Техника и технология предприятий отрасли электроэнергетика. Виды электроэнергетики. Генерация электрической энергии


Содержание .

1.Введение……….3
2.Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие…………………….. 4
3.Сырьевые и топливные ресурсы отрасли и их развитие ……………… 7
4.Размеры производства продукции с распределением по главным географическим регионам………………………. 10
5.Главные страны производители электроэнергии…….. 11
6.Главные районы и центры производства электроэнергии ……………. 13
7.Природоохранные и экологические проблемы, возникающие в связи с развитием отрасли……………………….. 14
8.Главные страны (районы) экспорта продукции электроэнергетики …. 15
9.Перспектива развития и размещения отрасли ………. 16
10.Заключение ……………………. 17
11.Список используемой литературы………………... 18

-2-
Введение.

Электроэнергетика – составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Она имеет очень важное преимущество перед энергией других видов - относительную легкость передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).
Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).
Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Представить без электроэнергии наш быт также невозможно.
Современное общество к концу ХХ века столкнулось с энергетическими проблемами, которые приводили известной степени даже к кризисам. Человечество старается найти новые источники энергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизна транспортировки, экологическая чистота, восполняемость. Уголь и газ отходят на второй план: их применяют только там, где невозможно использовать что-либо другое. Всё большее место в нашей жизни занимает атомная энергия: её можно использовать как в ядерных реакторах космических челноков, так и в легковом автомобиле.

-3-
Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие.

Электроэнергетика входит в состав топливно-экономического комплекса, образуя в нем, как иногда говорят «верхний этаж». Можно сказать, что она относится к так называемым «базовым» отраслям промышленности. Эта её роль объясняется необходимостью электрификации самых различных сфер человеческой деятельности. Развитие электроэнергетики является неприемлемым условием развития других отраслей промышленности и всей экономики государств.
Энергетика включает в себя совокупность отраслей, снабжающих другие отрасли энергоресурсами. В нее входят все топливные отрасли и электроэнергетика, включая разведку, освоение, производство, переработку и транспортировку источников тепловой и электрической энергии, а также самой энергии.
Динамика мирового производства электроэнергетики показана на рис.1 , из которого вытекает, что во второй половине ХХ в. выработка электроэнергии увеличилась почти в 15 раз. На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы.
На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы. В первой половине 1990-х гг. ни составляли соответственно 2,5% и 1,55 в год.
Согласно прогнозам, к 2010 году мировое потребление электроэнергии может возрасти до 18-19 трлн. кВт/час, а к 2020г.- до 26-27 трлн. кВт./ч. соответственно будут возрастать и установленные мощности электростанций мира, которые уже в середине 1990-х г превысил и уровень 3 млрд. кВт.
Между тремя основными группами стран выработка электроэнергии распределяется следующим образом: на долю экономически развитых стран приходится 65%, развивающихся - 33% и стран с переходной экономикой - 13%. Предполагают, что доля развивающихся стран в перспективе будет возрастать, и к 2020 г. они обеспечат уже около Ѕ мировой выработки электроэнергии.
В мировом хозяйстве развивающиеся страны по-прежнему выступают главным образом в качестве поставщиков, а развитые - потребителей энергии.
На развитии электроэнергетики оказывают влияние как
природные, так и социально-экономические факторы.
Электрическая энергия - универсальный, эффективный
-4-
технически и экономический вид используемой энергии. Важна также экологическая безопасность использования и передачи по сравнению со всеми видами топлива (учитывая сложности и экологическую составляющую при их транспортировке).
Электрическая энергия вырабатывается на электростанциях разного типа - тепловых (ТЭС), гидравлических (ГЭС), атомных (АЭС), в сумме дающих 99% производства, а также на электростанциях, испльзующих энергию солнца, ветра, приливов и пр. (таб.1).
Таблица 1
Производство электроэнергии в мире и в некоторых странах
на электрических станциях разного типа (2001г.)


Страны мира
Производство электроэнергии
(млн кВт/ч)
Доля производства электроэнергии (%)
ТЭС ГЭС АЭС другие
США 3980 69,6 8,3 19,8 2,3
Япония 1084 58,9 8,4 30,3 0,4
Китай 1326 79,8 19,0 1,2 -
Россия 876 66,3 19,8 13,9 -
Канада 584 26,4 60,0 12,3 1,3
Германия 564 63,3 3,6 30,3 2,8
Франция 548 79,7 17,8 2,5 -
Индия 541 7,9 15,3 76,7 0,1
Великобритания 373 69,0 1,7 29,3 0,1
Бразилия 348 5,3 90,7 1,1 2,6
Мир в целом 15340 62,3 19,5 17,3 0,9

5-
Вместе с тем именно рост потребления электроэнергии связан с теми сдвигами, которые формируются в промышленном производстве под воздействием НТП: автоматизацией и механизацией производственных процессов, широким применением электроэнергии в технологических процессах, повышением степени электрификации всех отраслей хозяйства. Также значительно выросло потребление электроэнергии населением в связи с улучшением условий и качества жизни населения, широким распространением радио- и телеаппаратуры, бытовых электроприборов, компьютеров (в том числе использование всемирной компьютерной сети Интернет). С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)
Увеличение расходов на НИОКР в области энергетики значительно улучшило показатели работы тепловых станций обогащение угля, совершенствование оборудования ТЭС, повышение мощности агрегатов (котлов, турбин, генераторов). Ведутся активные научные исследования в области ядерной энергетики, использования геотермальной и солнечной энергии и т. д.

-6-
Сырьевые и топливные ресурсы отрасли и их развитие.

Для выработки электроэнергии в мире ежегодно потребляется 15 млрд. т условного топлива и объем произведенной электроэнергии растет. О чем наглядно свидетельствует рис. 2
Рис. 2. Рост мирового потребления первичных энергоресурсов в ХХв, млрд тонн условного топлива.
Суммарная мощность электростанций всего мира в конце 90-х годов превышала 2,8млрд кВт, а выработка электроэнергетики вышла на уровень 14 трлн кВт/ч год.
Основную роль в электроснабжении мирового хозяйства выполняют тепловые станции (ТЭС), работающие на минеральном топливе, главным образом на мазуте или газе. Наиболее велика доля в теплоэнергетике таких стран, как ЮАР (почти 100%), Австралия, Китай, Россия, Германия и США и др., обладающих собственными запасами этого ресурса.
Теоретический гидроэнергетический потенциал нашей планеты оценивается в 33-49 трлн кВт/ч, а экономический (который может быть использован при современном развитии техники) в 15 трлн кВт/ч. Однако степень освоенности гидроэнергоресурсов в в разных регионах мира различна (в целом по миру лишь 14%). В Японии гидроресурсы используются на 2/3, в США и Канаде - на 3/5, в Латинской Америке - на 1/10, а в Африке на 1/20 гидроресурсного потенциала. (Таб.2)
Таблица 2
Крупнейшие ГЭС мира.

Наименование Мощность (млн. кВт) Река Страна
Итайпу 12,6 Парана Бразилия/Парагвай
Гури 10,3 Карони Венесуэла
Гранд - Кули 9,8 Колумбия США
Саяно-Шушенская 6,4 Енисей Россия
Красноярская 6,0 Енисей Россия
Ла-Гранд-2 5,3 Ла-Гранд Канада
Черчилл-Фолс 5,2 Черчилл Канада
Братская 4,5 Ангара Россия
Усть-Илимская 4,3 Ангара Россия
Тукуруи 4,0 Такантинс Бразилия

Однако общая структура производства электроэнергии серьезно изменилась с 1950 г. Если раньше применялись лишь
-7-
тепловые(64,2%) и гидравлические станции (35,8%), то ныне доля ГЭС снизилась до 19% за счет использования ядерной энергетики и других альтернативных источников получения энергии.
В последние десятилетия практического применение в мире получило использование Ядерной энергии. Производство электроэнергии на АЭС возросло в последние 20 лет в 10 раз. Со времени ввода в эксплуатацию первой атомной электростанции (1954год, СССР - г.Обнинск, мощность 5МВт), суммарная мощность АЭС мира превысила 350тыс МВт(Таб. 3) До конца 80-х годов ядерная энергетика развивалась опережающими темпами по отношению ко всей электроэнергетике, особенно в экономически высокоразвитых странах, дефицитных по другим энергоресурсам. Доля атомных станций в общем производстве электроэнергии мира в 1970г составляла 1,4%, в1980 г. - 8,4%, а 1993г. уже 17,7%, хотя в последующие годы доля несколько снизилась и стабилизировалась в 2001г. - около 17%). Во много тысяч раз меньшая потребность в топливе (1 кг урана эквивалентен, по заключенной в нём энергии, 3 тыс. т каменного угля) почти освобождает размещение АЭС от влияния Транспортного фактора.
Таблица 3
Ядерный потенциал отдельных стран мира, на 1января 2002г.
Страна Действующие реакторы Строящиеся реакторы Доля АЭС в общем производстве электроэнергии, %
Число блоков Мощность, МВт Число блоков Мощность, МВт
Мир 438 352110 36 31684 17
США 104 97336 - - 21
Франция 59 63183 - - 77
Япония 53 43533 4 4229 36
Вели-кобрита-ния 35 13102 - - 24
Россия 29 19856 5 4737 17
ФРГ 19 21283 - - 31
Респуб-лика Корея 16 12969 4 3800 46
Канада 14 10007 8 5452 13
Индия 14 2994 2 900 4
Украина 13 12115 4 3800 45
Швеция 11 9440 - - 42
-8-

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии мирового океана),в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).
Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду.
Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 станах мира. Но сам характер использования этих источников многом зависит от природных особенностей. Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана в 1913году. Число стран, имеющих ГеоТЭС, уже превышает 20.
Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.
Ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн. человек. В рамках ЕС поставлена задача к 2005году увеличить долю ветроэнергетики в производстве электроэнергии до 2% (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030г. - до 30%
Хотя солнечную энергию использовали для обогрева домов ещё в древней Греции, зарождение современной гелиоэнергетики произошло только в ХIХ в., а становление в ХХ в.
На мировом «солнечном саммите», проведенном в середине 1990-х гг. была разработана Мировая солнечная программа на 1996 - 2005гг, имеющая глобальные, региональные и национальные разделы.

-9-
Размеры производства продукции с распределением по главным географическим регионам.

Мировое производство и потребление топлива и энергии имеют и ярко выраженные географические аспекты, региональные различия. Первая линия таких различий проходит между экономически развитыми и развивающимися странами, вторая - между крупными регионами, третья - между отдельными государствами мира.
Таблица 4
Доля крупных регионов мира в мировом производстве электроэнергии (1950-2000 гг.), %

Регионы 1950г. 1970г. 1990г. 2000г.
Западная Европа 26,4 22,7 19,2 19,5
Восточная Европа 14,0 20,3 19,9 10,9
Северная Америка 47,7 39,7 31,0 31,0
Центральная и Южная Америка 2,2 2,6 4,0 5,3
Азия 6,9 11,6 21,7 28,8
Африка 1,6 1,7 2,7 2,9
Австралия и Океания 1,3 1,4 1,6 1,7

С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)
Показатель роста производства и потребления электроэнергии точно отражает все особенности развития хозяйства государств и регионов мира. Так, более 3/5 всей электроэнергии вырабатывается в промышленно развитых странах, среди которых по общей её выработке выделяются США, Россия, Япония, Германия, Канада, а также Китай.
Первые десять стран мира по производству электроэнергии на душу населения (тыс. кВт/час,1997год)

-10-
Главная страна производителя электроэнергии.

Рост производства электроэнергии был отмечен во всех крупных регионах и странах мира. Однако процесс проходил в них достаточно неравномерно. Уже в 1965 году США превысил общий мировой уровень производства электроэнергии 50-го года (СССР - только в 1975 году преодолел тот же рубеж). А ныне США, оставаясь по-прежнему мировым лидером, производят электроэнергии на уровне почти 4 трлн. кВт/ч (таб.5)
Таблица 5
Первые десять стран мира по производству электроэнергии (1950-2001гг), млрд. кВт/ч

67 Япония 857 Япония 1084 4 Канада 55 Китай 621 Россия 876 5 ФРГ 46 Канада 482 Канада 584 6 Франция 35 ФРГ 452 ФРГ 564 7 Италия 25 Франция 420 Индия 548 8 ГДР 20 Великоб- ритания
319 Франция 541 9 Швеция 18 Индия 289 Великобри- тания
373 10 Норвегия 18 Бразилия 223 Бразилия 348
По суммарной мощности электростанций и по производству электроэнергии США занимают первое место в мире. В структуре выработки электроэнергии преобладает производство её на ТЭС, работающих на угле, газе, мазуте (около 70%), остальное производят ГЭС и АЭС (28%). На долю альтернативных источников энергии приходится около 2% (имеется геоТЭС, солнечные и ветровые станции).
По числу энергоблоков работающих АЭС (110) США занимают первое место в мире. АЭС размещаются в основном на востоке страны и ориентированы на крупных потребителей электроэнергии (большинство в пределах 3-х мегалополисов).
Всего в стране действует более тысячи ГЭС, но особенно велико значение гидроэнергетики в штате Вашингтон (в бассейне р. Колумбия), а также в бассейне р. Теннеси. Кроме этого крупные ГЭС построены на реках Колорадо и Ниагара.
Второе место по общей выработки электроэнергии занимает
-11-
Китай, обогнав Японию и Россию.
Большая её часть производится на ТЭС (3/4), в основном работающих на угле. Крупнейшая ГЭС - Гэчжоуба построена на реке Янцзы. Много мелких и мельчайших ГЭС. Предполагается дальнейшее развитие гидроэнергетики в стране. Также действуют свыше 10 приливных электростанций (в т.ч. вторая по мощности в мире). В Лхасе (Тибет) построена геотермальная станция.

-12-
Главные районы и центры производства электроэнергии.

Крупные ТЭС строят обычно в районах добычи топлива(угля), либо в местах, удобных для его производства (в портовых городах). Тепловые станции, работающие на мазуте, располагаются в местах размещения нефтеперерабатывающих заводов, работающие на природном газе - вдоль трасс газопроводов.
В настоящее время из большинства действующих ГЭС с мощностью более 1 млн кВт свыше 50% находятся в промышленно развитых странах.
Крупнейшие по мощности из действующих за рубежом ГЭС: бразильско - парагвайская «Итайпу» на р. Паранда - с мощность свыше 12 млн кВт; венесуэльская «Гури» на р. Карони. Крупнейшие ГЭС в России построены на р. Енисей: Красноярская и Саяно-Шушенская (каждая мощностью более 6 млн кВт).
В энергоснабжении многих стран ГЭС играют решающую роль, например, в Норвегии, Австрии, Новой Зеландии, Бразилии, Гондурасе, Гватемале, Танзании, Непале, Шри-Ланке (80-90% общей выработки электроэнергии), а также в Канаде, Швейцарии и других государствах.
и т.д.................

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Все существующие виды электроэнергетики можно разделить на уже достигшие зрелости и находящиеся на стадии разработки и развития. Для одних требуется только модернизация, для других – инновационные технологические решения.

К зрелым видам электроэнергетики в первую очередь можно отнести тепловую, атомную, и гидроэнергетику. С определенными оговорками в эту группу попадают также некоторые виды альтернативной энергетики: солнечная, ветровая, приливная и пр. Они активно применяются во многих странах, но в силу некоторых ограничений не получили повсеместное распространение. Ну а на стадии формирования сейчас находятся другие виды энергетики: бестопливная энергетика, термоядерная энергетика и пр.

На территории России наибольшее распространение среди различных видов электроэнергетики получила тепловая энергетика, преимущественно газовая и угольная. Тепловые электростанции, которые работают на органическом топливе, традиционно находятся на лидирующих позициях в российской электроэнергетике. Это сложилось исторически и считается экономически оправданным.

Атомную энергетику на практике также иногда относят к подвиду тепловой электроэнергетики, потому как в результате деления атомных ядер в реакторе выделяется тепло, и далее все происходит так же, как и при сгорании органического топлива. Атомная энергетика в России — довольно популярный вид электроэнергетики. В нашей стране применяется полный цикл технологий от добычи урановых руд до выработки электроэнергии. Однако крупные аварии АЭС, которые имели место в последние десятки лет, настроили мировую общественность против этого вида электроэнергетики.

В гидроэнергетике для получения электрической энергии используют кинетическую энергию течения воды. ГЭС для функционирования требуется практически столько же электроэнергии, сколько они вырабатывают. Поэтому ГЭС, по сути, не являются генерирующими мощностями в чистом виде. Но такие станции при необходимости эффективно покрывают пиковые нагрузки, тем самым гидроэнергетика выгодно выделяется среди других видов электроэнергетики.

К альтернативным видам электроэнергетики относят ветровую и солнечную энергетику, которые по некоторым причинам не получили достаточное распространение. На данный момент ветровые и солнечные станции являются маломощными при дороговизне оборудования для них. К тому же обязательно необходим резервный источник питания (при отсутствии ветра или в ночное время соответственно). Также к альтернативным видам электроэнергетики относят приливную гидроэнергетику. Для строительства приливной электростанции необходимо морское побережье с достаточно сильными колебаниями уровня воды, иначе это будет экономически нецелесообразно.

Преимуществом альтернативных видов электроэнергетики является возобновляемость источников такой энергии. Их применение позволяет существенно сэкономить органическое топливо, сохраняя запасы углеводородов. Научные исследования, проводимые в области альтернативных видов электроэнергетики, делают их все более доступными для применения. Возобновляемая энергетика получает все большее географическое распространение по всему миру.

Существуют и другие виды электроэнергетики, технология которых пока малоизвестна. К ним можно отнести разработку прямых способов получения электроэнергии из окружающей среды с помощью накапливающихся зарядов ионосферы, использования энергии вращения земли и др. Использование различных видов электроэнергетики позволяет наиболее эффективно распределить нагрузку, покрывая мировой спрос на электроэнергию и создавая необходимый резерв мощности.

Промышленность любой страны состоит из большого количества разнообразных отраслей, таких как машиностроение или электроэнергетика. Это те направления, в которых развивается конкретная страна, и у разных государств могут быть различные акценты в зависимости от многих факторов, таких как природные ресурсы, технологическое развитие и так далее. В данной статье речь пойдет об одной очень важной и активно развивающейся на сегодняшний день отрасли промышленности - об электроэнергетике. Электроэнергетика - это отрасль, которая развивалась в течение многих лет постоянно, однако именно в последние годы она начала активно двигаться вперед, подталкивая человечество к использованию более экологичных источников энергии.

Что это такое?

Итак, в первую очередь необходимо разобраться, что вообще представляет собой данная отрасль. Электроэнергетика - это подразделение энергетики, которое отвечает за производство, распределение, передачу и продажу именно электрической энергии. Среди других отраслей данной сферы именно электроэнергетика является самой популярной и распространенной сразу по целому ряду причин. Например, из-за легкости ее дистрибуции, возможности передачи ее на огромные расстояния за кратчайшие промежутки времени, а также из-за ее универсальности - электрическую энергию можно без проблем при необходимости трансформировать в другие такие как тепловая, световая, химическая и так далее. Таким образом, именно развитию данной отрасли огромное внимание уделяют правительства мировых держав. Электроэнергетика - это отрасль промышленности, за которой будущее. Именно так считают многие люди, и именно поэтому вам необходимо более детально ознакомиться с ней с помощью данной статьи.

Прогресс производства электроэнергии

Чтобы вы могли полностью понять, насколько важной является для мира данная отрасль, необходимо взглянуть на то, как происходило развитие электроэнергетики на протяжении всей истории ее существования. Сразу же стоит отметить, что производство электроэнергии обозначается в миллиардах киловатт в час. В 1890 году, когда электроэнергетика только начинала развиваться, производилось всего девять млрд кВт/ч. Большой скачок произошел к 1950 году, когда производилось уже более чем в сто раз больше электроэнергии. С того момента развитие шло гигантскими шагами - каждое десятилетие добавлялось сразу по несколько тысяч миллиардов кВт/ч. В результате к 2013 году мировыми державами производилось в сумме 23127 млрд кВт/ч - невероятный показатель, который продолжает расти с каждым годом. На сегодняшний день больше всего электроэнергии дают Китай и Соединенные Штаты Америки - именно эти две страны имеют наиболее развитые отрасли электроэнергетики. На долю Китая приходится 23 процента вырабатываемой во всем мире электроэнергии, а на долю США - 18 процентов. Следом за ними идут Япония, Россия и Индия - каждая из этих стран имеет как минимум в четыре раза меньшую долю в мировом производстве электроэнергии. Что ж, теперь вам также известна и общая география электроэнергетики - пришло время перейти к конкретным видам этой отрасли промышленности.

Тепловая электроэнергетика

Вы уже знаете, что электроэнергетика - это отрасль энергетики, а сама энергетика, в свою очередь, является отраслью промышленности в целом. Однако разветвление не заканчивается на этом - электроэнергетики имеется несколько видов, некоторые из них очень распространенные и используются повсеместно, другие не так популярны. Существуют и альтернативные области электроэнергетики, где используются нетрадиционные методы, позволяющие добиваться масштабного производства электроэнергии без вреда окружающей среде, а также с нейтрализацией всех негативных особенностей традиционных методов. Но обо всем по порядку.

В первую очередь необходимо рассказать о тепловой электроэнергетике, так как она является самой распространенной и известной во всем мире. Как получается электроэнергия данным способом? Легко можно догадаться, что в данном случае происходит преобразование тепловой энергии в электрическую, а тепловая получается путем сжигания различных видов топлива. Теплоэлектроцентрали можно найти практически в каждой стране - это самый простой и удобный процесс получения больших объемов энергии при малых затратах. Однако именно этот процесс и является одним из самых вредных для окружающей среды. Во-первых, для получения электроэнергии используется природное топливо, которое когда-нибудь гарантированно закончится. Во-вторых, продукты горения выбрасываются в атмосферу, отравляя ее. Именно поэтому и существуют альтернативные методы получения электроэнергии. Однако это еще далеко не все традиционные виды электроэнергетики - есть и другие, и дальше мы сконцентрируемся именно на них.

Ядерная электроэнергетика

Как и в предыдущем случае, при рассмотрении ядерной электроэнергетики можно многое почерпнуть уже из названия. Выработка электроэнергии в данном случае производится на атомных реакторах, где происходит расщепление атомов и деление их ядер - в результате этих действий происходит большой выброс энергии, которая затем и трансформируется в электрическую. Вряд ли кому-то еще неизвестно, что это самая небезопасная электроэнергетика. Промышленность далеко не каждой страны имеет свою долю в мировом производстве ядерной электроэнергии. Любая утечка из такого реактора может привести к катастрофическим последствиям - достаточно вспомнить Чернобыль, а также происшествия в Японии. Однако в последнее время безопасности уделяется все больше внимания, поэтому атомные электростанции строятся и дальше.

Гидроэнергетика

Еще одним популярным способом производства электроэнергии является получение ее из воды. Этот процесс происходит на гидроэлектростанциях, он не требует ни опасных процессов деления ядра атома, ни вредных для окружающей среды сжиганий топлива, но имеет и свои минусы. Во-первых, это нарушение естественного течения рек - на них строятся дамбы, за счет которых создается необходимое течение воды в турбины, благодаря чему и получается энергия. Зачастую из-за строительства дамб осушаются и гибнут реки, озера и другие природные водохранилища, поэтому нельзя сказать, что это идеальный вариант для данной отрасли энергетики. Соответственно, многие предприятия электроэнергетики обращаются не к традиционным, а к альтернативным видам получения электроэнергии.

Альтернативная электроэнергетика

Альтернативная электроэнергетика - это собрание видов электроэнергетики, отличных от традиционных в основном тем, что они не требуют нанесения того или иного вида вреда окружающей среде, а также не подвергают никого опасности. Речь идет о водородной, приливной, волновой и многих других разновидностях. Самым распространенными из них являются ветро- и гелиоэнергетика. Именно на них делается акцент - многие считают, что именно за ними будущее данной отрасли. В чем суть этих видов?

Ветроэнергетика - это получение электроэнергии из ветра. В полях строятся ветряные мельницы, которые работают очень эффективно и позволяют обеспечивать энергией ненамного хуже, чем описанные ранее методы, но при этом для действия ветряков нужен только лишь ветер. Естественно, недостатком данного метода является то, что ветер - это природная стихия, которую невозможно себе подчинить, однако ученые работают над улучшением функциональности ветряных мельниц современности. Что касается гелиоэнергетики, то здесь электроэнергия получается из солнечных лучей. Как и в случае с предыдущим видом, здесь также необходимо работать над увеличением аккумулирующей мощности, так как солнце светит далеко не всегда - и даже если погода безоблачная, в любом случае в определенный момент наступает ночь, когда солнечные панели не способны производить электроэнергию.

Передача электроэнергии

Что ж, теперь вы знаете все основные виды получения электроэнергии, однако, как вы уже могли понять из определения термина электроэнергетики, получением все не ограничивается. Энергию необходимо передавать и распределять. Так, передается по линиям электропередач. Это металлические проводники, которые создают одну большую электрическую сеть во всем мире. Ранее чаще всего использовались воздушные линии - именно их вы можете видеть вдоль дорог, перекинутые от одного столба к другому. Однако в последнее время большую популярность обретают кабельные линии, которые прокладываются под землей.

История развития электроэнергетики России

Электроэнергетика России начала развиваться тогда же, когда и мировая - в 1981 году, когда впервые была удачно осуществлена передача электрической мощности на практически двести километров. В реалиях дореволюционной России электроэнергетика была невероятно слабо развита - годовая выработка электричества на такую огромную страну составляла всего 1.9 млрд кВт/ч. Когда же состоялась революция, Владимир Ильич Ленин предложил реализация которого была начата немедленно. Уже к 1931 году задуманный план был выполнен, однако скорость развития оказалась настолько впечатляющей, что к 1935 году план был перевыполнен в три раза. Благодаря этой реформе уже к 1940 году годовая выработка электроэнергии в России составила 50 млрд кВт/ч, что в двадцать пять раз больше, чем до революции. К сожалению, резкий прогресс был прерван Второй мировой войной, однако после ее завершения работы восстановились, и к 1950 году Советский Союз вырабатывал 90 млрд кВт/ч, что составляло около десяти процентов всеобщей выработки электроэнергии по всему миру. Уже к середине шестидесятых годов Советский Союз вышел на второе место в мире по производству электроэнергии и уступал только Соединенным Штатам. Ситуация оставалась на таком же высоком уровне вплоть до распада СССР, когда электроэнергетика оказалась далеко не единственной отраслью промышленности, которая сильно пострадала из-за этого события. В 2003 году был подписан новый ФЗ об электроэнергетике, в рамках которого в ближайшие десятилетия должно происходить стремительное развитие этой отрасли в России. И страна определенно движется в этом направлении. Однако одно дело - подписать ФЗ об электроэнергетике, и совершенно другое - его реализовать. Именно об этом и пойдет речь далее. Вы узнаете о том, какие на сегодняшний день существуют проблемы электроэнергетики России, а также какие будут выбираться пути для их решения.

Избыток электрогенерирующих мощностей

Электроэнергетика России находится уже в гораздо более хорошем состоянии, чем десять лет назад, так что можно смело сказать, что прогресс идет. Однако на недавно проведенном энергетическом форуме были выявлены основные проблемы этой отрасли в стране. И первая из них - избыток электрогенерирующих мощностей, который был вызван массовой постройкой электростанций низкой мощности в СССР вместо строительства малого количества электростанций высокой мощности. Все эти станции все равно нужно обслуживать, поэтому выхода из ситуации два. Первый - это вывод мощностей из эксплуатации. Этот вариант был бы идеальным, если бы не огромные стоимости такого проекта. Поэтому Россия, скорее всего, будет двигаться в сторону второго выхода, а именно увеличения объема потребления.

Импортозамещение

После введения западных станций промышленность России очень остро ощутила свою зависимость от заграничных поставок - это сильно затронуло и электроэнергетику, где практически ни в одной из современных сфер деятельности полный процесс производства тех или иных генераторов не проходил исключительно на территории РФ. Соответственно, правительство планирует наращивать производственные мощности в нужных направлениях, контролировать их локализацию, а также пытаться максимально избавиться от зависимости от импорта.

Чистый воздух

Проблема заключается в том, что современные российский компании, работающие в сфере электроэнергетики, очень сильно загрязняют воздух. Однако Министерство экологии РФ ужесточило законодательство и стало чаще собирать штрафы за нарушение установленных норм. К сожалению, компании, страдающие от этого, не планируют пытаться оптимизировать свое производство - они бросают все силы на то, чтобы задавить «зеленых» количеством, и требуют смягчения законодательства.

Миллиарды долга

На сегодняшний день суммарный долг пользователей электроэнергии по всей России составляет около 460 миллиардов российских рублей. Естественно, если бы в распоряжении страны были все те деньги, которые ей задолжали, то она могла бы значительно быстрее развивать электроэнергетику. Поэтому правительство планирует ужесточить наказания за просрочки в оплате счетов за электричество, а также будет призывать тех, кто не хочет платить по счетам в будущем, устанавливать собственные солнечные панели и снабжать себя энергией самостоятельно.

Регулируемый рынок

Самая главная проблема отечественной электроэнергетики - это полная регулируемость рынка. В европейских странах регулирование рынка энергетики практически полностью отсутствует, там имеется самая настоящая конкуренция, поэтому отрасль развивается огромными темпами. Все эти правила и регуляции очень сильно тормозят развитие, и в результате РФ уже начала закупки электроэнергии из Финляндии, где рынок практически не регулируется. Единственное решение этой проблемы - переход к модели свободного рынка и полный отказ от регуляции.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и региональной экономики

КУРСОВАЯ РАБОТА

по дисциплине «Экономическая география России»

География электроэнергетической промышленности России.

Научный руководитель: доцент Землянская Т.В.

Курсовую работу выполнила студентка первого курса группы Э-108

Кустова Екатерина Николаевна

Кемерово

Введение………………………………………………………………3

1. Роль и место электроэнергетики в топливно-энергетическом комплексе и экономике……………………………………………………………….4

2. Уровень развития электроэнергетики в России в сравнении с другими странами (объем производства на ушу населения)……………………6

3. Структура производства электроэнергии, динамика ее развития

в сравнении с другими странами. ……………………………………...8

4. Структура потребления элекроэнергии по отраслям народного хозяйства в сравнении с другими странами. Программа энергосбережения………………………………………………………10

5. Типы электростанций: их достоинства и недостатки, факторы размещения……………………………………………………………..12

5.1. Тепловая электростанция

5.2. Гидравлическая электростанция

5.3. Атомная электростанция

5.4. Альтернативные источники энергии

6. Исторические особенности формирования электроэнергетики……17

6.1. План ГОЭЛРО и география электростанции

6.2. Развитие электроэнергетики в 50-70-е годы

7. Перспективы развития отрасли. «Второй план ГОЭЛРО».

8. Регионообразующее значений крупнейших электростанций.

9. Характеристика Единой системы России, реформа РАО ЕЭС.

10. Крупнейшие корпорации отрасли

Заключение

Список литературы

Введение

Электроэнергетическая промышленность - ведущая и составная часть энергетики. Она обеспечивает производство, трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет региоонообразующую роль, является стержнем материально-технической базы общества, а также способствует оптимизации территориальной организации производительных сил. Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным объектом исследования является энергетическая отрасль, ее специфика и значение.

Основными задачами исследования является:

Определения значимость данной отрасли в хозяйственном комплексе страны;

Изучение энергетических ресурсов и факторы размещения электроэнергетической промышленности в России;

Рассмотрение различных типов электростанции, их положительные и отрицательные факторы;

Изучение альтернативных источников энергии, какую роль они играют в современной энергетике;

Изучение целей реструктуризации и перспективы российской электроэнергетической промышленности.

Основной целью данной курсовой работы является изучение принципов функционирования рассматриваемой отрасли в современных условиях, выявления основных проблем, связанных с экономическими, географическими, экологическими факторами и пути их преодоления.

1.Роль и место электроэнергетики в топливно-энергетическом комплексе и экономики России.

Совокупность предприятий, установок и сооружений, обеспечивающих добычу и переработку первичных топливно-энергетических ресурсов, их преобразование и доставку потребителям в удобной для использования форме, образует топливно-энергетический комплекс (ТЭК). ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.

Электроэнергетика играет особую роль не только в ТЭК, но и в экономике любой страны, и особенно России.

Электроэнергетика – основная системообразующая отрасль любой экономики. От ее состояния и развития зависят уровень и темпы социально-экономического развития страны. В процессе своего функционирования и развития электроэнергетика сотрудничает со многими отраслями хозяйства и конкурирует с некоторыми из них. Огромная роль принадлежит электроэнергетике в обеспечении нормальной деятельности всех отраслей хозяйства, в улучшении функционирования социальных структур и условий жизни населения. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – это основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан.

Электроэнергетика имеет очень важное преимущество перед энергией других видов - она легка для передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).

Последние 50 лет электроэнергетика является одной из наиболее динамично развивающихся отраслей народного хозяйства России. Основное потребление электроэнергии в настоящее время приходится на долю промышленности, в частности тяжелой индустрии (машиностроения, металлургии, химической и лесной промышленности). В промышленности электроэнергия применяется в действие различных механизмов и самих технологических процессах: без нее невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Велико значение электроэнергии в сельском хозяйстве, транспортном комплексе и в быту.

Электроэнергетика отличается большим районообразующим значением. Обеспечивая научно-технический прогресс, она сильно воздействует на развитие и территориальную организацию производительных сил.

Передача энергии на большие расстояния способствует эффективному освоению топливно-энергетических ресурсов независимо от их удаленности и места потребления.

Электроэнергетика способствует увеличению плотности размещения промышленных предприятий. В местах больших запасов энергетических ресурсов концентрируются энергоемкие (производство алюминия, магния, титана) и теплоемкие (производство химических волокон) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше, чем в традиционных отраслях.

2.Уровень развития отрасли в сравнении с другими странами (по объемам производства и на душу населения)

К числу крупнейших в мире производителей электроэнергии в 2009 г. относились США, Китай, Япония, Россия, Канада, Германия и Франция. Разрыв в производстве электроэнергии между развитыми и развивающимися странами велик: на долю развитых стран приходится около 65% всей выработки электроэнергии, развивающихся - 22%, стран с переходной экономикой - 13%.

В целом, в мире более 60% всей электроэнергии вырабатывается на тепловых электростанциях, около 20% - на гидроэлектростанциях, около 17% - на атомных электростанциях и около 1% - на геотермальных, приливных, солнечных, ветровых электростанциях. Однако в этом отношении наблюдаются большие различия по странам мира. Например, в Норвегии, Бразилии, Канаде и Новой Зеландии практически вся электроэнергия вырабатывается на ГЭС. В Польше, Нидерландах и ЮАР, наоборот, почти всю выработку электроэнергии обеспечивают ТЭС, а во Франции, Швеции, Бельгии, Швейцарии, Финляндии, Республике Корее электроэнергетика в основном базируется на АЭС.

В России находится много ГЭС, АЭС, ТЭЦ, ГРЭС, которые производят электроэнергию.

Таблица№1: Производство электроэнергии электростанциями в РФ

По сравнению с 1990 г. к 2000 г. произошло снижение производства энергии. В немалой степени это объясняется старением энергетического оборудования. Резкое снижение мощности вызывает критическое положение в снабжении электроэнергией ряда регионов России (Дальний Восток, Северный Кавказ и др.).

Если производство электроэнергии в 1990 г. взять за 100%, то в 2000 г. выработано всего 78%, т.е. на 22% меньше. А в 2000 в 2008 годах наблюдается рост производства электроэнергии. Сейчас Россия занимает четвертое место в мире по выработке электроэнергии, пропуская впереди США, Китай, Японию. На Россию приходится десятая часть производимой в мире электроэнергии, но по среднедушевому производству электроэнергии Россия находится в третьем десятке государств.

Таблица№2:Произведено электроэнергии в 2009 году

Лидерство России на мировом рынке энергоресурсов, с одной стороны, дает множество политических и экономических преимуществ, а с другой - накладывает целый ряд обязательств и серьезную ответственность. Причем не только на внешнем рынке, но и, внутри страны. Возрастающее потребление электроэнергии во всем мире и в активно развивающейся экономике России - устойчивая тенденция, требующая постоянного увеличения объемов как экспортных поставок энергоносителей, так, безусловно, и стабильного обеспечения растущих потребностей внутреннего рынка. Это придает первоочередную важность таким вопросам, как привлечение в отрасль инвестиций, техническое переоснащение и совершенствование объектов энергетики. Между тем отставание в развитии электроэнергетики от экономики в целом становится все более очевидным.

3. Структура производства электроэнергии, ее динамика в сравнении с зарубежными странами за последние 10 лет.

В состав энергетического хозяйства входят насколько элементов:

· Топливно-энергетический комплекс (ТЭК)- часть энергетического хозяйства от добычи (производства) энергетических ресурсов, их обогащения, преобразования и распределения до получения энергоносителей потребителями. Объединение разнородных частей в единых хозяйственный комплекс объясняется их технологическим единством, организационными взаимосвязями и экономической взаимозависимостью;

· Электроэнергетика – часть ТЭК, обеспечивающая производство и распределение электроэнергии;

· Централизованное теплоснабжение – часть ТЭК, которая производит и распределяет пар и горячую воду от источников общего пользования;

· Теплофикация – часть электроэнергетики и централизованного теплоснабжения, обеспечивающая комбинирование (совместное) производство электроэнергии, пар и орячей воды на теплоэлектростанциях (ТЭЦ) и магистральный транспорт тепла.

Электроэнергетическое производство (генерация, передача, распределение, сбыт электрической и бытовой энергии), как и всякое другое производство состоит из тех этапов: подготовка производства, собственно производство, поставка продукции.

Подготовка производства осуществляется в технико-экономическом и технологическом аспектах. К первой группе относится подготовка персонала, ресурсов (финансовых и материальных) и оборудования электростанций и сетей (электрических и тепловых). Среди этой деятельности, типичной для большинства промышленных отраслей, специфическими для электроэнергетики являются:

Подготовка энергетических ресурсов (создание запасов энергетического топлива на складах ТЭС, накопление воды в водохранилищах ГЭС, перезарядка реакторов АЭС) и проведение ремонтов основного оборудования электростанций и сетей, а также проверка, реконструкция и совершенствование средств оперативно-технологического (диспетчерского) и автоматического управления. Такая работа связанная с режимами электростанций и энергообъединений, проводится по согласованию с соответствующими диспетчерскими службами. Ко второй группе относится технологическая подготовка производства, тесно связанная с коммерческой деятельностью. При этом планируются режимы работы электростанций, обеспечивающие надежное энергосбережение потребителей и эффективное функционирование соответствующего хозяйствующего субъекта.

4. Структура потребления электроэнергии по отраслям народного хозяйства в сравнению с другими странами. Программа энергосбережения.

В ходе реформы меняется структура отрасли: происходит осуществление разделения естественно-монопольных функций (передача электроэнергии по магистральным ЛЭП, распределение электроэнергии по низковольтным ЛЭП и оперативно-диспечерское управление) и потенциально конкурентных (производство и сбыт электроэнергии, ремонт и сервис), и вместо прежних вертикально-интергрированных компаний («АО-Энерго»), выполнявших все эти функции, создаются стуктуры, специализирующиеся на отдельных видах деятельности.

Генерирующие, сбытовые и ремонтные компании становятся частными и конкурируют друг с другом. В эстественномонопольных сферах происходит

5. Типы электростанций, их достоинства и недостатки, факторы размещения.

За последние десятилетия структура производства электроэнергии в России постепенно изменяется. На современном этапе развития топливно-энергетического комплекса основную долю в производстве электроэнергии занимают тепловые электростанции - 66,34%, потом идут гидроэлектростанции - 17,16% и наименьшую долю в производстве электроэнергии занимают атомные электростанции - 16,5%.

Таблица№3: Динамика производства, по видам электростанций.

5.1 Тепловая электростанция – это электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

Тепловые электростанции преобладают в России. Тепловые электростанции работают на органическом топливе (уголь, газ, мазут, сланец и торф). На их долю приходится около 67 % производства электроэнергии. Главную роль играют мощные (более 2 млн кВт) ГРЭС (государственные районные электростанции), которые обеспечивают потребности экономического района и работают в энергосистемах.

Тепловые электростанции отличаются надежностью, проработаностью процесса. Наиболее актуальны электростанции, использующие высококалорийное топливо, потому что его экономически выгодно транспортировать.

Основными факторами размещения являются топливный и потребительский. Мощные электростанции, как правило, располагаются у источников добычи топлива: чем крупнее электростанция, тем дальше она может передавать электроэнергию. Те электростанции, которые работают на мазуте, в основном, располагаются в центрах нефтеперерабатывающей промышленности.

Таблица№4: Размещение ГРЭС мощностью более 2 млн кВт

Федеральный округ

ГРЭС

Установленная мощность, млн кВт

Топливо

Центральный

Костромская

Рязанская

Конаковская

Мазут, газ

Уральский

Сургутская 1

Сургутская 2

Рефтинская

Троицкая

Ириклинская

Приволжский

Заинская

Сибирский

Назаровская

Ставропольская

Мазут, газ

Северо-Западный

Киришская

Преимущества тепловых электростанций в том, что они относительно свободно располагаются, в связи с широким распространением топливных ресурсов в России; к тому же они способны вырабатывать электроэнергию без сезонных колебаний (в отличие от ГЭС). К недостаткам тепловых электростанций можно отнести: использование невозобновимых топливных ресурсов, низкий КПД и крайне неблагоприятное воздействие на окружающую среду (КПД обычной ТЭС - 37-39%). Несколько большой КПД имеют ТЭЦ - теплоэлектроцентрали, обеспечивающие теплом предприятия и жилье с одновременным производством электроэнергии. Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрид, к тому же они поглощают огромное количество кислорода.

5.2 Гидравлическая электростанция (ГЭС) – это электростанция, преобразующая механическую энергию потока воды в электрическую энергию, посредством гидравлических турбин, приводящих во вращение электрические генераторы.

ГЭС являются эффективным источником энергии, потому что используют возобновимые ресурсы, к тому же они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД - более 80%. В итоге производимая на ГЭС энергия является самой дешевой. Самым большим достоинством ГЭС является высокая маневренность, т.е. возможность практически мгновенного автоматического запуска и отключения требуемого количества агрегатов. Это позволяет использовать мощные гидроэлектростанции либо в качестве максимально маневренных «пиковых» электростанций, которые обеспечивают устойчивую работу крупных энергосистем, либо «покрывать» плановые пики суточного графика нагрузки энергосистемы, когда имеющихся в наличии мощностей ТЭС не хватает.

Более мощные ГЭС построены в Сибири, т.к. там освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в Европейской части страны.

Таблица№5: ГЭС мощностью более 2 млн кВт

Гидростроительство в нашей стране характеризуется сооружением на реках каскадов гидроэлектростанций. Каскад – это группа ГЭС, расположенная ступенями по течению водного потока для последовательного использования его энергии. Помимо получения электроэнергии каскады решают проблемы снабжения населения и производства водой, устранения упадков, улучшения транспортных условий. Наиболее крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская - на Енисее; Иркутская, Братская, Усть-Илимская - на Ангаре; строится Богучанская ГЭС (4 млн кВт).

В Европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Угличская, Рыбинская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская (вблизи Волгограда). Весьма перспективным является строительство гидроаккумулирующих электростанций (ГАЭС). Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами - верхним и нижним. ГАЭС позволяют решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, остро стоит проблема создания маневренности электростанций, в том числе ГАЭС. Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (3,6 млн кВт).

5.3 Атомная электростанция (АЭС)- это ядерная установка для производства энергии в заданных режимах и условиях применения, располагающиеся в пределах определенной проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем, устройств, оборудования и сооружений с необходимым персоналом.

После катастрофы на Чернобыльской АЭС сократилась программа атомного строительства, с 1986 г. в эксплуатацию ввели только четыре энергоблока. Сейчас ситуация меняется: правительством РФ было принято специальное постановление, которое утвердило программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

На данный момент в России действует девять АЭС. Еще четырнадцать АЭС и АСТ (атомных станций теплоснабжения) находятся в стадии проектирования, строительства или временно законсервированы.

Таблица№6: Мощность действующих АЭС

Были пересмотрены принципы размещения АЭС с учетом потребности района в электроэнергии, природных условий (в частности, достаточного количества воды), плотности населения, возможности обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных ситуациях. Принимается во внимание вероятность возникновения на предполагаемой территории землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, АСТ - не ближе 5 км. Ограничивается суммарная мощность электростанций: АЭС- 8 млн кВт, АСТ - 2 млн кВт.

Преимущества АЭС состоят в том, что их можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 2500 т угля). К тому же АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС) и не поглощают кислород.

К негативным последствиям работы АЭС относятся:

Трудности в захоронении радиоактивных отходов. Для их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах;

Катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты;

Тепловое загрязнение используемых АЭС водоемов.

Функционирование АЭС как объектов повышенной опасности требует участи государственных органов власти и управления в формировании направлений развития, выделений необходимых средств.

5.4 Альтернативные источники энергии

В последние время в России возрос интерес к использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла Земли, морских проливов. Уже построены электростанции на нетрадиционных источниках энергии. Например, на энергии приливов работают Кислогубская и Мезенская электростанции на Кольском полуострове.

Термальные горячие воды используются для горячего водоснабжения гражданских объектов и в теплично-парниковых хозяйствах. На Камчатке на р. Паужетка построена геотермальная электростанция (мощность 5 мВт).

Крупными объектами геотермального теплоснабжения являются теплично-парниковые комбинаты - Паратунский на Камчатке и Тернапрский в Дагестане. Ветровые установки в жилых поселках Крайнего Севера используются для защиты от коррозии магистральных газо и нефтепроводов, на морских промыслах.

Разработана программа, по которой планируется построить ветровые электростанции - Колмыцкую, Тувинскую, Магаданскую, Приморскую и геотермальные электростанции - Верхнее-Мугимовскую, Океанскую. На юге России, в Кисловодске, предполагается сооружение первой в стране опытно-экспериментальной электростанции, работающей на солнечной энергии. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса. По данным экспертов, ввод в эксплуатацию таких электростанций позволит к 2010 довести долю нетрадиционной и малой энергетики в энергобалансе России до 2%.

6. Историко-географические особенности развития электроэнергетики в России.

6.1. План ГОЭЛРО и география электростанций.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.), рассчитанным на 10-15 лет, предусматривающий строительство 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью1,75 млн. кВт. В числе прочих намечалось построить Штеровскую, Каширскую, Горьковскую, Шатурскую и Челябинскую районные тепловые электростанции, а также ГЭС - Нижегородскую, Волховскую (1926), Днепровскую, две станции на реке Свирь и т.д. В рамках этого проекта было проведено экономическое районирование, был выделен транспортно-энергетический каркас территории страны. Проект охвативосел восемь основных экономических районов (Северный, Центрально-промышленный, Южный, Приволжский, Уральский, Западно-Сибирский, Кавказский и Туркестанский). В тоже время велось развитие транспортной системы страны (магистрализация старых и строительство новых железнодорожных линий, сооружение Волго-Донского канала).

Кроме строительств электростанций, план ГОЭЛРО предусматривал сооружение сети высоковольтных линий электропередач. Уже в 1922 году была введена первая в стране линия электропередачи напряжением 110 кВ - Каширская ГРЭС, Москва, а в 1933 году принята в эксплуатацию еще более мощная линия - 220 кВ - Нижнесвирская ГЭС, Ленинград. В тот же период началось объединение по сетям электростанций Горького и Иваново, создание энергетической системы Урала.
Реализация Плана ГОЭЛРО потребовала огромных усилий, напряжения всех сил и ресурсов страны. Уже к 1926 г. была выполнена программа "А" плана электростроительства, и к 1930 г. были достигнуты основные показатели Плана ГОЭЛРО по программе "Б"". План ГОЭЛРО положил основу индустриализации в России. К концу 1935 г., т.е. 15-летию плана ГОЭЛРО, вместо 30 запроектированных, было построено 40 районных электростанций общей мощностью 4,5 млн. кВт. Россия располагала мощной разветвленной сетью высоковольтных линий электропередач. В стране функционировали 6 электросистем с годовой производительностью свыше 1 млрд. кВт-ч.

Общие показатели индустриализации страны также существенно превысили проектные задания и СССР вышел по уровню промышленного производства на 1-е место в Европе, и на 2-е место в мире.

Таблица№7: Выполнение плана ГОЭЛРО.

Показатель

План ГОЭЛРО

Год выполнения плана ГОЭЛРО

Валовая продукция промышленности (1913-I)

Мощность районных электростанций (млн.квт)

Производство электроэнергии (млрд. квт. ч.)

Уголь (млн. т.)

Нефть (млн. т.)

Торф (млн. т.)

Железная руда (млн. т.)

Чугун (млн. т.)

Сталь (млн. т.)

Бумага (тыс. т.)

6.2. Развитие электроэнергетики в 50-70 годах.

8. Регионообразующее значение крупнейших электростанций (конкретные примеры).

9. Характеристика Единой энергосистемы России, реформа РАО ЕЭС.

Энергосистема - это группы электростанций разных типов, которые объединенны высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВ), Самара - Челябинск, Волгоград - Москва (500 кВ), Волгоград - Донбасс (800 кВ), Москва - Санкт-Петербург (750 кВ).

Главная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения - Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы - Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанции, входящие в ЕЭС, вырабатывают более 90% электроэнергии, которая производится в независимых государствах - бывших республиках СССР. Объединение энергосистем в ЕЭС обеспечивает снижение необходимой суммарной установленной мощности электростанций, за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; к тому же сокращает требуемую резервную мощность на электростанциях; осуществляет наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевляет энергетическое строительство и улучшает экологическую ситуацию.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

11. Крупнейшие корпорации в отрасли.

Заключение

Список литературы



Справочники