Большая энциклопедия нефти и газа. Потеря пара и конденсата, их пополнение

В.Л. Гудзюк, ведущий специалист;
к.т.н. П.А. Шомов, директор;
П.А. Перов, инженер-теплотехник,
ООО НТЦ «Промышленная энергетика», г. Иваново

Расчеты и имеющийся опыт показывают, что даже несложные и относительно дешевые технические мероприятия по совершенствованию теплоиспользования на промышленных предприятиях приводят к существенному экономическому эффекту.

Обследования паро-конденсатных систем многих предприятий показали, что нередко на паропроводах отсутствуют и дренажные карманы для сбора конденсата, и конденсатоотводчики. По этой причине часто имеют место повышенные потери пара. Моделирование истечения пара на основе программного продукта позволило определить, что потери пара через дренажи паропровода могут возрастать до 30%, если через дренаж проходит паро-конденсатная смесь, по сравнению с отводом только конденсата.

Данные измерений на паропроводах одного из предприятий (таблица), дренажи которых не имеют ни карманов для сбора конденсата, ни конденсатоотводчиков, и частично открыты в течение всего года, показали, что потери тепловой энергии и средств могут быть достаточно большими. Из таблицы видно, что потери при дренаже паропровода Ду 400 могут быть даже меньше, чем из паропровода Ду 150.

Таблица. Результаты измерений на паропроводах обследованного промышленного предприятия, дренажи которых не имеют карманов для сбора конденсата и конденсатоотводчиков.

Уделив некоторое внимание работе по сокращению этого вида потерь при низких затратах, можно получить существенный результат, поэтому была проверена возможность использования устройства, общий вид которого представлен на рис. 1. Оно устанавливается на существующем дренажном патрубке паропровода. Это может быть выполнено на работающем паропроводе без его отключения.

Рис. 1. Устройство для дренажа паропровода.

Следует отметить, что для паропровода подходит далеко не любой конденсатоотводчик, а стоимость оборудования конденсатоотводчиком одного спускника составляет от 50 до 70 тыс. руб. Дренажей, как правило, много. Они располагаются на расстоянии друг от друга в 30-50 м, перед подъемами, регулирующими клапанами, коллекторами и т.п. Конденсатоотводчик требует квалифицированного обслуживания, особенно в зимний период. В отличие от теплообменного аппарата, количество отводимого и, тем более, используемого конденсата, по отношению к расходу пара по паропроводу, - незначительно. Чаще всего, пароконденсатная смесь из паропровода через дренаж сбрасывается в атмосферу. Количество ее регулируется запорным вентилем «на глаз». Поэтому, сокращение потерь пара из паропровода вместе с конденсатом может дать неплохой экономический эффект, если это не будет связано с большими затратами средств и труда. Такая ситуация имеет место на многих предприятиях, и является скорее правилом, чем исключением.

Данное обстоятельство побудило нас проверить возможность снижения потерь пара из паропровода, при отсутствии, по какой-то причине, возможности оборудовать дренажи паропровода конденсатоотводчиками по типовой проектной схеме. Задача состояла в том, чтобы с минимальными затратами времени и средств организовать вывод из паропровода конденсата при минимальной потере пара.

В качестве наиболее легко реализуемого и недорогого способа решения этой задачи была рассмотрена возможность использования подпорной шайбы. Диаметр отверстия в подпорной шайбе можно определить по номограмме или расчетом. Принцип действия основан на различных условиях истечения конденсата и пара через отверстие. Пропускная способность подпорной шайбы по конденсату в 30-40 раз больше, чем по пару. Это позволяет непрерывно сбрасывать конденсат при минимальном количестве пролетного пара.

Для начала надо было убедиться том, что можно сократить количество пара, выводимого через дренаж паропровода вместе с конденсатом при отсутствии кармана отстойника и гидрозатвора, т.е. в условиях, к сожалению, часто встречающихся на предприятиях с паропроводами низкого давления.

Показанное на рис. 1 устройство имеет входное и два одинаковых по размеру выходных шайбированных отверстия. На фотографии видно, что через отверстие с горизонтальным направлением струи выходит паро-конденсатная смесь. Это отверстие может быть перекрыто краном и используется периодически при необходимости продувки устройства. Если кран перед этим отверстием закрыт, из паропровода через второе отверстие выходит конденсат с вертикальным направлением струи - это рабочий режим. На рис. 1 видно, что при открытом кране и выходе через боковое отверстие конденсат распыляется паром, а на выходе через нижнее отверстие - пара практически нет.

Рис. 2. Рабочий режим устройства для дренажа паропровода.

На рис. 2 представлен рабочий режим устройства. На выходе - в основном поток конденсата. Это наглядно показывает, что имеется возможность снижения расхода пара через подпорную шайбу без гидрозатвора, необходимость в котором является основной причиной, ограничивающей ее применение для дренажа паропровода, особенно в зимнее время. В этом устройстве выходу пара из паропровода вместе с конденсатом препятствует не только дроссельная шайба, но и специальный фильтр, ограничивающий выход пара из паропровода.

Проверена эффективность нескольких конструктивных вариантов такого устройства для вывода из паропровода конденсата с минимальным содержанием пара. Они могут быть изготовлены как из покупных комплектующих, так и в механической мастерской котельной с учетом условий эксплуатации конкретного паропровода. Может быть также использован с небольшой переделкой имеющийся на рынке фильтр для воды, который способен работать при температуре пара в паропроводе.

Стоимость изготовления или приобретения комплектующих для одного спускника не более нескольких тысяч рублей. Реализация мероприятия может быть выполнена за счет эксплуатационных расходов, и как минимум, в 10 раз дешевле использования конденсатооотводчика, особенно в тех случаях, когда нет возврата конденсата в котельную.

Величина экономического эффекта зависит от технического состояния, режима работы и условий эксплуатации конкретного паропровода. Чем длиннее паропровод и больше число дренажных спускников, и при этом дренаж производится в атмосферу, тем больше экономический эффект. Поэтому, в каждом конкретном случае требуется предварительная проработка вопроса о целесообразности практического использования рассматриваемого решения. Отрицательного эффекта по отношению к дренажу паропровода с выбросом паро-конденсатной смеси в атмосферу через вентиль, как это часто имеет место, не просматривается. Считаем, что для дальнейшего изучения и накопления опыта целесообразно продолжить работу на действующих паропроводах низкого давления.

Литература

1. Елин Н.Н., Шомов П.А., Перов П.А., Голыбин М.А. Моделирование и оптимизация трубопроводных сетей паропроводов промышленных предприятий // Вестник ИГЭУ. 2015. T. 200, № 2. С. 63-66.

2. Бакластов А.М., Бродянский В.М., Голубев Б.П., Григорьев В.А., Зорина В.М. Промышленная теплоэнергетика и теплотехника: Справочник. М.: Энергоатомиздат, 1983. С.132. Рис. 2.26.

Какие внутристанционные и внешние потери пара и конденсата имеют место на ТЭС и АЭС? Сравните потери рабочего тела на КЭС и ТЭЦ

Внутристанционные (или внутренние) потери пара и конденсата включают в себя следующие основные составляющие:

Утечки из-за неплотностей в соединениях трубопроводов и агрегатов, в арматуре; особого внимания с этой точки зрения требуют фланцевые соединения;

Расход на уплотнения турбины и на различные технические нужды, например, расход пара на разогрев мазута;

Потери дренажей и другие незначительные потери.

Кроме того, на ТЭС с барабанными котлами к внутренним потерям относят непрерывную продувку котловой воды, осуществляемую с целью снижения концентраций примесей в рабочем теле парогенерирующей установки.

Внутренние потери обычно составляют :

На КЭС не более 1% от расхода пара на турбину;

На ТЭЦ отопительного типа до 1,2%;

До 1,6% на ТЭЦ промышленного и промышленно-отопительного типа.

ТЭЦ могут работать по открытой или закрытой схеме в зависимости от способа теплоснабжения потребителей.

Закрытая схема предполагает отпуск потребителю тепловой энергии через дополнительные теплообменные устройства, т.е. без каких-либо безвозвратных потерь рабочего тела пароводяного контура электростанции.

Если ТЭЦ работает по открытой схеме , то имеют место внешние потери рабочего тела в связи с неполным его возвратом. Например, невозврат конденсата пара от потребителей может достигать 50-70%.

КЭС не имеют внешних потерь пара и конденсата.

Какие существуют методы подготовки добавочной воды? Каковы назначение и принцип действия расширителей, испарителей и паропреобразователей?

Для восполнения потерь пара и конденсата на ТЭС осуществляется подготовка добавочной воды. Можно выделить два наиболее часто используемых способа водоподготовки - химический и термический.

Химический способ позволяет достичь требуемой чистоты добавочной воды с применением различных химических реагентов и фильтров. С их помощью из первичной неочищенной воды удаляются нерастворимые примеси и ионные соединения.

Термическая водоподготовка означает обессоливание методом испарения первичной воды с последующей конденсацией образовавшегося пара. Получаемый таким образом дистиллят имеет весьма высокую чистоту, а если она недостаточна, то повторным испарением и конденсацией можно получить бидистиллят.

Расширитель (Р) предназначен для снижения потерь с продувочной водой барабанного парогенератора (рис. 23).

Рис. 23.

Поскольку ионообменные смолы катионитного и анионитного фильтров не могут работать при высоких температурах, требуется снижение параметров продувочной воды в охладителе продувки с неизбежными при этом потерями теплоты. В расширителе часть продувочной воды превращается в насыщенный пар за счет уменьшения давления. Поскольку вынос примесей с паром очень мал, требуется очистка (а, значит, и охлаждение) только сепарата (рис. 23). Этим достигается значительное снижение потерь теплоты.

В испарителе (И) осуществляется термическая подготовка добавочной воды методом дистилляции (рис. 24).

Рис. 24.

Для испарения воды используется греющий (первичный) пар из турбины. Образующийся вторичный пар поступает в конденсатор испарителя (КИ) для получения из него дистиллята. Продувка испарителя позволяет обеспечить требуемое качество подготовки воды.

Рис. 25.

С помощью паропреобразователя (рис. 25) можно подавать тепловому потребителю вторичный пар, оставляя на ТЭЦ конденсат греющего (первичного) пара. Это целесообразно при высоком содержании примесей в сырой воде.

Температурный перепад в стенках теплообменной поверхности паропреобразователя составляет примерно 12-15 о С, что снижает тепловую экономичность турбоустановки.

Подаваемый потребителю пар необходимо немного перегреть в паро-паровом теплообменнике (ТО на рис. 25) во избежание его частичной конденсации при транспортировке по паропроводам.

Потери рабочего тела: пара, основного конденсата и питательной воды на ТЭС можно разделить на внутренние и внешние . К внутренним – относят потери рабочего тела через не плотности фланцевых соединений и арматуры; потери пара через предохранительные клапаны; утечку дренажа паропроводов; расход пара на обдувку поверхностей нагрева, на разогрев мазута и на форсунки. Эти потери сопровождаются потерей теплоты, их принято обозначать величиной или выражать (для конденсационных турбоустановок) в долях расхода пара на турбину . Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0 % на КЭС и 1,2÷ 1,6 на ТЭЦ. На Тепловых электрических станциях (ТЭС) с прямоточными энергетическими котлами эти потери с учетом периодических водно-химических отмывок могут быть больше на 0,3 ÷ 0,5 %. При сжигании мазута в качестве основного топлива, потери конденсата увеличиваются на 6 % в летнее время и на 16 % в зимнее время.

Для уменьшения внутренних потерь по возможности фланцевые соединения заменяют сварными, организуют сбор и использование дренажа, следят за плотностью арматуры и предохранительных клапанов, заменяют, где возможно предохранительные клапаны на диафрагмы.

На ТЭС до критического давления, с барабанными котлами основную часть внутренних потерь составляют потери с продувочной водой .

Внешние потери имеют место при отпуске технологического пара внешнему потребителю из турбин и энергетических парогенераторов (ПГ), когда часть конденсата этого пара не возвращается на ТЭЦ .

На ряде предприятий химической и нефтехимической промышленности потери конденсата технологического пара могут составить до 70 %.

Внутренние потери имеют место на конденсационных электростанциях (КЭС) и на теплоэлектроцентралях (ТЭЦ). Внешние потери имеют место только на ТЭЦ с отпуском технологического пара на промышленные предприятия.

Конец работы -

Эта тема принадлежит разделу:

По курсу ТЦПЭЭ и Т 7 семестр, 36 часов лекция 18 лекции

По курсу тцпээ и т семестр часов.. лекция потери пара и конденсата и их восполнение потери пара и конденсата..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Баланс пара и воды
Воду, вводимую в питательную систему энергетических котлов для восполнения потерь рабочего тела (теплоносителя), называют добавочной водой

Назначение и принцип действия расширителей продувки
Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл ТЭС соли и другие химические соединения. Значительная доля солей поступает также через не плотности

Химические методы подготовки добавочной и подпиточной воды
На промышленные ТЭС вода обычно поступает из общей системы водоснабжения предприятия, из которой предварительно удаляются механические примеси путем отстаивания, коагуляции и фильтр

Термическая подготовка добавочной воды парогенераторов в испарителях
В связи с проблемой охраны окружающей среды от вредных выбросов производств, применение химических методов водоподготовки все более затрудняется ввиду запрета сброса отмывочных вод в водоемы. В это

Расчет испарительной установки
Схема к расчету испарительной установки показана на рис. 8.4.3. Расчетиспарительной установки заключается в определении расхода первичного пара из отбора турбины

Отпуск пара внешним потребителям
От теплоэлектроцентрали (ТЭЦ) к потребителю тепло подается в виде пара или горячей воды, называемых теплоносителями. Промышленные предприятия потребляют для технологических нужд пар

Одно-, двух- и трехтрубная системы пароснабжения от ТЭЦ
На большинстве предприятий необходим пар 0,6 – 1,8 МПа, а иногда 3,5 и 9 МПа, который подается к потребителям от ТЭЦ паропроводами. Прокладка индивидуальных паропроводов к каждому потребителю вызыв

Редукционно-охладительная установка
Для снижения давления и температуры пара применяются редукционно-охладительные установки (РОУ). Установки используются на ТЭС для резервирования отборов и противодавления тур

Отпуск тепла на отопление, вентиляцию и бытовые нужды
Для отопления, вентиляции и бытовых нужд в качестве теплоносителя применяется горячая вода. Систему трубопроводов, по которым горячая вода подается к потребителям, а охлажденная возвращает

Отпуск тепла на отопление
Сетевая установка ГРЭС обычно состоит из двух подогревателей – основного и пикового рис. 9.2.1.

Конструкции сетевых подогревателей и водогрейных котлов
Качество сетевой воды, прокачиваемой через поверхности нагрева сетевых подогревателей, значительно ниже качества конденсата турбин. В ней могут присутствовать продукты коррозии, соли жесткости и др

ЛЕКЦИЯ 24
(продолжение лекции 23) Водогрейные котлы, как и пиковые сетевые подогреватели, используются на ТЭЦ в качестве пиковых источников теплоты при тепловых нагрузках, превышающих обеспеч

Деаэраторы, питательные и конденсатные насосы
Деаэрационно-питательную установку можно условно разделить на две – деаэрационную и питательную. Начнем рассмотрение с деаэрационной установки. Назначен

ЛЕКЦИЯ 26
(продолжение лекции 25) Каково назначение питательной установки? Зачем устанавливается бустерный насос? Каковы возможные схемы включения питательных насосов?

Общие положения расчета принципиальных тепловых схем
1. РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ Т-110/120-130 (на номинальном режиме работы) Параметры турбоустановки: N0 = 11

Расчет расхода воды теплосети
Энтальпия сетевой воды на входе в ПСГ-1 определяется при tос = 35 0С и давление на выходе из сетевого насоса, равном 0,78 МПа, получаем hос = 148 кД

Расчет подогрева воды в питательном насосе
Давление питательной воды на выходе из питательного насоса оценивается величиной, на 30 - 40% больше давления свежего пара р0 ; Принимаем 35 %:

Термодинамические параметры пара и конденсата (номинальный режим работы)
Таб. 1.1 Точка Пар в отборах турбины Пар у регенеративных подогревателей Обогреваемая

ЛЕКЦИЯ 29
(продолжение лекции 28) 1.4.3 Расчет ПНД Произвотится совместный расчет группы ПНД-4,5,6.

Конденсационные установки
Каковы назначение и состав конденсационной установки? Как выбираются конденсатные насосы? Конденсационная установка (рис. 26) обеспечивает создание и поддерж

Системы технического водоснабжения
Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС? Системой технического водоснабжения

Топливное хозяйство ЭС и котельных
Подготовка угля к сжиганию включает в себя следующие стадии: - взвешивание на вагонных весах и разгрузка с помощью вагоноопрокидывателей; если уголь при транспортировке смерз

Технические решения по предотвращению загрязнения окружающей среды
ОЧИСТКА ДЫ’ОВЫХ ГАЗОВ Содержащиеся в дымовых газах летучая зола, частицы несгоревшего топлива, окислы азота, сернистые газы загрязняют атмосферу и оказывают вредное влияни

Вопросы эксплуатации электростанций
Основные требования к работе ТЭС и АЭС – это обеспечение надежности, безопасности и экономичности их эксплуатации. Надежность означает обеспечение бесперебойного (непр

Выбор места строительства ТЭС и АЭС
Каковы основные требования к месту строительства электростанции? Каковы особенности выбора места строительства АЭС? Что такое роза ветров в районе размещения станции? Снач

Генеральный план электростанции
Что такое генеральный план электростанции? Что показывается на генеральном плане? Генеральный план (ГП) представляет собой вид сверху на площадку электростан

Компоновка главного здания ТЭС и АЭС
Какова структура главного здания ТЭС и АЭС? Каковы основные принципы компоновки главного здания электростанции, какие количественные показатели характеризуют совершенство компоновки? Какие

К.т.н. С.Д. Содномова, доцент кафедры «Теплогазоснабжение и вентиляция», Восточно-сибирский государственный технологический университет, г. Улан-Удэ, Республика Бурятия

В настоящее время баланс отпуска и потребления теплоты в системах паро- снабжения определяется по показаниям приборов учета на источнике теплоты и у потребителей. Разницу показаний этих приборов относят к фактическим потерям теплоты и учитывают при установлении тарифов на тепловую энергию в виде пара.

Раньше при работе паропровода близкой к проектной нагрузке эти потери составляли 1015%, и ни у кого при этом не возникало вопросов. В последнее десятилетие в связи со спадом промышленного производства произошло изменение графика работы и сокращение потребления пара. При этом дисбаланс между потреблением и отпуском теплоты резко увеличился и стал составлять 50-70% .

В этих условиях возникли проблемы, прежде всего от потребителей, которые считали необоснованным включать в тариф такие большие потери тепловой энергии. Какова структура этих потерь? Как осознанно решать вопросы повышения эффективности работы систем пароснабжения? Для решения этих вопросов необходимо выявить структуру дисбаланса, оценить нормативные и сверхнормативные потери тепловой энергии.

Для количественной оценки дисбаланса была усовершенствована программа гидравлического расчета паропровода перегретого пара, разработанная на кафедре для учебных целей. Понимая, что при снижении расходов пара у потребителей, скорости теплоносителя уменьшаются, и относительные потери теплоты при транспорте возрастают. Это приводит к тому, что перегретый пар переходит в насыщенное состояние с образованием конденсата. Поэтому была разработана подпрограмма, позволяющая: определять участок, на котором перегретый пар переходит в насыщенное состояние; определять длину, на которой пар начинает конденсироваться и далее производить гидравлический расчет паропровода насыщенного пара; определять количество образующегося конденсата и потери теплоты при транспорте. Для определения плотности, изобарной теплоемкости и скрытой теплоты парообразования по конечным параметрам пара (P, T) использованы упрощенные уравнения, полученные на

основе аппроксимации табличных данных, описывающих свойства воды и водяного пара в области давлений 0,002+4 МПа и температур насыщения до 660 О С .

Нормативные потери теплоты в окружающую среду определялись по формуле:

где q - удельные линейные тепловые потери паропровода; L - длина паропровода, м; β - коэффициент местных потерь теплоты.

Потери теплоты, связанные с утечками пара, определялись по методике :

где Gnn - нормируемые потери пара за рассматриваемый период (месяц, год), т; ί η - энтальпия пара при средних давлениях и температурах пара по магистрали на источнике теплоты и у потребителей, кДж/кг; ^ - энтальпия холодной воды, кДж/кг.

Нормируемые потери пара за рассматриваемый период:

где V™ - среднегодовой объем паровых сетей, м 3 ; р п - плотность пара при средних давлении и температуре по магистралям от источника тепла до потребителя, кг/м 3 ; n - среднегодовое число часов работы паровых сетей, ч.

Метрологическую составляющую недоучета расхода пара определяли с учетом правил РД-50-213-80 . Если измерение расхода ведется в условиях, при которых параметры пара отличаются от параметров, принятых для расчета сужающих устройств, то для определения действительных расходов по показаниям прибора необходимо произвести пересчет по формуле:

где Q m . a . - массовый действительный расход пара, т/ч; Q m - массовый расход пара по показаниям прибора, т/ч; р А - действительная плотность пара, кг/м 3 ; ρ - расчетная плотность пара, кг/м 3 .

Для оценки потерь теплоты в системе паро- снабжения был рассмотрен паропровод ПОШ г. Улан-Удэ, который характеризуется следующими показателями:

■ суммарный расход пара за февраль - 34512 т/месяц;

■ среднечасовой расход пара - 51,36 т/ч;

■ средняя температура пара - 297 О С;

■ среднее давление пара - 8,8 кгс/см 2 ;

■ средняя температура наружного воздуха - -20,9 О С;

■ длина основной магистрали - 6001 м (из них диаметром 500 мм - 3289 м);

■ дисбаланс теплоты в паропроводе - 60,3%.

В результате гидравлического расчета были определены параметры пара в начале и в конце расчетного участка, скорости теплоносителя, выявлены участки, где происходит образование конденсата и связанные с ним потери теплоты. Остальные составляющие определялись по вышеприведенной методике. Результаты расчетов показывают, что при среднечасовом отпуске пара с ТЭЦ 51,35 т/ч потребителям доставлено 29,62 т/ч (57,67%), потери расхода пара составляют 21,74 т/ч (42,33%). Из них потери пара следующие:

■ с образовавшимся конденсатом - 11,78 т/ч (22,936%);

■ метрологические из-за того, что потребители не учитывают поправки к показаниям приборов - 7,405 т/ч (14,42%);

■ неучтенные потери пара - 2,555 т/ч (4,98%). Объяснить неучтенные потери пара можно

осреднением параметров при переходе со среднемесячного баланса на среднечасовой баланс, некоторыми приближениями при расчетах и, кроме того, у приборов имеется погрешность 2-5%.

Что касается баланса по тепловой энергии отпущенного пара, то результаты расчетов представлены в таблице. Откуда видно, что при дисбалансе в 60,3% нормативные потери теплоты составляют 51,785%, сверхнормативные, неучтенные расчетом тепловые потери, - 8,514%. Таким образом, определена структура тепловых потерь, разработана методика количественной оценки дисбаланса расходов пара и тепловой энергии.

Таблица. Результаты расчетов потерь тепловой энергии в паропроводе ПОШ г. Улан-Удэ.

Наименование величин ГДж/ч %
Общие показатели
Среднечасовой отпуск теплоты с коллекторов ТЭЦ 154,696 100
Полезный среднечасовой отпуск теплоты потребителям 61,415 39,7
Фактические потери теплоты в паропроводе ПОШ 93,28 60,3
Нормативные потери теплоты 70,897 45,83
Эксплуатационные технологические потери тепловой энергии, из них:

Тепловые потери в окружающую среду

Потери тепловой энергии с нормативными утечками пара

Потери теплоты с конденсатом

43,98 28,43
Метрологические потери из-за недоучета теплоты без введения поправки 9,212 5,955
Итого
Нормативные потери тепловой энергии 80,109 51,785
Неучтенные расчетом сверхнормативные потери теплоты 13,171 8,514

Литература

1. Абрамов С.Р. Методика снижения тепловых потерь в паропроводах тепловых сетей / Материалы конференции «Тепловые сети. Современные решения», 17-19 мая 2005 г. НП «Российское теплоснабжение».

2. Содномова С.Д. К вопросу определения составляющих дисбаланса в системах пароснабжения / Материалы международной научно-практической конференции «Строительный комплекс России: Наука, образование, практика». - Улан-Удэ: Изд-во ВСГТУ, 2006 г.

3. Ривкин С.Л., АлександровА.А.Теплофизические свойства воды и водяного пара. - М.: Энергия 1980 г. - 424 с.

4. Определение эксплуатационных технологических затрат (потерь) ресурсов, учитываемых при расчете услуг по передаче тепловой энергии и теплоносителя. Постановление ФЭК РФ от 14 мая 2003 г. № 37-3/1.

5. РД-50-213-80. Правила измерения расхода газов и жидкостей стандартными сужающими устройствами. М.: Изд-во стандартов.1982 г.

 Сравните основные схемы включения регенеративных подогревателей по эффективности их работы.  Охарактеризуйте расход свежего пара и тепла на турбину с регенеративными отборами.  От каких параметров регенеративного подогрева питательной воды и как зависит к.п.д. турбоустановки?  Что такое охладители дренажа и как они используются?  Что такое деаэрация питательной воды и что она дает на ТЭС?  Какие основные типы деаэраторов существуют?  Как включаются деаэраторы в схему ТЭС?  Что такое тепловой и материальный балансы деаэраторов и как они реализуются?  Что такое питательные насосы и какие основные типы питательных насосов существуют?  Охарактеризуйте основные схемы включения питательных насосов.  Охарактеризуйте основные схемы включения приводных турбин. 91 5. ВОСПОЛНЕНИЕ ПОТЕРЬ ПАРА И КОНДЕНСАТА 5.1. ПОТЕРИ ПАРА И КОНДЕНСАТА Потери пара и конденсата электростанций разделяются на внутренние и внешние. К внутренним относят потери от утечки пара и конденсата в системе оборудования и трубопроводов самой электростанции, а также потери продувочной воды парогенераторов. Потери от утечки пара и воды на электростанциях обуславливаются неплотностью фланцевых соединении трубопроводов, предохранительных клапанов парогенераторов, турбин и другого оборудования электростанции. Рис. 5.1,а Потери пара и конденсата обуславливают соответствующую потерю тепла, ухудшение экономичности и снижение к.п.д. электростанции. Потери пара и конденсата восполняют добавочной водой. Для ее подготовки применяют специальные устройства, обеспечивающие питание парогенераторов водой необходимого качества, что требует дополнительных капитальных вложений и эксплуатационных расходов. Потери от утечки распределены по всему пароводяному тракту. Однако более вероятны они из мест с наиболее высокими параметрами среды. Вторая составляющая внутренних потерь воды обуславливается непрерывной продувкой воды в барабанных парогенераторах (на электростанциях с прямоточными парогенераторами эти потери отсутствуют), ограничивающей концентрацию различных примесей в воде 92 парогенераторов величиной, обеспечивающей надежную их работу и требуемую чистоту производимого ими пара. Снижения продувки и повышения чистоты пара достигают улучшением качества питательной воды, уменьшением потерь пара и конденсата и количества добавочной воды. Рис. 5.1,б Питательная вода прямоточных парогенераторов должна быть особенно чистой, т.к. значительная часть примесей затем вместе с паром выносится в паровой тракт и откладывается в проточной части турбины, снижая ее мощность, к.п.д. и надежность. К внутренним относятся также потери пара и конденсата при неустановившихся режимам работы оборудования: при растопке и остановке парогенераторов, прогреве и продувке паропроводов, пуске и остановке турбины, промывке оборудования. Всемерное снижение этих потерь-существенное требование к пусковым схемам энергоблоков и электростанций. Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0- 1,6%. В зависимости от схемы отпуска тепла внешним потребителям на ТЭЦ могут быть внешние потери пара и конденсата. Применяют две различные схемы отпуска тепла теплоэлектроцентралью: открытую, при которой потребителям полается пар непосредственно из отбора или противодавления турбины (рис. 5.1,а), и закрытую, при которой пар из от6opa или противодавления турбины, конденсируясь в поверхностном теплообменнике. нагревает теплоноситель, направляемый внешним потребителем, а конденсат греющего пара остается на ТЭЦ (рис. 5.1,б). Если потребителям требуется пар, то в качестве промежуточных теплообменников применяют испарители - парообразователи. Если потребителям тепло отпускается горячей водой, то промежуточным 93 теплообменником служит подогреватель воды, подаваемой в тепловую сеть (сетевой подогреватель) . При закрытой схеме отпуска тепла потери пара и конденсата сводятся к внутренним, и по относительной величине потери рабочей среды такая ТЭЦ мало отличается от КЭС. Количество обратного конденсата, возвращаемого промышленными потребителями пара составляет в среднем 30%-50% расхода отпускаемого пара. Т.е. внешние потери конденсата могут быть значительно больше внутренних потерь. Добавочная вода, вводимая в питательную систему парогенератора при открытой схеме отпуска тепла, должна восполнять внутренние и внешние потери пара и конденсата. Перед вводом в питательную систему парогенераторов применяют:  глубокое химическое обессоливание добавочной воды;  сочетание предварительной химической очистки с термической подготовкой добавочной воды в испарителях. 5.2. БАЛАНС ПАРА И ВОДЫ Для расчета тепловой схемы, определения расхода пара на турбины, производительности парогенераторов, энергетических показателей и т.п. необходимо установить основные соотношения материального баланса пара и воды электростанции. Определим эти соотношения для более общего случая ТЭЦ с отпуском пара промышленному потребителю непосредственно из отбора турбины (рис. 5.1,а). Уравнения материального баланса пара и воды КЭС получаются как частный случай соотношений для ТЭЦ. Паровой баланс основного оборудования электростанции выражается следующими уравнениями. Расход свежего пара D на турбину при отборе пара на регенерацию Dr, и для внешнего потребления Dï, на пропуске пара в конденсатор Dê равен: D=Dr+Dп+Dк (5.1) Для КЭС Dп=0 следовательно: D=Dr+Dк (5.1а) Расход свежего пара па турбоустановку с учетом его расхода Dyo на уплотнения и другие нужды помимо главной турбины D0=D+Dyo. (5.2) Паровая нагрузка парогенераторов Dïã с учетом утечки Dут, включая безвозвратный расход свежего пара на хозяйственно-технические нужды электростанции, составляет: Dпг=D0 +Dут (5.3) В качестве основной расчетной величины расхода рабочего тела целесообразно принимать расход свежего пара на турбоустановку D0. Баланс воды па электростанции выражается следующими уравнениями. 94 Баланс питательной воды Dпв=Dпг+Dпр=D0+Dут+Dпр (5.4) где Dïð-расход продувочной воды парогенераторов; в случае прямоточных парогенераторов Dïð=0; Dïâ=D0+Dóò (5.4a) Поток питательной воды Dïâ составляется в общем случае из конденсата турбины Dê, обратного конденсата тепловых потребителей Dîê, конденсата пара регенеративных отборов Dr, конденсата пара из расширителя продувки парогенераторов D"ï и уплотнений турбины Dy, добавочной воды Dдв=Dут+D/пр+Dвн, а именно: Dпв=Dк+Dок+Dr+D/п+Dy+Dут+D/пр+Dвн Без учета (для упрощения) регенеративных отборов и протечек через уплотнения турбины получим: Dпв=Dк+Dок+Dдв+D/п (5.4б) Потери пара и конденсата ТЭЦ составляются в общем случае из внутренних потерь Dвт и внешних потерь Dвн. Внутренние потери пара и воды на электростанции равны; Dвт=Dут+D/пр (5.5) где D/ïð- потеря продувочной воды при одноступенчатой расширительной установке: в случае прямоточных парогенераторов Dпр=0, D/пр=0 и Dвт=Dут (5.5а) Внешние потери конденсата ТЭЦ с открытой схемой отпуска пара равны: Dвн=Dп-Dок (5.6) где Dîê-количество конденсата, возвращаемого от внешних потребителей. Общая потеря Dïîò пара и конденсата ТЭЦ с открытой схемой отпуска тепла и количество добавочной воды Dдв равны сумме внутренних и внешних потерь: Dпот=Dдв=Dвт+Dвн=Dут+D/пр+Dвн (5.7) При прямоточных парогенераторах Dïð=0 и Dпот=Dут+Dвн Для КЭС и для ТЭЦ с закрытой схемой отпуска тепла Dвн=0 и Dпот=Dвт=Dут+D/пр при прямоточных парогенераторах в этом случае Dпот=Dвт=Dут Перед входом в расширитель продувочная вода проходит через редуктор, и в расширитель поступает пароводяная смесь, которая разделяется в нем па относительно чистый пар, отводимый в один из теплообменников регенеративной системы турбоустановки, и воду (сепарат или концентрат), с которой выводятся примеси, удаляемые из парогенератора с продувочной водой. Количество пара, сепарируемого в расширителе и возвращаемого в питательную систему, достигает 30% расхода продувочной воды, а количество возвращаемого тепла-около 60%, при двухступенчатом расширении-еще выше. 95 Тепло продувочной воды используется дополнительно в охладителе продувки для подогрева добавочной воды. Если охлажденная продувочная вода используется далее для питания испарителей или подпитки тепловой сети, то тепло продувочной воды используется почти полностью. Энтальпия пара и воды на выходе из расширителя соответствует состоянию насыщения при давлении в расширителе; незначительной влажностью пара в расчетах можно пренебречь. Выпар из расширителя продувки барабанного парогенератора и потеря продувочной воды определяются уравнениями теплового и материального балансов расширительной установки. В случае одноступенчатой расширительной установки (рис. 5.1,а): уравнение теплового баланса Dпрiпр=D/пi//п+ D/прi/пр (5.8) уравнение материального баланса Dпр=D/п+D/пр (5.9) где iпр, i/пр и i//п-соответственно энтальпии продувочной воды парогенераторов, продувочной воды и выпара после расширителей продувки, кДж/кг. Отсюда  iпр  i р п Dп  D п р    D пр п (5.10) i п  iпр   и  i   i п р п D  р  D пр  D п  п D пр    р D п р п (5.10а) i   i  р п п Значения iпр, i//п и i/пр определяются однозначно давлением пара в барабане парогенератора и в расширителе продувки, т.е. равны соответственно значениям энтальпии воды при насыщении в барабане парогенератора iпр=i/пг, пара и воды в расширителе продувки. Давление пара в расширителе продувки определяется местом в тепловой схеме, к которому подводится выпар из расширителя. В случае двухступенчатой расширительной установки D/ïð и D/п, D//ïð и D//ï определяются из следующих уравнений теплового и материального баланса. Для расширителя первой ступени Dпрiпр=Dп1i//п1+Dпр1i/пр1 и Dпр=Dп1+Dпр1 Для расширителя второй ступени Dпр1i/пр1=Dп2i//п2+Dпр2i/пр2 и Dпр1=Dп2+Dпр2 96 В этих уравнениях Dïð, Dïð1 è Dпр2-соответственно расходы продувочной воды из парогенератора н расширителей первой и второй ступеней, кг/ч; Dï1 и Dï2-выход пара из расширителей первой и второй ступеней, кг/ч; iïð, i/ïð1 и i/ïð2-энтальпии воды при насыщении на выходе из парогенератора и расширителей первой и второй ступеней, кДж/кг; i//ï1 и i//ï2 -энтальпии насыщенного (сухого) пара на выходе из расширителей первой и второй ступеней, кДж/кг. Очевидно, энтальпии пара и воды-однозначные функции давления в барабане парогенератора pпг и в расширителях первой и второй ступеней pp1 и pp2, МПа. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде (солей, щелочей, кремниевой кислоты, окислов меди и железа) в парогенераторе. Обозначая концентрации примесей в свежем паре, питательной и продувочной воде соответственно Сп, Спв и Спг, напишем уравнение баланса примесей к воде для парогенератора в виде DпрСпг+DпгСп=DпвСпв (5.11) или, воспользовавшись равенством (5.4) Dпв=Dпг +Dпр, DпрСпг+DпгСп=(Dпг +Dпр)Спв (5.11а) откуда С п в  Сп Dпр  Dп г (5.12) Сп г  С п в При малом значении Сп сравнительно с Спг и Спв получим: 1 1 Dпр  Dп г  (D 0  D ут) (5.13) Сп г Сп г 1 1 Сп в Сп в выражая потоки в долях D0, т. е. полагая пр=Dпр/D0 и ут=Dут/D0 получим: 1   ут  пр  (5.13а) Сп г 1 Сп в Таким образом, доля продувки зависит от доли утечки, которая должна быть сведена к минимуму, и от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды (чем меньше Сп.в) и выше допустимая концентрация примесей в воде парогенераторов Спг, тем доля продувки меньше. В формуле (5.13а) концентрация примесей в питательной воде Спв зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды /ïð, зависящаяся от пр. Поэтому долю продувки парогенератора удобнее определить, если концентрацию Сп.в заменить составляющими ее величинами. 97 В случае ТЭЦ с внешними потерями конденсата без учета (для упрощения) регенеративных отборов, протечек через уплотнения турбины и использования продувки, получим уравнения баланса примесей в виде DпрСпг+DпгСп=Dпв Спв=DкСк+DокСок+DдвСдв где Ск, Сок и Сдв и - соответственно концентрации примесей в конденсате турбин, обратном конденсате от потребителей и добавочной воде; при этом Dïã=Dê+Dîê+Dâí+Dóò и, если продувочная вода не используется, Däâ=Dïð+Dóò+Dâí. Из последних уравнений Dпр(Спг-Сдв)=Dк(Ск-Сп)+Dок(Сок-Сп)+(Dут+Dвн)(Сдв-Сп) откуда D к (С к  С п)  D о к (С о к  С п)  (D ут  D вн)(С дв  С п) Dпр  (5.14) С п г  С дв Выражая расходы воды в долях D0=D и полагая СкСп и СокСп, получим приближенно: ( ут   вн)(С дв  С п)  ут   вн  пр   (5.15) С п г  Сдв Сп г 1 С дв так как Сп мал по сравнению с Сдв. Если нет внешних потерь конденсата, т.е. вн=0, то:  ут  пр  (5.15а) Сп г 1 С дв Доля продувки изменяется гиперболически в зависимости от отношения концентраций примесей в продувочной и добавочной воде Спг: Сд.в. Если Спг: Сд.в , т.е. содержание примесей в добавочной воде очень мало, то пр0. Если, наоборот, Спг: Сд.в1, то пр; это означает, что любое большое количество добавочной воды с концентрацией Сд.в=Спг, восполняющей продувку, уходит с продувкой из барабана парогенератора. При отношении Спг:Сд.в=2, в соответствии с формулой (5.15) пр=ут+вн; если âí=0, то пр=ут. При использовании продувочной воды и установке расширителя можно получить в результате аналогичных выкладок:  ут   вн  пр  (5.16) Сп г   р п С дв и при вн=0  ут  пр  (5.16а) Сп г   пр  С дв 98 Из формул (5.15) и (5.15а) можно получить величину допустимых примесей â добавочной воде Сд.в в зависимости от величин Спг, ут и âí в виде Сп г Сдв  (5.17)  ут   вн 1  пр или соответственно при отсутствии внешних потерь Сп г Сдв  (5.17а)  ут 1  пр Таким образом, требования к качеству добавочной воды при прочих равных условиях в значительной мере определяются продувкой и концентрацией примесей в воде парогенераторов. Рис. 5.2 На рис. 5.2 показаны расчетные графики непрерывной продувки парогенераторов пр в зависимости от отношения Спг: Сдв при различных значениях пот=вн+ут. Тепловой расчет охладителя продувки сводится в основном к определению энтальпий добавочной воды iдвоп и продувочной воды iлроп после охладителя, связанных между собой соотношением i пр  iд в   о п оп оп где оп -разность энтальпий охлажденной продувочной и нагретой добавочной воды, которую принимают равной около 40-80 кДж/кг (10- 20°С). 99 Уравнение теплового баланса охладителя продувки ïðè этом имеет вид: D  р (i  р  i п р) п  D дв (i д в  i дв) п п оп оп в этом уравнении все величины, кроме энтальпий i пр и i двп, известны. оп о Используя соотношение между ними и выбрав значение о.п, исключают из уравнения теплового баланса одну из этих величин и определяют вторую, а затем из соотношения между ними определяют и первую. Температуру охлажденной продувочной воды принимают обычно 40- 60°С. На электростанциях без внешних потерь величины D/пр и Dд.в одного порядка, например D/пр=0,40Dд.в; тогда при охлаждении продувочной воды на 100°С, например от 160 до 60°С, добавочная вода нагревается на 40°С, например от 10 до 50°, причем îï=10°C и оп42 кДж/кг. На ТЭЦ с внешней потерей конденсата величина D/ïð может быть значительно меньше величины Dд.в, например D/пр0,1Dдв; тогда можно глубже охладить продувочную воду, например, до 40°С, подогрев добавочную воду до 22°С, причем оп=18°С и îï=76 кДж/кг. 5.3. ИСПАРИТЕЛЬНЫЕ УСТАНОВКИ Возмещение потерь пара и конденсата чистой добавочной водой - важное условие обеспечения надежной работы оборудования электростанции. Добавочной водой требуемой чистоты может служить дистиллят, получаемый из специального теплообменника - испарительной установки. В состав испарительной установки входят испаритель, в котором исходная сырая добавочная вода, обычно предварительно химически очищенная, превращается в пар, и охладитель, в котором полученный в испарителе пар конденсируется. Такой охладитель называется конденсатором испарительной установки или конденсатором испарителя. Таким образом, в испарительной установке происходит дистилляция исходной добавочной воды - переход ее в пар, с последующей конденсацией. Конденсат испаренной воды является дистиллятом, свободным от примесей. Испарение добавочной воды происходит за счет тепла, отдаваемого первичным греющим конденсирующимся паром из отборов турбины; конденсация произведенного в испарителе вторичного пара происходит в результате охлаждения пара водой, обычно - конденсатом турбинной установки (рис. 5.3). При такой схеме включения испарителя и его конденсатора тепло пара отборов турбины используется для подогрева основного конденсата и возвращается с питательной водой в парогенераторы. Таким образом, испарительная установка включается по регенеративному принципу, и ее можно рассматривать как элемент регенеративной схемы турбоустановкн. 100



Отчетность за сотрудников