Создание первого ядерного реактора открыл. Как устроен и работает ядерный реактор. Основные компоненты АЭС

В истории создания ядерных реакторов можно проследить три этапа. На первом этапе определились необходимые и достаточные условия протекания самоподдерживающейся цепной ядерной реакции деления. На втором этапе были установлены все физические эффекты, способствующие и препятствующие протеканию самоподдерживающейся цепной ядерной реакции деления, т.е. ускоряющие и замедляющие этот процесс. И, наконец, были проведены количественные расчеты, касающиеся конструкции реактора и протекающих в нем процессов.

Создание ядерных реакторов было решением одной из составных задач общей атомной проблемы.

Первый в мире реактор СР-1 (Chicago Physics) был спроектирован и сконструирован Э.Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудс и Дж. Вайлем и размещался в теннисном зале под трибунами стадиона Чикагского университета. Реактор начал работать 2 декабря 1942 г. при расчетной начальной мощности 0,5 Вт. В первый урановый реактор СР-1 было загружено 6 т металлического урана и некоторое количество (точно не известно) окиси урана из-за недостатка урана в чистом виде.

Реактор должен был иметь сферическую форму и составлялся из горизонтальных слоев блочного графита, которые располагались между подобными же слоями из перемежающихся блоков графита и урана, охлаждаемых воздухом. Критическое состояние реактора, при котором потеря нейтронов компенсировалась их производством (созданием), было достигнуто, когда сферу построили на три четверти, в результате чего реактор так и не получил окончательной формы правильного шара.

Через 12 дней мощность была доведена до 200 Вт и дальнейшее повышение мощности сочли рискованным из-за генерированного установкой опасного излучения. Реактор переместили за пределы города в Аргоннскую лабораторию, где он был снова смонтирован и снабжен защитным экраном.

Реактор регулировался вручную при помощи кадмиевых стержней, поглощающих избыток нейтронов и расположенных в специальных каналах. Кроме того, были предусмотрены два аварийных стержня и стержень автоматического управления.

Первая опытная установка позволила провести экспериментальное исследование процесса получения плутония, которое привело к заключению, что этот способ дает реальную возможность его изготовления в количествах, достаточных для создания атомной бомбы. В 1943 г. в Аргоннской национальной лаборатории для экспериментальных исследований был построен точно такой же реактор СР-2 (рис.17.1), но с критическим размером в форме куба, а в 1944 г. – еще один реактор СР-3 (рис. 17.2), в котором замедлителем служила тяжелая вода, что позволило значительно уменьшить размеры реактора по сравнению с предыдущими.

Из-за отсутствия системы охлаждения максимальная безопасная мощность реактора составляла 200 Вт, но на короткое время мощность можно было повышать до 100 кВт. В реакторе использовались пять управляющих стержней длиной 5,6 м из бронзы, покрытые кадмием. Три из этих стержней были аварийными, один стержень служил для грубой регулировки и еще один для точной регулировки потока нейтронов и мощности реактора.

В конце 1945 г. в Москве на территории Лаборатории № 2 АН СССР было начато строительство здания для физического реактора Ф-1, а в начале 1946 г. началось проектирование первого промышленного реактора и связанного с ним плутониевого комбината в Челябинске-40. В декабре 1946 г. на исследовательском уран-графитовом реакторе Ф-1 под руководством И.В. Курчатова была впервые в Европе осуществлена самоподдерживающая цепная реакция. Пуск реактора Ф-1, который до сих пор служит науке, дал возможность измерить необходимые ядерные константы, выбрать оптимальную конструкцию первого промышленного реактора, исследовать вопросы регулирования и радиационной безопасности.

В историю физики ХХ века вошел и первый в Европе ядерный реактор, созданный в СССР и испытанный лично И.В. Курчатовым в декабре 1946 года. Его мощность достигала уже 4000 кВт, что давало возможность на базе полученного опыта создавать промышленные реакторы. Сам реактор располагался в бетонированном котловане, на дно которого были уложены восемь слоев графитовых брусков. Над ними укладывались слои с отверстиями-гнездами, куда были вставлены блоки из урана. Были также сделаны три канала для кадмиевых стержней, обеспечивающих регулирование реакции и ее аварийную остановку, и ряд горизонтальных каналов различной формы и размеров для измерительной аппаратуры и экспериментальных целей. Общее число слоев из графитовых брусков составило шестьдесят два.

В 1947 году на этом реакторе удалось получить первые дозы не встречающегося в природе плутония, являющегося, подобно урану, ядерным горючим, притом в количествах, достаточных для изучения основных физических характеристик его ядра. Первый в СССР промышленный реактор для получения плутония был запущен Курчатовым в июне 1948 года.

В середине 40-х годов ХХ века в Лос-Аламосской научной лаборатории (США) была поставлена задача создания опытного быстрого реактора с плутониевым топливом, демонстрирующего возможность производства электроэнергии. Этот реактор под названием «Клементина» имел объём активной зоны, состоящей из металлического плутония, 2,5 л и охлаждался ртутью. Сборка реактора началась в 1946 г., критичность была достигнута в ноябре 1946 г. Энергетический пуск состоялся в марте 1949 г. Реактор работал на мощности 25 кВт (тепл.).

В рамках Манхэттенского проекта (секретного плана создания американской бомбы) вся работа по разделению изотопов урана была поручена лаборатории известного американского физика Э. Лоуренса. В своем докладе правительству США в июле 1941 г. Лоуренс писал: «Открылась новая чрезвычайно важная возможность для использования цепной реакции с неразделёнными изотопами [урана]. По-видимому, если бы цепная реакция была осуществлена, можно было бы вести её … в течение некоторого периода времени специально для производства элемента с атомным номером 94 [плутония]… Если бы имелись в распоряжении… большие количества этого элемента, то, вероятно, можно было бы осуществить цепную реакцию на быстрых нейтронах. В такой реакции энергия освобождалась бы со скоростью взрыва, и соответствующая система могла бы быть охарактеризована… как «сверхбомба»».

Реактор «Клементина» был первым реактором на быстрых нейтронах, а также первым, в котором в качестве топлива использовался плутоний-239. Активная зона в виде цилиндра высотой 15 см и диаметром 15 см состояла из вертикальных топливных стержней в стальной оболочке. Замедлитель, естественно, отсутствовал. Отражателем служили металлический уран и сталь. Ртутный теплоноситель обладал пренебрежимо малым сечением захвата медленных нейтронов. Управление реактором осуществлялось при помощи стержней, удаляющих некоторое количество урана из отражателя, так как бор или кадмий, используемые в реакторах на тепловых нейтронах, непригодны для реакторов на быстрых нейтронах.

В Аргоннской национальной лаборатории (США) независимо от описанных исследований проводились работы по созданию экспериментального реактора-размножителя EBR-1 на быстрых нейтронах. Главной целью этого проекта была проверка концепции атомной электростанции с реактором на быстрых нейтронах в качестве энергетического блока. К созданию реактора приступили в 1951 г., а критичность была достигнута в августе 1951 г. В декабре 1951 г. впервые за счёт ядерной энергии был получен электрический ток при мощности реактора 200 кВт (эл.). Топливные элементы реактора представляли собой трубки из нержавеющей стали, содержащие высокообогащенный металлический уран, охлаждение активной зоны осуществлялось прокачиванием через нее сплава натрия и калия (рис.17.3). Отражатель состоял из двух частей: нескольких стержней природного металлического урана, окружающих активную зону, и нескольких клинообразных блоков из того же материала. Управление реактором осуществлялось введением стержней металлического урана во внешний отражатель и выведением их из него.

Реактор одновременно вырабатывал энергию, выделяющуюся при делении под действием быстрых нейтронов, и воспроизводил делящийся материал. Строго говоря, реактор-размножитель должен использовать тот же делящийся материал, который в нем производится, например плутоний-239 в реакторах с ураном-238 в качестве сырья для производства вторичного топливного материала (плутония). Однако в настоящее время в качестве делящегося материала во многих реакторах на быстрых нейтронах используют уран-235. В реакторах на быстрых нейтронах теплоноситель не должен содержать элементов с малым массовым числом, так как они будут замедлять нейтроны. Интенсивный отвод тепла из активной зоны малого размера требует теплоносителя с исключительно высокими теплоотводящими свойствами.

Только одно вещество – жидкий натрий – удовлетворяет этим условиям.

Анализ топливных материалов отражателя реактора EBR-1 после его работы в течение некоторого времени показал, что достигнутый коэффициент воспроизводства, т.е. отношение количества полученного плутония-239 к количеству израсходованного урана-235, несколько превышает 100%. Поскольку условия в реакторе не были идеальными, то посчитали, что воспроизводство плутония-239 должно быть практически выгодно. Это было подтверждено в Великобритании экспериментами на реакторе на быстрых нейтронах очень малой мощности (2 Вт), в котором топливом служил плутоний-239. Было обнаружено, что на каждое разделившееся ядро плутония приходится примерно два вновь образовавшихся. Таким образом, выигрыш при воспроизводстве получается довольно значительным. В конечном счете таким реакторам должна принадлежать главная роль в программе развития ядерной энергетики.

Необъятная энергия крохотного атома

«Хороша наука - физика! Только жизнь коротка». Эти слова принадлежат ученому, сделавшему в физике удивительно много. Их однажды произнес академик Игорь Васильевич Курчатов , создатель первой в мире атомной электростанции.

27 июня 1954 года эта уникальная электростанция вступила в строй. У человечества появился еще один могучий источник электроэнергии.

Путь к овладению энергией атома был долгим и нелегким. Начался он в первые десятилетия XX века с открытия естественной радиоактивности супругами Кюри, с постулатов Бора, планетарной модели атома Резерфорда и доказательства такого, как сейчас кажется, очевидного факта - ядро любого атома состоит из положительно заряженных протонов и нейтральных нейтронов.

В 1934 году супруги Фредерик и Ирен Жолио-Кюри (дочь Мари Склодовской-Кюри и Пьера Кюри) обнаружили, что бомбардировкой альфа-частицами (ядрами атомов гелия) можно превратить обычные химические элементы в радиоактивные. Новое явление получило название искусственной радиоактивности .

И. В. Курчатов (справа) и А. И. Алиханов (в центре) со своим учителем А. Ф. Иоффе. (Начало 30-х годов.)

Если такую бомбардировку вести очень быстрыми и тяжелыми частицами, то начинается каскад химических превращений. Элементы с искусственной радиоактивностью постепенно уступят свое место стабильным элементам, которые уже не будут распадаться.

С помощью облучения или бомбардировки легко сделать явью мечту алхимиков - изготовить золото из других химических элементов. Только стоимость такого превращения значительно превысит цену полученного золота…

Деление ядер урана

Больше пользы (и, к сожалению, тревог) принесло человечеству открытое в 1938-1939 годах группой немецких физиков и химиков деление ядер урана . При облучении нейтронами тяжелые ядра урана распадаются на более легкие химические элементы, принадлежащие к средней части периодической системы Менделеева, и выделяют несколько нейтронов. Для ядер легких элементов эти нейтроны оказываются лишними… При «раскалывании» ядер урана может начаться цепная реакция: каждый из двух- трех полученных нейтронов способен в свою очередь произвести на свет несколько нейтронов, попав в ядро соседнего атома.

Общая масса продуктов такой ядерной реакции оказалась, как подсчитали ученые, меньше массы ядер исходного вещества - урана.

По уравнению Эйнштейна, связывающему массу с энергией, можно легко определить, что при этом должна выделиться огромная энергия! Причем произойдет это за ничтожно малое время. Если, конечно, цепная реакция станет неуправляемой и пройдет до конца…

На прогулке после конференции Э. Ферми (справа) со своим учеником Б. Понтекорво. (Базель, 1949 г.)

Огромные физические и технические возможности, скрытые в процессе деления урана, одним из первых оценил Энрико Ферми , в те далекие тридцатые годы нашего столетия еще очень молодой, но уже признанный глава итальянской школы физиков. Задолго до второй мировой войны он с группой талантливых сотрудников исследовал поведение различных веществ при нейтронном облучении и определил, что эффективность процесса деления урана можно значительно повысить… замедлив движение нейтронов. Как это ни странно на первый взгляд, при уменьшении скорости нейтронов увеличивается вероятность их захвата ядрами урана. Эффективными «замедлителями» нейтронов служат вполне доступные вещества: парафин, углерод, вода…

Переехав в США, Ферми продолжал быть мозгом и сердцем проводимых там ядерных исследований. Два дарования, обычно исключающие друг друга, сочетались в Ферми: выдающегося теоретика и блестящего экспериментатора. «Пройдет еще очень много времени, прежде чем мы сможем увидеть равного ему человека»,- писал крупный ученый У. Зинн после безвременной кончины Ферми от злокачественной опухоли в 1954 году в возрасте 53 лет.

Коллектив ученых, сплотившихся вокруг Ферми в годы второй мировой войны, решил на основе цепной реакции деления урана создать оружие невиданной разрушительной силы - атомную бомбу . Ученые спешили: вдруг нацистская Германия сумеет раньше всех изготовить новое оружие и использует его в своем бесчеловечном стремлении к порабощению других народов?

Строительство в нашей стране атомного реактора

Ученым удалось уже в 1942 году собрать и запустить на территории стадиона Чикагского университета первый атомный реактор . Стержни из урана в реакторе перемежались угольными «кирпичами» - замедлителями, а если цепная реакция все же становилась слишком бурной, ее можно было быстро остановить, введя в реактор пластины из кадмия, разъединявшие урановые стержни и полностью поглощавшие нейтроны.

Исследователи очень гордились придуманными ими простыми приспособлениями к реактору, которые сейчас вызывают у нас улыбку. Один из сотрудников Ферми в Чикаго, известный физик Г. Андерсон вспоминает, что кадмиевую жесть прибивали к деревянному бруску, который при необходимости мгновенно опускался в котел под действием собственной тяжести, что послужило поводом дать ему название «миг». Г. Андерсон пишет: «Перед запуском котла этот стержень следовало вытянуть наверх и закрепить веревкой. При аварии веревку можно было бы перерезать и «миг» занял бы свое место внутри котла».

На атомном реакторе была получена управляемая цепная реакция, проверены теоретические расчеты и предсказания. В реакторе шла цепь химических превращений, в результате которых накапливался новый химический элемент - плутоний. Его, как и уран, можно использовать для создания атомной бомбы.

Ученые определили, что существует «критическая масса» урана или плутония. Если атомного вещества достаточно много, цепная реакция приводит к взрыву, если мало, меньше «критической массы», то происходит просто выделение тепла.

Строительство атомной электростанции

В атомной бомбе простейшей конструкции уложены рядом два куска урана или плутония, причем масса каждого немного не «дотягивает» до критической. В нужный момент запал из обычного взрывчатого вещества соединяет куски, масса атомного горючего превышает критическое значение - и выделение разрушительной энергии чудовищной силы происходит мгновенно…

Ослепительное световое излучение, ударная волна, сметающая все на своем пути, и проникающее радиоактивное излучение обрушились на жителей двух японских городов - Хиросимы и Нагасаки - после взрыва американских атомных бомб в 1945 году, поселив с тех пор в сердцах людей тревогу перед страшными последствиями применения атомного оружия.

Под объединяющим научным началом И. В. Курчатова советские физики разработали атомное оружие.

Но руководитель этих работ не переставал думать и о мирном использовании атомной энергии. Ведь атомный реактор приходится интенсивно охлаждать, почему же это тепло не «отдать» паровой или газовой турбине, не применить для обогрева домов?

Через атомный реактор пропустили трубки с жидким легкоплавким металлом. Разогретый металл поступал в теплообменник, где передавал свое тепло воде. Вода превращалась в перегретый пар, начинала работать турбина. Реактор окружили защитной оболочкой из бетона с металлическим наполнителем: радиоактивное излучение не должно вырываться наружу.

Атомный реактор превратился в атомную электростанцию, несущую людям спокойный свет, уютное тепло, желанный мир…

Первый Ядерный реактор построен в декабре 1942 в США под руководством Э. Ферми . В Европе первый Ядерный реактор пущен в декабре 1946 в Москве под руководством И. В. Курчатова . К 1978 в мире работало уже около тысячи Ядерный реактор различных типов. Составными частями любого Ядерный реактор являются: активная зона с ядерным топливом , обычно окруженная отражателем нейтронов, теплоноситель , система регулирования цепной реакции, радиационная защита, система дистанционного управления (рис. 1 ). Основной характеристикой Ядерный реактор является его мощность. Мощность в 1 Мв соответствует цепной реакции, в которой происходит 3·10 16 актов деления в 1 сек.
Устройство энергетических ядерных реакторов.

Энергетический ядерный реактор - это устройство в котором осуществляется управляемая цепная реакция деления ядер тяжелых элементов, а выделяющаяся при этом тепловая энергия отводится теплоносителем. Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода.

Схема гомогенного реактора: 1-корпус реактора, 2-активная зона, 3 компенсатор объема, 4-теплообменник, 5-выход пара, 6-вход питательной воды, 7-циркуляционный насос

Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.

В активной зоне Ядерный реактор находится ядерное топливо, протекает цепная реакция ядерного деления и выделяется энергия. Состояние Ядерный реактор характеризуется эффективным коэффициентом Кэф размножения нейтронов или реактивностью r:

R = (К ¥ - 1)/К эф. (1)

Если К эф > 1, то цепная реакция нарастает во времени, Ядерный реактор находится в надкритичном состоянии и его реактивность r > 0; если К эф < 1 , то реакция затухает, реактор - подкритичен, r < 0; при К ¥ = 1, r = 0 реактор находится в критическом состоянии, идёт стационарный процесс и число делений постоянно во времени. Для инициирования цепной реакции при пуске Ядерный реактор в активную зону обычно вносят источник нейтронов (смесь Ra и Be, 252 Cf и др.), хотя это и не обязательно, т. к. спонтанное деление ядер урана и космические лучи дают достаточное число начальных нейтронов для развития цепной реакции при К эф > 1.

В качестве делящегося вещества в большинстве Ядерный реактор применяют 235 U. Если активная зона, кроме ядерного топлива (природный или обогащенный уран), содержит замедлитель нейтронов (графит, вода и другие вещества, содержащие лёгкие ядра, см. Замедление нейтронов ), то основная часть делений происходит под действием тепловых нейтронов (тепловой реактор ). В Ядерный реактор на тепловых нейтронах может быть использован природный уран, не обогащенный 235 U (такими были первые Ядерный реактор). Если замедлителя в активной зоне нет, то основная часть делений вызывается быстрыми нейтронами с энергией x n > 10 кэв (быстрый реактор ). Возможны также реакторы на промежуточных нейтронах с энергией 1-1000 эв.

Условие критичности Ядерный реактор имеет вид:

К эф = К ¥ × Р = 1 , (1)

Где 1 - Р - вероятность выхода (утечки) нейтронов из активной зоны Ядерный реактор, К ¥ - коэффициент размножения нейтронов в активной зоне бесконечно больших размеров, определяемый для тепловых Ядерный реактор так называемой «формулой 4 сомножителей»:

К ¥ = neju. (2)

Здесь n - среднее число вторичных (быстрых) нейтронов, возникающих при делении ядра 235 U тепловыми нейтронами, e - коэффициент размножения на быстрых нейтронах (увеличение числа нейтронов за счёт деления ядер, главным образом ядер 238 U, быстрыми нейтронами); j - вероятность того, что нейтрон не захватится ядром 238 U в процессе замедления, u - вероятность того, что тепловой нейтрон вызовет деление. Часто пользуются величиной h = n/(l + a), где a - отношение сечения радиационного захвата s р к сечению деления s д.

Условие (1) определяет размеры Ядерный реактор Например, для Ядерный реактор из естественного урана и графита n = 2,4. e » 1,03, eju » 0,44, откуда К ¥ =1,08. Это означает, что для К ¥ > 1 необходимо Р<0,93, что соответствует (как показывает теория Ядерный реактор) размерам активной зоны Ядерный реактор ~ 5-10 м. Объём современного энергетического Ядерный реактор достигает сотен м 3 и определяется главным образом возможностями теплосъёма, а не условиями критичности. Объём активной зоны Ядерный реактор в критическом состоянии называется критическим объёмом Ядерный реактор, а масса делящегося вещества - критической массой. Наименьшей критической массой обладают Ядерный реактор с топливом в виде растворов солей чистых делящихся изотопов в воде и с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг , для 239 Pu - 0,5 кг . Наименьшей критической массой обладает 251 Cf (теоретически 10 г). Критические параметры графитового Ядерный реактор с естественным ураном: масса урана 45 т , объём графита 450 м 3 . Для уменьшения утечки нейтронов активной зоне придают сферическую или близкую к сферической форму, например цилиндр с высотой порядка диаметра или куб (наименьшее отношение поверхности к объёму).

Величина n известна для тепловых нейтронов с точностью 0,3% (табл. 1). При увеличении энергии x n нейтрона, вызвавшего деление, n растет по закону: n = n t + 0,15x n (x n в Мэв ), где n t соответствует делению тепловыми нейтронами.

Табл. 1. - Величины n и h) для тепловых нейтронов (по данным на 1977)


233 U

235 U

239 Pu

241 Pu

Величина (e-1) обычно составляет лишь несколько %, тем не менее роль размножения на быстрых нейтронах существенна, поскольку для больших Ядерный реактор (К ¥ - 1) << 1 (графитовые Ядерный реактор с естественным ураном, в которых впервые была осуществлена цепная реакция, невозможно было бы создать, если бы не существовало деления на быстрых нейтронах).

Максимально возможное значение J достигается в Ядерный реактор, который содержит только делящиеся ядра. Энергетические Ядерный реактор используют слабо обогащенный уран (концентрация 235 U ~ 3-5%), и ядра 238 U поглощают заметную часть нейтронов. Так, для естественной смеси изотопов урана максимальное значение nJ = 1,32. Поглощение нейтронов в замедлителе и конструкционных материалах обычно не превосходит 5-20% от поглощения всеми изотопами ядерного топлива. Из замедлителей наименьшим поглощением нейтронов обладает тяжёлая вода, из конструкционных материалов - Al и Zr.

Вероятность резонансного захвата нейтронов ядрами 238 U в процессе замедления (1-j) существенно снижается в гетерогенных Ядерный реактор Уменьшение (1 - j) связано с тем, что число нейтронов с энергией, близкой к резонансной, резко уменьшается внутри блока топлива и в резонансном поглощении участвует только внешний слой блока. Гетерогенная структура Ядерный реактор позволяет осуществить цепной процесс на естественном уране. Она уменьшает величину О, однако этот проигрыш в реактивности существенно меньше, чем выигрыш из-за уменьшения резонансного поглощения.

Для расчёта тепловых Ядерный реактор необходимо определить спектр тепловых нейтронов. Если поглощение нейтронов очень слабое и нейтрон успевает много раз столкнуться с ядрами замедлителя до поглощения, то между замедляющей средой и нейтронным газом устанавливается термодинамическое равновесие (термализация нейтронов), и спектр тепловых нейтронов описывается Максвелла распределением . В действительности поглощение нейтронов в активной зоне Ядерный реактор достаточно велико. Это приводит к отклонению от распределения Максвелла - средняя энергия нейтронов больше средней энергии молекул среды. На процесс термализации влияют движения ядер, химические связи атомов и др.

Выгорание и воспроизводство ядерного топлива. В процессе работы Ядерный реактор происходит изменение состава топлива, связанное с накоплением в нём осколков деления (см. Ядра атомного деление ) и с образованием трансурановых элементов , главным образом изотопов Pu. Влияние осколков деления на реактивность Ядерный реактор называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных). Отравление обусловлено главным образом 135 Xe который обладает наибольшим сечением поглощения нейтронов (2,6·10 6 барн ). Период его полураспада T 1/2 = 9,2 ч, выход при делении составляет 6-7%. Основная часть 135 Xe образуется в результате распада 135 ](Тц = 6,8 ч ). При отравлении Кэф изменяется на 1-3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям: 1) к увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности Ядерный реактор после его остановки или снижения мощности («йодная яма»). Это вынуждает иметь дополнительный запас реактивности в органах регулирования либо делает невозможным кратковременные остановки и колебания мощности. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 13 нейтрон/см 2 × сек продолжительность йодной ямы ~ 30 ч , а глубина в 2 раза превосходит стационарное изменение К эф , вызванное отравлением 135 Xe. 2) Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а значит - и мощности Ядерный реактор Эти колебания возникают при Ф> 10 13 нейтронов/см 2 × сек и больших размерах Ядерный реактор Периоды колебаний ~ 10 ч.

Число различных стабильных осколков, возникающих при делении ядер, велико. Различают осколки с большими и малыми сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация первых достигает насыщения в течение нескольких первых суток работы Ядерный реактор (главным образом 149 Sm, изменяющий К эф на 1%). Концентрация вторых и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в Ядерный реактор происходит по схемам:

Здесь з означает захват нейтрона, число под стрелкой - период полураспада.

Накопление 239 Pu (ядерного горючего) в начале работы Ядерный реактор происходит линейно во времени, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Затем концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ~ 3/ Ф лет (Ф в ед. 10 13 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в Ядерный реактор после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в Ядерный реактор на 1 т топлива. Для Ядерный реактор, работающих на естественном уране, максимальное выгорание ~ 10 Гвт ×сут/т (тяжело-водные Ядерный реактор). В Ядерный реактор со слабо обогащенным ураном (2-3% 235 U ) достигается выгорание ~ 20-30 Гвт-сут/т. В Ядерный реактор на быстрых нейтронах - до 100 Гвт-сут/т. Выгорание 1 Гвт-сут/т соответствует сгоранию 0,1% ядерного топлива.

При выгорании ядерного топлива реактивность Ядерный реактор уменьшается (в Ядерный реактор на естественном уране при малых выгораниях происходит некоторый рост реактивности). Замена выгоревшего топлива может производиться сразу из всей активной зоны или постепенно по ТВЭЛ"ам так, чтобы в активной зоне находились ТВЭЛ"ы всех возрастов - режим непрерывной перегрузки (возможны промежуточные варианты). В первом случае Ядерный реактор со свежим топливом имеет избыточную реактивность, которую необходимо компенсировать. Во втором случае такая компенсация нужна только при первоначально с запуске, до выхода в режим непрерывной перегрузки. Непрерывная перегрузка позволяет увеличить глубину выгорания, поскольку реактивность Ядерный реактор определяется средними концентрациями делящихся нуклидов (выгружаются ТВЭЛ"ы с минимальной концентрацией делящихся нуклидов). В табл. 2 приведён состав извлекаемого ядерного топлива (в кг ) в водо-водяном реакторе мощностью 3 Гвт. Выгружается одновременно вся активная зона после работы Ядерный реактор в течение 3 лет и «выдержки» 3 лет (Ф = 3×10 13 нейтрон/см 2 ×сек). Начальный состав: 238 U - 77350, 235 U - 2630, 234 U - 20.

Табл. 2. - Состав выгружаемого топлива, кг

Двадцать пятого декабря исполняется 70 лет со дня пуска первого отечественного ядерного реактора Ф-1, созданного для реализации советского атомного проекта. Реактор, построенный в Москве на территории Лаборатории №2 Академии наук СССР (ныне Национальный исследовательский центр "Курчатовский институт"), стал отправной точкой для развития многих мирных ядерных направлений, в которых Россия занимает лидирующие позиции.

О значении того события для истории России и всего мира, о важности правильного выбора государством стратегических приоритетов для своего развития и о новых уникальных технологиях, развиваемых Курчатовским институтом, в интервью специальному корреспонденту РИА Новости Владимиру Сычеву рассказал президент центра, член-корреспондент Российской академии наук Михаил Ковальчук.

Михаил Валентинович, что значил для нашей атомной отрасли, для страны пуск первого на континенте Евразия реактора Ф-1?

Не только для страны, но и для будущего всего мира. Это было событие, значение которого трудно переоценить. Представьте себе военно-политический контекст того времени. Советский Союз одержал великую победу в мае 1945-го. Наша страна вынесла основную тяжесть битвы с нацистской Германией. К концу Великой Отечественной войны Советский Союз обладал самой боеспособной и технически оснащенной армией. Произошло усиление роли СССР в мире. С нашим участием решались судьбы мира – на конференциях в Тегеране, Ялте, Потсдаме.

И вот 6 и 9 августа 1945 года США сбрасывают атомные бомбы на Хиросиму и Нагасаки. По сути, одна страна оказалась обладательницей невиданного доселе оружия колоссальной разрушительной силы. Фактически наша победа была обесценена. Вплоть до 29 августа 1949 года – испытания советской атомной бомбы на Семипалатинском полигоне - будущее нашей страны стояло под вопросом. Как известно, 1 января 1950 года, согласно американскому плану "Троян", предполагалось сбросить на города СССР 300 ядерных и 20 тысяч обычных бомб.

Поэтому реализация в очень сжатые сроки, с невероятным напряжением сил и средств, советского атомного проекта, самым первым этапом которого был пуск реактора Ф-1, позволила восстановить ядерный паритет. До сих пор мир живет без глобальной войны только потому, что есть баланс сил. И Россия по сей день сохранилась как суверенное государство потому, что тогда, в тяжелейшее время, руководство страны и передовая наука нашли взаимное понимание перед стоящей угрозой. Для нас, нынешних, те события служат примером того, как государство должно выбирать и сочетать тактические и стратегические приоритеты, в том числе научно-технологические.

- О каких приоритетах идет речь?

Тактические приоритеты - ближнесрочные, они обеспечивают нашу повседневную жизнь, нацелены на производство конкретных продуктов, создание и освоение определенных рынков и, по сути, являются отраслевыми.

А стратегические приоритеты имеют средне- и долгосрочный характер. От них изначально не ждут создания новых продуктов и рынков, но именно они обеспечивают создание принципиально новых, прорывных технологий и приводят к смене технологического уклада. Фактически стратегические приоритеты задают будущее.

Но тактические и стратегические приоритеты связаны друг с другом. Хотя без тактических приоритетов вы не решите текущих задач, но если пренебрегать приоритетами стратегическими, бросая силы и ресурсы только на решение тактических задач, то под угрозой может оказаться безопасность и независимость страны, ее будущее. Важно заметить, что стратегический приоритет, в том числе в науке, никогда не может быть выбран, образно говоря, на народном вече.

Тактический приоритет - это фактически баланс интересов огромного количества игроков, участников рынков с их продуктами и деньгами. А серьезный, стратегический приоритет может обозначить только группа передовых людей, которые смотрят вперед и видят на перспективу.

Стратегические приоритеты всегда продвигаются в борьбе, преодолевая сопротивление среды. Их обоснование должно подтверждаться большим числом профессиональных экспертиз. Только тогда может сложиться картина, обращенная в будущее.

- И атомный проект тому пример?

Я считаю, что это самый главный пример. В войну в числе тактических приоритетов были, например, эвакуация оборонных предприятий на восток, разворачивание производства новых видов вооружений, с помощью которых мы победили. Но начало в США работ по атомному оружию стало настоящим стратегическим вызовом для нашей страны.

И представьте, что бы произошло, если в самые трудные годы войны часть нашего научного сообщества не била во все колокола, говоря, что надо создавать наше атомное оружие, а власть не поддержала бы ученых и мы не начали бы работы по этой тематике. Возможно, к началу 1950-х годов наша страна вообще могла перестать существовать и мы с вами сейчас бы не беседовали.

Программа создания ядерного оружия в США называлась "Манхэттенским проектом". Первая атомная бомба была взорвана на полигоне в Нью-Мексико в июле 1945 года. Выдающиеся мировые ученые, многие из которых эмигрировали в США из оккупированной Европы, привлечение огромных финансовых и производственных возможностей, 130 тысяч рабочих и инженеров – все это позволило американцам создать атомную бомбу за три с небольшим года.

В СССР в 1930-е годы целый ряд физических институтов добился важных результатов в изучении, как это тогда называлось, перспектив использования внутриядерной энергии: Ленинградский Физико-технический институт во главе с Абрамом Иоффе, Институт химической физики, возглавляемый Николаем Семеновым, Радиевый институт под руководством Виталия Хлопина, ФИАН с Сергеем Вавиловым во главе, ХФТИ в Харькове.

Среди учеников Иоффе (кстати, когда-то учившегося у самого Вильгельма Рентгена) был и Игорь Васильевич Курчатов, который возглавил в ЛФТИ в начале 1930-х годов отдел ядерной физики. В 1937 году в Радиевом институте им совместно со Львом Мысовским был запущен первый в Европе циклотрон, там же в 1940 году Константин Петржак и Георгий Флеров открыли явление спонтанного деления урана.

Именно тот самый Георгий Флеров, техник-лейтенант (позднее академик, соратник Курчатова по созданию первой советской атомной бомбы, один из основателей Объединенного института ядерных исследований в Дубне) написал в апреле 1942 года с фронта письмо Иосифу Сталину, где почти с уверенностью говорил о том, что в США полным ходом начаты работы по созданию ядерного оружия. Примерно в это же время руководство ГРУ Генштаба Красной армии информировало АН СССР о зарубежных работах по использованию атомной энергии в военных целях.

Но собственно началом советского атомного проекта принято считать 28 сентября 1942 года, когда Государственный комитет обороны (ГОКО) признал необходимым возобновить прерванные началом войны "работы по исследованию возможности овладения внутриядерной энергией". Руководство страны, опираясь на свою систему экспертизы, на данные, полученные по разным каналам, в том числе от разведки, оценило то, что говорили ученые, и сделало абсолютно правильный выбор, начав работы по атомной проблеме.

- Почему создание и пуск реактора Ф-1 считаются ключевым этапом нашего атомного проекта?

Дело в том, что центральное ядро любой программы по созданию атомного оружия – это производство делящихся материалов, ядерной взрывчатки. Можно разрабатывать сколь угодно оригинальные конструкции ядерных зарядов, но без нужного количества плутония-239 или урана-235 эти идеи так и останутся идеями.

Изначально для нашей первой атомной бомбы был выбран вариант с плутониевым зарядом – наработка плутония в промышленном реакторе была более достижима, чем производство обогащенного урана, и с точки зрения времени, что очень важно.

Но сначала надо было построить экспериментальный реактор или котел, как он тогда назывался. Первые же эксперименты показали, что выпускавшиеся нашей промышленностью материалы, из которых мог бы быть собран реактор, содержат очень много вредных примесей. Для осуществления же цепной ядерной реакции нужен только очень чистый уран. Таким образом, главной целью стало создание уран-графитового котла как базы для следующего шага - промышленного производства ядерной взрывчатки - плутония. Советский Союз начинал свою атомную программу в условиях войны, практически полного отсутствия ресурсов, при огромных людских и материальных потерях.

Для создания нашего первого реактора требовалось обеспечить геологоразведку и добычу урана, с нуля создать его металлургию, наладить производство графита высочайшего, невиданного ранее качества. Помимо этого, создавались необходимые приборы. Только в конце 1945 года начали выпускать уран и графит нужного качества и в достаточных объемах.

Вторым важным направлением работ стал расчет работоспособности конструкции реактора для осуществления самоподдерживающейся цепной ядерной реакции. Это тоже было колоссальным делом. Летом 1946 года было построено специальное здание с шахтой для реактора глубиной 10 метров, с надежной биологической защитой, приборами внутреннего и внешнего дозиметрического контроля, дистанционным управлением реактором.

Поочередно были собраны четыре сборки (это сотни тонн графита), одновременно строили здание для реактора. В его котловане была собрана финальная пятая сборка, которая и стала 25 декабря 1946 года тем самым легендарным реактором Ф-1 – "Физическим первым". На осуществление этого грандиозного проекта понадобилось всего 16 месяцев! С тех пор Курчатовский институт в авангарде создания новых реакторов. А началось все это с реактора Ф-1.

Так что пуск Ф-1 стал воистину эпохальным событием – было экспериментально доказано, что наши ученые могут осуществить управляемую самоподдерживающуюся цепную реакцию деления урана. Хорошо известна сказанная Курчатовым сразу же после пуска Ф-1 фраза: "Атомная энергия теперь подчинена воле советского человека".

Это дало возможность сразу начать создание мощных промышленных реакторов для наработки оружейного плутония. После пуска реактора Ф-1 был проведен ряд очень важных экспериментов, что позволило построить и пустить на Южном Урале в 1948 году первый промышленный реактор. Вот три ключевые точки в создании нашей первой атомной бомбы: 25 декабря 1946 года – пуск экспериментального реактора Ф-1, 22 июня 1948 года – выведен на полную мощность построенный на Урале промышленный реактор - наработчик оружейного плутония "Аннушка", 29 августа 1949 года – взрыв нашего первого атомного заряда на полигоне в Семипалатинске.

Важнейший вывод из тех событий таков: создание и пуск реактора Ф-1 в тяжелейших для страны условиях – это демонстрация своевременности принятия руководством страны стратегически правильных решений в тяжелейших, подчас критических условиях.
Но пуск Ф-1 стал и отправной точкой для очень быстрого, стремительного развития атомной науки и техники, атомной промышленности страны. Мы в 1957 году спустили на воду свою первую атомную подводную лодку "Ленинский комсомол", а в 1959 году принят в эксплуатацию первый в мире атомный ледокол "Ленин". Сегодня Россия – обладатель единственного в мире атомного ледокольного флота. Он гарантирует нам стратегическое присутствие в северных широтах, где сосредоточены огромные запасы нефти, газа и биоресурсов.

А еще в 1954 году Игорь Васильевич Курчатов запустил в Обнинске первую в мире атомную промышленную электростанцию. Сегодня Россия, госкорпорация "Росатом" - мировой лидер в сфере сооружения атомных станций. АЭС "Куданкулам" в Индии, "Тяньвань" в Китае, "Бушер" в Иране – те станции, которые были пущены в нынешнем веке. Строится Островецкая станция в Белоруссии, планируется АЭС "Пакш-2" в Венгрии, "Руппур" в Бангладеш, "Ханхикиви" в Финляндии, "Аккую"в Турции. Портфель заказов "Росатома" сейчас превышает 300 миллиардов долларов. Мы осваиваем атомную энергетику по всем направлениям – от добычи урана до проектирования, строительства АЭС, обеспечения их работы, снабжения топливом и вывода из эксплуатации (то есть по всему жизненному циклу).

- Какова здесь роль Курчатовского института?

Курчатовский институт всегда был главной научной организацией нашей страны в атомной сфере. У нас есть такая схема, как мы ее называем "Курчатовское реакторное древо". На ней показано, как из реактора Ф-1 вышли реакторы разных типов – промышленные, энергетические, исследовательские, транспортные, которые используются на подводных лодках, на атомных ледоколах, ядерные энергетические установки для космоса.

И сейчас мы, можно сказать, независимый мозговой центр, обеспечивающий научное сопровождение проектов Росатома. Практика доказала правильность создания такой национальной лаборатории, какой является Курчатовский институт. У нас сосредоточен самый мощный ядерно-физический потенциал страны. Мы выступаем в качестве не только эксперта проектов "Росатома", но и их непосредственным научным участником. Каждая атомная станция разработана и пущена с участием Курчатовского института.

Атомная станция – сложнейший технологически, гигантский объект. Это сотни систем, работающих одновременно. Но сердце атомного энергоблока - ядерный реактор. Курчатовский институт – научный руководитель их проектирования и установки. Мы рассчитываем параметры этих реакторов, их активных зон, ядерного топлива.

После Чернобыля на какое-то время возникла идиосинкразия к атомной энергетике, во многом вызванная мощной информационной кампанией. Я считаю, что Запад во многом использовал чернобыльскую катастрофу, чтобы расшатать и без того ослабевшую на тот момент экономически, да и геополитически, конструкцию Советского Союза. Создавался в общественном мнении ужасный образ нашей страны, не способной обращаться с атомной энергетикой. Не буду сейчас вдаваться в обсуждение тех событий – это тема отдельного разговора, но по факту Чернобыль был использован для того, чтобы нанести тяжелый удар по Советскому Союзу. И надо сказать, что, к сожалению, это удалось.

Но после чернобыльской аварии мы начали активно работать, в том числе в международной кооперации, над разработкой новых систем безопасности АЭС. И созданные нами новые системы безопасности – так называемые ловушки расплава – уже входят в состав оборудования АЭС, они были впервые установлены на Тяньваньской АЭС в Китае и АЭС "Куданкулам" в Индии. Такие ловушки расплава предназначены для того, чтобы в случае тяжелой аварии расплавленное топливо надежно собрать в себя, удержать и не позволить радиоактивным веществам выйти за пределы реакторной установки.

Помимо этого, мы рассчитываем даже сценарии практически невероятных, так называемых запроектных аварий, вплоть до гипотетического падения самолетов на купол станций или террористического акта.

Мы занимаемся и работами по продлению сроков эксплуатации атомных блоков. Причем не просто изучаем возможности этого, но и реализуем их на практике - наши специалисты разработали систему для так называемого отжига корпусов реакторов, в результате чего почти полностью восстанавливаются их эксплуатационные характеристики.

Одним из наших основных направлений остаются ядерные технологии, их развитие, совершенствование. Мы не просто научные руководители таких современных проектов, как АЭС-2006 и ВВЭР-ТОИ, но и активные созидатели. Например, в области материаловедения – с нашим участием разработана новая марка стали, которая с помощью нанотехнологий приобретает особые свойства, а это поможет продлить срок работы корпусов реакторов до сотни лет.

Также у нас много наработок, связанных с атомными станциями малой мощности, актуальными, например, для Арктики. Там огромные расстояния, мало населенных пунктов, в основном это небольшие поселки, военные базы, и там просто не нужны большие энергоустановки. Что еще принципиально важно – в этом регионе востребованы установки, не требующие постоянного обслуживания на протяжении многих лет. В Курчатовском институте с 1970-х годов работают в этом направлении, мы создали работающие прототипы таких станций малой мощности, работающих по принципу прямого преобразования энергии. Такие реакторы по своим конструкционным параметрам обеспечивают пассивную безопасность, и кроме того, их можно изготавливать на заводе в рамках серийного производства и устанавливать практически в любом месте.

Сегодня наша атомная отрасль близка к тому, чтобы восстановить у себя полноценную систему организаций-научных руководителей. Насколько, по-вашему, это важно?

Это, с моей точки зрения, абсолютно необходимый процесс. Очевидно, что без восстановления системы научного руководства невозможны новые прорывы – ни в атомной области, ни в оборонной промышленности, ни в космической сфере. Ведь любая инженерная, технологическая, производственная структура или организация сама по себе не может, да и не должна генерировать новые идеи, поскольку она инженерно-технологически осваивает переданные ей научные результаты и отвечает за качественный, надежный выпуск конечной продукции. Поэтому она по сути своей является консервативной, и это здоровый консерватизм.

Но любой новый принцип может предложить и обосновать только наука – при полном контакте с инженерами и технологами.

Курчатовский институт выполняет эту функцию научного руководителя, и нам надо вернуться к этой системе в других областях. В военно-промышленном комплексе уже возрождается институт генеральных конструкторов и главных технологов.

- А какими Курчатовский институт видит пути развития атомной энергетики?

Нынешняя атомная энергетика построена на реакторах на так называемых тепловых нейтронах. Основным ядерным горючим для таких установок является уран-235. Но в природном уране доля изотопа уран-235 составляет всего лишь 0,7%, остальное практически целиком приходится на уран-238, и чтобы создать топливо для АЭС, необходимо получить обогащенный уран, в котором доля 235-го изотопа составляла бы уже несколько процентов.

Кстати, отечественные технологии обогащения урана тоже были разработаны в Курчатовском институте под руководством академика Исаака Кикоина. Наша обогатительная промышленность, комплекс по разделению изотопов остаются и сегодня одними из лучших в мире. У нас на подходе газовые центрифуги нового поколения, а, например, США в нынешнем году закрыли свою газоцентрифужную программу, так и не сумев освоить эту технологию.

Так вот, выжигая в реакторах на тепловых нейтронах уран-235, атомная энергетика почти не использует огромные объемы ценного сырья – урана-238. И это большая проблема с точки зрения эффективного обеспечения атомной энергетики сырьем. Но решить эту проблему можно, используя реакторы на быстрых нейтронах, как раз в них уран-238 "горит". К тому же с помощью так называемых реакторов-размножителей, или бридеров, возможно расширенное воспроизводство ядерного "горючего".

Есть еще один плюс "быстрых" реакторов. Ведь атомная энергетика оставляет отработавшее ядерное топливо, радиоактивные отходы, которые надо захоранивать, и для этого есть соответствующие технологии. Однако с экологической точки зрения это не лучший вариант, конечно.

Но можно сделать замкнутый ядерный топливный цикл - перерабатывать отработавшее ядерное топливо, выделять из него ценные делящиеся материалы, использовать их для создания нового ядерного топлива, как для реакторов на быстрых нейтронах, так и для тепловых реакторов, а опасные радионуклиды выжигать в "быстрых" реакторах. И вот тогда мы не только решим сырьевую проблему, но и придем к настоящей "зеленой" атомной энергетике в смысле минимизации радиоактивных отходов.

Россия – мировой лидер в освоении этих технологий. Мы сейчас – единственная страна, в которой работают реакторы на быстрых нейтронах промышленного уровня мощности, это реакторы БН-600 и БН-800 на Белоярской АЭС. Сейчас одна часть специалистов говорит, что будущее только за реакторами на быстрых нейтронах, а другая с этим не согласна. В действительности надо понимать, что наша перспективная атомная энергетика должна быть двухкомпонентной, в которой реакторы обоих типов будут взаимосвязаны. Это означает, что мы должны заниматься совершенствованием существующей базы наших водо-водяных энергетических реакторов на тепловых нейтронах ВВЭР, поскольку это массовые установки для производства электроэнергии. А параллельно выводить на качественно новый уровень "быстрые" реакторы, используя их для "дожигания" урана-238 и создания топливной базы для тепловых реакторов. И вместе мы получим полную гармонию.

Будущее энергетики связывается и с использованием термоядерных реакций. А Курчатовский институт, как хорошо известно, был родоначальником технологий и в этом направлении.

Атомная энергетика основана на использовании энергии, выделяемой при делении тяжелых атомных ядер. А основой термоядерной энергетики должно стать использование энергии, выделяемой при слиянии ядер легких изотопов водорода – дейтерия, трития. Причем в реакциях синтеза выделяется на порядки больше энергии, чем в реакциях деления, и поэтому термояд энергетически гораздо выгоднее.

Наши советские ученые из Курчатовского института предложили технологии термояда, еще в середине 1950-х была построена первая в мире установка токамак (тороидальная камера с магнитными катушками), в которой создавались условия, необходимые для протекания управляемого термоядерного синтеза. Поскольку невозможно получить материалы, которые могут удержать плазму, раскаленную до гигантских температур в десятки миллионов градусов, то в токамаке плазменный шнур удерживался мощным магнитным полем.

Но ведь надо не просто зажечь плазму, а удержать ее в течение определенного времени, чтобы плазма горела, работала, чтобы можно было получить как минимум столько же энергии, сколько было потрачено на ее зажигание. Поэтому сейчас на юге Франции, в Кадараше, с активным участием России, в том числе нашего центра, строится международный термоядерный реактор ITER. Это не термоядерная электростанция, а опытная установка, ее цель как раз и доказать такую возможность работы плазмы.

Вообще, проект ITER - это фактически переход к новым принципам овладения энергией, процессами ядерного синтеза, происходящими на Солнце, звездах. Такое трудно оценивать по каким-то шаблонам. Ведь поначалу никто не думал об экономических выгодах атомной энергетики, а сейчас – она основа современного энергетического развития.

Вопрос о том, какая будет термоядерная электростанция, - очень непростой и явно не ближайшего будущего. Но зато более близкая возможность применения плазменных технологий уже просматривается.

При термоядерном синтезе получается огромное количество нейтронов с большой энергией. Благодаря этому можно резко повысить эффективность установок, работающих на принципах деления тяжелых ядер. То есть можно создать гибридный реактор – например, термоядерный источник нейтронов окружить так называемым бланкетом, конструкцией, содержащей делящиеся ядра, например в виде жидких солей, в том числе урана-238. В Курчатовском институте уже ведутся работы в этом направлении.

С помощью жидкосолевых реакторов можно решать ресурсную проблему атомной энергетики путем использования тория-232, запасы которого на Земле велики, и превращения его в уран-233. Привлекательность концепции жидкосолевых реакторов, в отличие от традиционных реакторов с твердым топливом, заключается и в возможности изменения состава ядерного топлива без остановки реактора, вдобавок исключается накопление продуктов деления в его активной зоне. К тому же в одной и той же установке термоядерный источник может сочетаться с замкнутым ядерным топливным циклом.

Так что, на мой взгляд, гибридные реакторы – это реально достижимое использование термояда как источника нейтронов, способное приблизить, скажем так, "озеленение" атомной энергетики.

- Где, на ваш взгляд, еще могут быть найдены применения плазменных технологий?

В космосе. Мы стоим на пороге освоения дальнего космоса. Но с помощью кораблей, оснащенных только солнечными батареями, это сделать по понятным причинам будет невозможно. Нужны принципиально иные источники энергии. И сегодня, как известно, в России создается ядерная энергодвигательная установка мегаваттного класса. Подчеркну это слово – энергодвигательная. Вся современная космонавтика – это, образно говоря, полет Мюнхгаузена на ядре. То есть мы запускаем ракету, словно выстреливаем из пушки, в том смысле, что изменить траекторию "ядра" не можем. Но для освоения дальнего космоса это совершенно необходимо.

Сегодня орбита наших геостационарных спутников корректируется с помощью установленных на них плазменных двигателей, разработанных Курчатовским институтом и производимых калининградским ОКБ "Факел". Идея этих так называемых двигателей Морозова относится еще к 60-м годам прошлого века.

Но далее возможно создание мощных безэлектродных плазменных ракетных двигателей. Такие двигатели уже можно будет применять для дальних межпланетных полетов. А следующий шаг – термоядерный ракетный двигатель на основе установки термоядерного синтеза, называемой "открытой ловушкой", из которой будет истекать плазма, создавая реактивную тягу. С помощью такого двигателя можно будет ускорять или замедлять движение, маневрировать в пространстве. Это принципиальная вещь и, по существу, приведет к смене парадигмы в космонавтике.

Михаил Валентинович, в декабре 2015 года на встрече с президентом страны вы предложили принять отечественную термоядерную программу. Есть ли подвижки в этом направлении?

Да. Есть соответствующее поручение президента страны. Кроме того, в начале июня нынешнего года мы подписали с "Росатомом" соглашения о создании двух межведомственных центров – центра плазменных и термоядерных исследований, а также центра нейтринных исследований.

Мы предлагали также Российской академии наук присоединиться к проектам обоих центров, но понимания, увы, не нашли. Зато отдельные академические институты выразили интерес – Физико-технический институт в Санкт-Петербурге, Институт ядерной физики в Новосибирске просят подключить их к этой работе.

Такие центры сейчас формируются. По центру плазменных и термоядерных исследований совместно с "Росатомом" создается программа исследований, ее концепция сформирована и заслушана на соответствующих научно-технических советах. Сейчас эта концепция направлена президенту страны.

Вы говорили о "курчатовском эволюционном древе" ядерных реакторов. Но на стене в коридоре возле вашего кабинета висит еще одна схема – это "древо" самых разных технологий, вышедших из стен Курчатовского института. Там есть, например, и то, что сейчас называется технологиями живых систем.

Мало кто знает, но отечественная молекулярная биология начиналась тоже в Курчатовском институте, в его радиобиологическом отделе, созданном по инициативе Курчатова в 1958 году.

Дело в том, что для понимания действия радиации на живые организмы было необходимо знать их устройство на молекулярном уровне. Курчатов, Александров в то время, когда были гонения на генетику, спасли это направление в СССР, потому что их мнение всегда было весомо для власти. Из радиобиологического отдела вышли затем Институт генетики и селекции промышленных микроорганизмов (ГосНИИГенетики) и Институт молекулярной генетики. Сегодня науки о живом, нанобиотехнологии становятся магистральным направлением, более 70 процентов всех мировых исследований приходится именно на живые объекты. И наши отцы-основатели как в воду смотрели, выступив в поддержку работ в области биологии почти 60 лет назад.

В последние годы работы по природоподобным технологиям стали одной из визитных карточек Курчатовского института. Нет ли здесь противоречия с теми направлениями, о которых вы рассказывали?

Наоборот, в этом логика развития науки. Как я уже говорил, одним из наших приоритетов остаются ядерные технологии, атомная энергетика – это те самые тактические приоритеты, о которых мы говорили в самом начале. Однако сегодня мы стоим перед новым выбором стратегического приоритета, не менее жестким, чем в середине 1940-х. Он связан глобально с устойчивым развитием нашей цивилизации, которое невозможно без достаточного количества энергии и ресурсов. Причем речь идет не только о нефти и газе: истощаются запасы питьевой воды, пахотных земель, леса, полезных ископаемых. За них в мире уже идет острая борьба, это мы видим ежедневно. Уже многим очевидно, что сегодняшний глобальный кризис не может быть решен в существующей парадигме современной цивилизации.

Нужен качественный скачок, переход на иные принципы прежде всего производства и потребления энергии, которые тянут за собой и все остальные сферы. В созданной человеком техносфере мы используем машины и механизмы, потребляющие колоссальное количество энергии. Технический прогресс нарушил своеобразный обмен веществ природы, создав враждебные ей технологии. Эти технологии, по сути, являются плохими копиями отдельных элементов природных процессов и базируются на узкоспециализированной модели науки и на отраслевых технологиях.

В целом такое развитие было неизбежно и закономерно, оно стало платой за технический прогресс, за комфорт нашей жизни. Но в итоге влияние человека на окружающий мир уже близко к критической черте. А ведь последние десятилетия в условиях глобализации в технологическое развитие, а фактически истребление ресурсов, вовлекаются все новые страны и регионы, приближая ресурсную катастрофу.

Можно двигаться в прежней парадигме, строить все новые атомные станции и увеличивать производство энергии, исчерпывая ресурсы до конца. Но есть и второй путь - создание принципиально новых технологий и систем использования энергии через гибридные материалы и системы на их основе, то есть замена сегодняшнего конечного энергопотребителя системами, воспроизводящими принципы живой природы – на порядки более экономичные и безопасные.

Крупнейшие суперкомпьютеры потребляют десятки мегаватт энергии. И как считается, ограничение компьютерных мощностей будет связано как раз с нехваткой энергии для них. Но человеческий мозг потребляет всего десять ватт – то есть в миллион раз меньше! Сегодня развитие науки достигло такого уровня, что становится уже возможным конструировать такие природоподобные материалы и системы.

Инструмент создания новой природоподобной техносферы – конвергентные нано-, био-, информационные, когнитивные и социогуманитарные технологии (НБИКС-технологии). Именно они стали вторым важнейшим магистральным направлением научного развития Курчатовского института в последние годы.

- А как на практике выглядит конкретный НБИКС-проект?

Нанобиотехнологии уже стали новой технологической культурой, где на атомарном уровне стираются грани между живым и неживым, органическим природным миром и неорганикой. Дело ближайшего будущего – воспроизводство систем и процессов живой природы в виде синтетической клетки, массового создания искусственных тканей и органов, аддитивных технологий, использующих природный принцип формирования объектов, выращивая их, создавая под заказ.

Также активно развивается биоэнергетика, устройства, которые вырабатывают и используют энергию за счет естественных метаболических процессов в живых системах. Следующий шаг - создание искусственного интеллекта на основе когнитивных, информационных технологий и на материальной базе нано-био. Образно говоря, мы планируем создать компьютер, который и по производительности, и по энергопотреблению был бы сравним с нашим мозгом, на основе соединения новейших технологий с природоподобными.

У нас колоссальная программа исследований. Ведь в состав сегодняшнего национального исследовательского центра "Курчатовский институт" входит шесть площадок в Москве, Протвине, Санкт-Петербурге. В ближайшие пару лет мы на нашей площадке в Гатчине введем в эксплуатацию самый мощный в мире полнопоточный нейтронный исследовательский реактор ПИК, там же планируем построить новейший синхротронный источник четвертого поколения.

К нашим исследованиям мы подтягиваем и мощную образовательную инфраструктуру – недалеко от Гатчины, в Петергофе, расположен физический факультет Санкт-Петербургского университета, деканом которого я являюсь. А здесь в Москве, на базе МФТИ, мы еще семь лет назад создали первый в мире факультет НБИКС-технологий, который каждый год поставляет в Курчатовский институт порядка 50 выпускников. Еще у нас действует целая междисциплинарная образовательная школьная программа, которую мы запустили совместно с правительством Москвы и в которой сегодня участвуют почти 40 школ.

То есть, если можно выразиться одной фразой, будущее Курчатовского института – это, собственно, создание в нем самого будущего?

Я бы сказал так - созидание. Для этого у нас все есть.

Ядерные реакторы.

Ядерный (атомный) реактор - это устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления атомов, которая сопровождается выделением большого количества энергии.

Ядерные реакторы являются основным элементом современных атомных электростанций.

Первые ядерные реакторы.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми.

Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года.

В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

История создания ядерных реакторов.

Научная работа в Германии.

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером был Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» - первого реактора.

Поздней весной 1940 года один из учёных группы - Хартек - провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели.

В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение.

Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование.

Научная работа в США.

Цепная реакция деления ядер (кратко - цепная реакция) была впервые осуществлена американскими учеными в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его диоксида. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

Научная работа в СССР.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова.

Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор был выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был собран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (Средняя мощность не превышала 20 Вт. Для сравнения, первый американский реактор CP-1 редко превышал 1 Вт мощности). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония.

27 июня 1954 года начала работать первая в мире атомная электростанция электрической мощностью 5 МВт в городе Обнинске.

Физические принципы работы ядерного реактора.

Схема ядерного реактора на тепловых нейтронах:

1 - Управляющий стержень.

2 - Радиационная защита.

3 - Теплоизоляция.

4 - Замедлитель.

5 - Ядерное топливо.

6 - Теплоноситель.

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Таким образом, возможны следующие варианты развития цепной реакции деления атомов:

1. ρ<0, Кэф

2. ρ>0, Кэф>1 - реактор надкритичен, интенсивность реакции и мощность реактора увеличиваются.

3. ρ=0, Кэф=1 - реактор критичен, интенсивность реакции и мощность реактора постоянны.

Классификация ядерных реакторов.

По назначению и характеру использования ядерные реакторы делятся на:

Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт.

Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.

Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов. Мощность таких реакторов обычно не превышает нескольких кВт.

Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов обычно не более 100 МВт. Выделяющаяся энергия, как правило, не используется.

Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным ядерным реакторам относят реакторы, использующиеся для опреснения морской воды.

Часто ядерные реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

Ядерный реактор. Атомный реактор.



Кадры