определяющий среднее количество затраченного труда на каждую единицу выпуска и являющийся таким образом обратной величиной средней производительности труда.

    Величина имущественного капитала принимается в рамках данного кратковременного анализа как экзогенно заданная, поэтому в модели и описании не учитывается технический прогресс, а также эффект увеличения производственных мощностей за счёт инвестиций.

    В 1927 г. Пол Дуглас обнаружил, что если совместить графики зависимости от времени логарифмов показателей реального объема выпуска (y ), капитальных затрат (К ) и затрат труда (L ), то расстояния от точек графика показателей выпуска до точек графиков показателей затрат труда и капитала будут составлять постоянную пропорцию. Затем он обратился к Чарльзу Коббу с просьбой найти математическую зависимость, обладающую такой особенностью, и Кобб предложил следующую субституционную функцию:

    Эта функция была предложена примерно 30 годами раньше Филипом Уикстидом (Wicksteed), но они были первыми, кто использовал для ее построения эмпирические данные.

    Однако при больших значениях K и L эта функция не имеет экономического смысла, т.к. выпуск все время возрастает при возрастании затрат.

    Кинетическая функция (где g - норма технического прогресса за единицу времени) получена умножением функции Кобба-Дугласа на e g , что снимает данную проблему и делает функцию Кобба-Дугласа экономически интересной.

    Эластичность выпуска продукции по капиталу и труду равна соответственно a и b, так как



    и аналогичным образом легко показать, что (dy / d L )/(y /L ) равно b.

    Следовательно, увеличение затрат капитала на 1% приведет к росту выпуска продукции на a процентов, а увеличение затрат труда на 1% приведет к росту выпуска на b процентов. Можно предположить, что обе величины a и b находятся между нулем и единицей. Они должны быть положительными, так как увеличение затрат производственных факторов должно вызывать рост выпуска. В то же время, вероятно, они будут меньше единицы, так как разумно предположить, что уменьшение эффекта от масштаба производства приводит к более медленному росту выпуска продукции, чем затрат производственных факторов, если другие факторы остаются постоянными.

    Если a и b в сумме превышают единицу, то говорят, что функция имеет возрастающий эффект от масштаба производства (это означает, что если К и L увеличиваются в некоторой пропорции, то y растет в большей пропорции). Если их сумма равна единице, то это говорит о постоянном эффекте от масштаба производства (y увеличивается в той же пропорции, что и К и L ). Если их сумма меньше, чем единица, то имеет место убывающий эффект от масштаба производства (y увеличивается в меньшей пропорции, чем К и L ).

    В соответствии с допущением о конкурентности рынков факторов производства и b имеют дальнейшую интерпретацию как прогнозируемые доли дохода, полученного соответственно за счет капитала и труда. Если рынок труда имеет конкурентный характер, то ставка заработной платы (w ) будет равна предельному продукту труда (dy / d L ):



    Следовательно, общая сумма заработной платы (wL ) будет равна b y , а доля труда в общем выпуске продукции (wL/Y ) составит постоянную величину b . Аналогичным образом норма прибыли выражается через dy / dK :



    и, следовательно, общая прибыль (r К ) будет равна a y , а доля прибыли будет постоянной величиной a .

    Существует ряд проблем по применению такой функции, особенно в тех случаях, когда она используется для экономики в целом. В частности, даже в тех случаях, когда между выпуском продукции, производственным оборудованием и трудом в производственном процессе существует технологическая зависимость, то совершенно необязательно, что подобная зависимость существует тогда, когда указанные факторы комбинируются в масштабах экономики в целом. Во-вторых, даже если такая зависимость для экономики в целом существует, то нет никаких оснований считать, что она будет иметь простую форму.

    Список литературы


    1. 50 лекций по микроэкономике/ Институт "Экономическая Школа", 2002.

    2. Доугерти К. Введение в эконометрику: Пер. с англ. – М.: Инфра-М, 2001.

    3. Институциональная экономика: курс лекций/ Кузьминов Я.И. М.: Высшая Школа Экономики, 2009.

    4. Трактат по политической экономии/ Жан-Батист Сэй. Сайт "Библиотека экономической и деловой литературы".

    5. Основы экономической теории. / Под ред. Камаева В.Д. - М.: Изд. МГТУ, 2006.

    6. Основы экономической теории (макроэкономика): Учебное пособие./ Кравцова Г.Ф., Цветков Н.И., Островская Т.И. Хабаровск: ДВГУПС, 2001. #"#_ftnref1" name="_ftn1" title=""> http://slovari.yandex.ru/dict/lopatnikov/article/lop/lop-1199.htm


    Репетиторство

    Нужна помощь по изучению какой-либы темы?

    Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
    Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

    Характеризует зависимость между количеством используемых ресурсов () и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются наиболее рациональным образом.

    Производственная функция обладает следующими свойствами:

    1. Существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти.

    2. Ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска. Ручной труд, например, может заменяться использованием большего количества машин, и наоборот.

    3. Чем длиннее временной период, тем большее количество ресурсов может быть пересмотрено. В этой связи различают мгновенный, короткий и длительный периоды. Мгновенный период — период, когда все ресурсы являются фиксированными. Короткий период — период, когда, по крайней мере, один ресурс является фиксированным. Длительный период - период, когда все ресурсы являются переменными.

    Обычно в микроэкономике анализируется двухфакторная производственная функция, отражающая зависимость выпуска (q) от количества используемых труда () и капитала (). Напомним, что под капиталом понимаются средства производства, т.е. количество машин и оборудования, используемое в производстве и измеряемое в машино-часах (тема 2, п. 2.2). В свою очередь количество труда измеряется в человеко-часах.

    Как правило, рассматриваемая производственная функция выглядит так:

    A, α, β — заданные параметры. Параметр А — это коэффициент совокупной производительности факторов производства. Он отражает влияние технического прогресса на производство: если производитель внедряет передовые технологии, величина А возрастает, т.е. выпуск увеличивается при прежних количествах труда и капитала. Параметры α и β — это коэффициенты эластичности выпуска соответственно по капиталу и труду. Иными словами, они показывают, на сколько процентов изменяется выпуск при изменении капитала (труда) на один процент. Коэффициенты эти положительны, но меньше единицы. Последнее означает, что при росте труда при постоянном капитале (либо капитала при постоянном труде) на один процент производство возрастает в меньшей степени.

    Построение изокванты

    Приведенная производственная функция говорит о том, что производитель может заменять труд капитаном и капитал трудом, оставляя выпуск неизменным. Например, в сельском хозяйстве развитых стран труд является высокомеханизированным, т.е. на одного работника приходится много машин (капитала). Напротив, в развивающихся странах тот же объем производства достигается за счет большого количества труда при незначительном капитале. Это позволяет построить изокванту (рис. 8.1).

    Изокванта (линия равного продукта) отражает все комбинации двух факторов производства (труда и капитала), при которых выпуск остается неизменным. На рис. 8.1 рядом с изоквантой проставлен соответствующий ей выпуск. Так, выпуск , достижим при использовании труда и капитала или с использованием труда и капитана.

    Рис. 8.1. Изокванта

    Возможны и другие комбинации объемов труда и капитала, минимально необходимых для достижения данного выпуска.

    Все комбинации ресурсов, соответствующих данной изокванте, отражают технически эффективные способы производства. Способ производства A является технически эффективным в сравнении со способом В , если он требует использования хотя бы одного ресурса в меньшем количестве, а всех остальных не в больших количествах в сравнении со способом В . Соответственно способ В является технически неэффективным в сравнении с А. Технически неэффективные способы производства не используются рациональными предпринимателями и не относятся к производственной функции.

    Из вышесказанного вытекает, что изокванта не может иметь положительный наклон, как это показано на рис. 8.2.

    Отрезок, выделенный пунктиром, отражает все технически неэффективные способы производства. В частности, в сравнении со способом А способ В для обеспечения одинакового выпуска () требует того же количества капитала, но большего количества труда. Очевидно, поэтому, что способ B не является рациональным и не может приниматься в расчет.

    На основе изокванты можно определить предельную норму технической замены.

    Предельная норма технической замены фактора Y фактором X (MRTS XY) — это количество фактора (например, капитала), от которого можно отказаться при увеличении фактора (например, труда) на 1 ед., чтобы выпуск не изменился (остаемся на прежней изокванте).

    Рис. 8.2. Технически эффективное и неэффективное производство

    Следовательно, предельная норма технической замены капитала трудом исчисляется по формуле

    При бесконечно малых измененияхL и K она составляет

    Таким образом, предельная норма технической замены есть производная функции изокванты в данной точке. Геометрически она представляет собой наклон изокванты (рис. 8.3).

    Рис. 8.3. Предельная норма технической замены

    При движении сверху — вниз вдоль изокванты предельная норма технической замены все время убывает, о чем говорит уменьшающийся наклон изокванты.

    Если же производитель увеличивает и труд, и капитал, то это позволяет ему достичь большего выпуска, т.е. перейти на более высокую изокванту (q 2). Изокванта, расположенная правее и выше предыдущей, соответствует большему объему выпуска. Совокупность изоквант образует карту изоквант (рис. 8.4).

    Рис. 8.4. Карта изоквант

    Особые случаи изоквант

    Напомним, что приведенные соответствуют производственной функции вида . Но бывают и другие производственные функции. Рассмотрим случай, когда имеет место совершенная замещаемость факторов производства. Допустим, например, что на складских работах можно использовать квалифицированных и неквалифицированных грузчиков, причем производительность квалифицированного грузчика в N раз выше, чем неквалифицированного. Это означает, что мы можем заменить любое количество квалифицированных грузчиков неквалифицированными в соотношении N к одному. И наоборот, можно заменить N неквалифицированных грузчиков одним квалифицированным.

    Производственная функция при этом имеет вид: где — число квалифицированных рабочих, — число неквалифицированных рабочих, а и b — постоянные параметры, отражающие производительность соответственно одного квалифицированного и одного неквалифицированного рабочего. Соотношение коэффициентов а и b — предельная норма технической замены неквалифицированных грузчиков квалифицированными. Она постоянна и равнаN : MRTS xy = a/b = N.

    Пусть, например, квалифицированный грузчик в состоянии в единицу времени обработать 3 т груза (это будет коэффициент а в производственной функции), а неквалифицированный — только 1 т (коэффициент b). Значит, работодатель может отказаться от трех неквалифицированных грузчиков, дополнительно нанимая одного квалифицированного грузчика, чтобы выпуск (общий вес обработанного груза) при этом остался прежним.

    Изокванта в данном случае является линейной (рис. 8.5).

    Рис. 8.5. Изокванта при совершенной заменяемости факторов

    Тангенс угла наклона изокванты равен предельной норме технической замены неквалифицированных грузчиков квалифицированными.

    Еще одна производственная функция — функция Леонтьева. Она предполагает жесткую дополняемость факторов производства. Это означает, что факторы могут использоваться только в строго определенной пропорции, нарушение которой технологически невозможно. Например, авиационный рейс может быть нормально осуществлен при наличии как минимум одного самолета и пяти членов экипажа. При этом нельзя увеличивать самолето-часы (капитал), одновременно сокращая человеко-часы (труд), и наоборот, и сохранять неизменным выпуск. Изокванты в данном случае имеют вид прямых углов, т.е. предельные нормы технической замены равны нулю (рис. 8.6). В то же время можно увеличивать выпуск (количество рейсов), увеличивая в одной и той же пропорции и труд, и капитал. Графически это означает переход на более высокую изокванту.

    Рис. 8.6. Изокванты в случае жесткой дополняемости факторов производства

    Аналитически такая производственная функция имеет вид: q = min {aK; bL} , где а иb — постоянные коэффициенты, отражающие производительность соответственно капитала и труда. Соотношение этих коэффициентов определяет пропорцию использования капитала и труда.

    В нашем примере с авиарейсом производственная функция выглядит так: q = min{1K; 0,2L} . Дело в том, что производительность капитала здесь составляет один рейс на один самолет, а производительность труда — один рейс на пять человек или 0,2 рейса на одного человека. Если авиакомпания располагает самолетным парком в 10 машин и имеет 40 человек летного персонала, то ее максимальный выпуск составит:q = min{ 1 х 8; 0,2 х 40} = 8 рейсов. Два самолета при этом будут простаивать на земле из-за нехватки персонала.

    Взглянем, наконец, на производственную функцию, предполагающую существование ограниченного числа производственных технологий для производства заданного количества продукции. Каждой из них соответствует определенное состояние труда и капитала. В результате мы имеем ряд опорных точек в пространстве «труд-капитал», соединив которые, получаем ломаную изокванту (рис. 8.7).

    Рис. 8.7. Ломаные изокванты при наличии ограниченного числа производственных методов

    На рисунке видно, что выпуск продукции в объемеq 1 можно получить при четырех комбинациях труда и капитала, соответствующих точкам А, B, С иD . Возможны также и промежуточные комбинации, достижимые в тех случаях, когда предприятие совместно использует две технологии для получения определенного совокупного выпуска. Как всегда, увеличив количества труда и капитала, мы переходим на более высокую изокванту.

    Производство - основная область деятельности фирмы. Фирмы используют производственные факторы, которые называются также вводимыми (входными) факторами производства..

    Производственная функция - это зависимость между набором факторов производства и максимально возможным объемом продукта, производимым с помощью данного набора факторов .

    Производственная функция может быть представлена множеством изоквант, связанных с различными уровнями объема производства. Такой вид функции, когда устанавливается явная зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска.

    В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, напр., разные виды и составы удобрений, методы обработки почвы. Наряду с подобными производственной функцией используются обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к ПФ с взаимозаменяемыми ресурсами). Частными случаями ПФ можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию: зависимость потребных капиталовложений от производственной мощности будущего предприятия .

    Существует широкий выбор алгебраических выражений, которые можно использовать для представления производственных функций. Простейшая модель - это специальный случай общей модели анализа производства. Если фирме доступен только один вид деятельности, то производственную функцию можно представить прямоугольными изоквантами с постоянной отдачей от масштаба. Возможность изменять соотношение факторов производства отсутствует, и эластичность замены, безусловно, равна нулю. Это крайне специализированная производственная функция, но ее простота объясняет ее широкое применение во многих моделях .

    Математически производственные функции могут быть представлены в различных формах - от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени ..

    Производственная функция графически представляется семейством изоквант. Чем дальше от начала координат расположена изокванта, тем больший объем производства она отражает. В отличие от кривой безразличия, каждая изокванта характеризует количественно определенный объем выпуска.

    Рисунок 2 _ Изокванты, соответствующие различному объему производства

    На рис. 1 представлено три изокванты, соответствующие объему производства в 200, 300 и 400 единиц продукции. Можно сказать, что для выпуска 300 единиц продукции необходимо K 1 единиц капитала и L 1 единиц труда или K 2 единиц капитала и L 2 единиц труда, или любая другая их комбинация из того множества, которое представлено изоквантой Y 2 = 300.

    В общем случае в множестве X допустимых наборов производственных факторов выделяется подмножество X c , называемое изоквантой производственной функции, которое характеризуется тем, что для всякого вектора справедливо равенство

    Таким образом, для всех наборов ресурсов, соответствующих изокванте, оказываются равными объемы выпускаемой продукции. По существу изокванта представляет собой описание возможности взаимной замены факторов в процессе производства продукции, обеспечивающей неизменный объем производства. В связи с этим оказывается возможным определить коэффициент взаимной замены ресурсов, используя дифференциальное соотношение вдоль любой изокванты

    Отсюда коэффициент эквивалентной замены пары факторов j и k равен:

    Полученное соотношение показывает, что если производственные ресурсы замещаются в отношении, равном отношению приростных продуктивностей, то количество производимой продукции остается неизменным. Нужно сказать, что знание производственной функции позволяет охарактеризовать масштабы возможности осуществить взаимную замену ресурсов в эффективных технологических способах. Для достижения этой цели служит коэффициент эластичности замены ресурсов по продукции

    который вычисляется вдоль изокванты при неизменном уровне затрат прочих производственных факторов. Величина sjk представляет собой характеристику относительного изменения коэффициента взаимной замены ресурсов при изменении соотношения между ними. Если отношение взаимозаменяемых ресурсов изменится на sjk процентов, то коэффициент взаимной замены sjk изменится на один процент. В случае линейной производственной функции коэффициент взаимной замены остается неизменным при любом соотношении используемых ресурсов и поэтому можно считать, что эластичность s jk = 1. Соответственно большие значения sjk свидетельствуют о том, что возможна большая свобода в замене производственных факторов вдоль изокванты и при этом основные характеристики производственной функции (продуктивности, коэффициент взаимозамены) будут меняться очень слабо .

    Для степенных производственных функций для любой пары взаимозаменяемых ресурсов справедливо равенство s jk = 1.

    Представление эффективного технологического множества с помощью скалярной производственной функции оказывается недостаточным в тех случаях, когда нельзя обойтись единственным показателем, описывающим результаты деятельности производственного объекта, но необходимо использовать несколько (М) выходных показателей (рисунок 3).

    Рисунок 3 _ Различные случаи поведения изоквант

    В этих условиях можно использовать векторную производственную функцию

    Важное понятие предельной (дифференциальной) продуктивности вводится соотношением

    Аналогичное обобщение допускают все остальные главные характеристики скалярных ПФ.

    Подобно кривым безразличия изокванты также подразделяются на различные типы.

    Для линейной производственной функции вида

    где Y объем производства; A , b 1 , b 2 параметры; K , L затраты капитала и труда, и полном замещении одного ресурса другим изокванта будет иметь линейную форму (рисунок 4, а).

    Для степенной производственной функции

    Тогда изокванты будут иметь вид кривых (рисунок 4,б).

    Если изокванта отражает лишьодин технологический способ производства данного продукта, то труд и капитал комбинируются в единственно возможном сочетании (рисунок 4,в).

    г) Ломаные изокванты

    Рисунок 4 - Разные варианты изоквант

    Такие изокванты иногда называют изоквантами леонтьевского типа по имени американского экономиста В.В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода inputoutput (затраты выпуск).

    Ломаная изокванта предполагает наличие ограниченного количества технологий F (рисунок 4,г).

    Изокванты подобной конфигурации используются в линейном программировании для обоснования теории оптимального распределения ресурсов. Ломаные изокванты наиболее реалистично представляют технологические возможности многих производственных объектов. Однако в экономической теории традиционно используют главным образом кривые изокванты, которые получаются из ломаных при увеличении числа технологий и увеличении соответственно точек излома .

    Наиболее широко распространены мультипликативно-степенные формы представления производственных функций. Их особенность состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так:

    Здесь коэффициент А, стоящий перед знаком умножения, учитывает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Напр., в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей - численность занятого населения x1, сумму основных и оборотных фондов x2, площадь используемой земли x3. Только два сомножителя у функции Кобба-Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20-30-е гг. ХХ в.:

    N = A · Lб · Kв,

    где N - национальный доход; L и K - соответственно объемы приложенного труда и капитала (подробнее см.;Кобба-Дугласа функция).

    Степенные коэффициенты (параметры) мультипликативно-степенной производственной функции показывают ту долю в процентном приросте конечного продукта, которую вносит каждый из сомножителей (или на сколько процентов возрастет продукт, если затраты соответствующего ресурса увеличить на один процент); они являются коэффициентами эластичности производства относительно затрат соответствующего ресурса. Если сумма коэффициентов составляет 1, это означает однородность функции: она возрастает пропорционально росту количества ресурсов. Но возможны и такие случаи, когда сумма параметров больше или меньше единицы; это показывает, что увеличение затрат приводит к непропорционально большему или непропорционально меньшему росту выпуска - эффект масштаба .

    В динамическом варианте применяются разные формы производственной функции. Например в 2-факторном случае: Y(t) = A(t) Lб(t) Kв(t), где множитель A(t) обычно возрастает во времени, отражая общий рост эффективности производственных факторов в динамике.

    Логарифмируя, а затем дифференцируя по t указанную функцию, можно получить соотношения между темпами прироста конечного продукта (национального дохода) и прироста производственных факторов (темпы прироста переменных принято здесь описывать в процентах).

    Дальнейшая “динамизация” ПФ может заключаться в использовании переменных коэффициентов эластичности.

    Описываемые ПФ соотношения носят статистический характер, т. е. проявляются только в среднем, в большой массе наблюдений, поскольку реально на результат производства воздействуют не только анализируемые факторы, но и множество неучитываемых. Кроме того, применяемые показатели как затрат, так и результатов неизбежно являются продуктами сложного агрегирования (напр., обобщенный показатель трудовых затрат в макроэкономической функции вбирает в себя затраты труда разной производительности, интенсивности, квалификации и т. д.).

    Особая проблема - учет в макроэкономических ПФ фактора технического прогресса (подробнее см. в ст. “Научно-технический прогресс”). С помощью ПФ изучается также эквивалентная взаимозаменяемость факторов производства (см. Эластичность замещения ресурсов), которая может быть либо неизменной, либо переменной (т. е. зависимой от объемов ресурсов). Соответственно функции делят на два вида: с постоянной эластичностью замены (CES - Constant Elasticity of Substitution) и с переменной (VES - Variable Elasticity of Substitution) (см. ниже).

    На практике применяются три основных метода определения параметров макроэкономических ПФ: на основе обработки временных рядов, на основе данных о структурных элементах агрегатов и о распределении национального дохода. Последний метод называется распределительным.

    При построении производственной функции необходимо избавляться от явлений мультиколлинеарности параметров и автокорреляции - в противном случае неизбежны грубые ошибки.

    Приведем некоторые важные производственные функции.

    Линейная производственная функция:

    P = a1x1 + ... + anxn,

    где a1, ..., an - оцениваемые параметры модели: здесь факторы производства замещаемы в любых пропорциях.

    Функция CES:

    P = A [(1 - б) K-b + бL-b]-c/b,

    в этом случае эластичность замещения ресурсов не зависит ни от K, ни от L и, следовательно, постоянна:

    Отсюда и происходит название функции.

    Функция CES, как и функция Кобба- Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем эластичность замещения капитала трудом и, наоборот, труда капиталом в функции Кобба-Дугласа, равная единице, здесь может принимать различные значения, не равные единице, хотя и является постоянной. Наконец, в отличие от функции Кобба-Дугласа логарифмирование функции CES не приводит ее к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа .

    Производственная функция всегда конкретна, т.е. предназначается для данной технологии. Новая технология - новая производительная функция. С помощью производственной функции определяется минимальное количество затрат, необходимых для производства данного объема продукта.

    Производственные функции, независимо от того, какой вид производства ими выражается, обладают следующими общими свойствами:

    • 1) Увеличение объема производства за счет роста затрат только по одному ресурсу имеет предел (нельзя нанимать много рабочих в одно помещение - не у всех будут места).
    • 2) Факторы производства могут быть взаимодополняемы (рабочие и инструменты) и взаимозаменяемы (автоматизация производства).

    В наиболее общем виде производственная функция выглядит следующим образом:

    где - объем выпуска;

    K- капитал (оборудование);

    М- сырье, материалы;

    Т - технология;

    N - предпринимательские способности.

    Наиболее простой является двухфакторная модель производственной функции Кобба - Дугласа, с помощью которой раскрывается взаимосвязь труда (L) и капитала (К).

    Эти факторы взаимозаменяемы и взаимодополняемы. Еще в 1928 году американские ученые - экономист П. Дуглас и математик Ч. Кобб - создали макроэкономическую модель, позволяющую оценить вклад различных факторов производства в увеличении объема производства или национального дохода. Эта функция имеет следующий вид:

    где А - производственный коэффициент, показывающий пропорциональность всех функций и изменяется при изменении базовой технологии (через 30-40 лет);

    K, L- капитал и труд;

    б,в -коэффициенты эластичности объема производства по затратам капитала и труда.

    Если б = 0,25, то рост затрат капитала на 1% увеличивает объем производства на 0,25%.

    На основе анализа коэффициентов эластичности в производственной функции Кобба - Дугласа можно выделить:

    1) пропорционально возрастающую производственную функцию, когда

    2) непропорционально - возрастающую

    3) убывающую

    Рассмотрим короткий период деятельности фирмы, в котором из двух факторов переменным является труд. В такой ситуации фирма может увеличить производство за счет использования большего количества трудовых ресурсов (рисунок 5).

    Рисунок 5_ Динамика и взаимосвязь общего среднего и предельного продуктов

    На рисунке 5 виден график производственной функции Кобба - Дугласа с одной переменной изображен - кривая ТРн .

    Функция Кобба-Дугласа имела долгую и успешную жизнь без серьезных соперников, но недавно ей составила сильную конкуренцию новая функция Эрроу, Ченери, Минхаса и Солоу, которую мы будем называть сокращенно SMAC. (Браун и Де Кани также разработали эту функцию независимо). Основное отличие функции SMAC заключается в том, что вводится постоянная эластичности замещения у, отличная от единицы (как в функции Кобба-Дугласа) и нуля: как в модели затраты- выпуск .

    Разнообразие рыночных и технологических условий, какое наблюдается в современной экономике, внушает мысль о невозможности удовлетворить основным требованиям разумного агрегирования, за исключением, может быть, отдельных фирм в одной и той же отрасли или ограниченных секторов экономики .

    Таким образом, в экономико-математических моделях производства каждая технология графически может быть представлена точкой, координаты которой отражают минимально необходимые затраты ресурсов K и L для производства данного объема выпуска. Множество таких точек образуют линию равного выпуска, или изокванту. Т.е., производственная функция графически представляется семейством изоквант. Чем дальше от начала координат расположена изокванта, тем больший объем производства она отражает. В отличие от кривой безразличия, каждая изокванта характеризует количественно определенный объем выпуска. Обычно в микроэкономике анализируется двухфакторная производственная функция, отражающая зависимость выпуска от количества используемых труда и капитала.



    Полезные инструменты