Ступенчатое испарение воды применяется для. Основные преимущества ступенчатой схемы испарения. Отклик на ступенчатое воздействие в усилителях

Ступенчатое испарение является весьма эффективным методом повышения чистоты пара. Этот метод позволяет при заданном качестве питательной воды для одинаковых значений продувки получить более чистый пар, чем при одноступенчатом испарении. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку.

Метод ступенчатого испарения заключается в том, что объем барабана делиться поперечными перегородками на несколько отсеков, к каждому из которых присоединена своя группа контуров циркуляции (ступень испарения). Вся питательная вода при этом подается в первый отсек, котловая вода из которого поступает в следующий отсек, далее в последующий и т.д.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку

Уравнение солевого баланса

Д пв С пв = Д п С п + Д пр С пр

(Д п + Д пр)С пв = Д п С п + Д пр С пр

С пр = ((Д п + Д пр)С пв + Д п С п)/ Д пр, если С п = 0, то

С пр = С кв =(Д п + Д пр)С пв / Д пр

С кв =(100 + р)С пв / р, если р = 1%

С кв =(100 + 1)С пв / 1=101С пв

Уравнение солевого баланса для 1 отсека

С кв1 =(100 + р)С пв / (n 2 + р), если р = 1%

С кв1 =(100 + 1)С пв / (20+1) = 4,8 С пв

Уравнение солевого баланса для 2 отсека

С кв2 =(n 2 + р) С кв1 / р, если р = 1%

С кв2 =(20 + 1) С кв1 / 1 = 21 С кв1 =101С пв

38 Почему схема ступенчатого испарения с выносным циклоном лучше, чем при установке перегородки внутри барабана.

Ступенчатое испарение заключается в том, что в водном объеме барабана котла создаются зоны с различным содержанием солей в котловой воде. Это достигается разделением водяного объема барабана котла с его поверхностями нагрева на отдельные отсеки. Непрерывная продувка производится из отсека с наиболее высоким солесодержанием, а отбор пара с наименьшим. Верхний барабан разделен перегородкой с отверстием (переливной трубой) на два отсека – чистый и солевой. Питательная вода поступает в чистый отсек, а солевой питается из чистого отсека через переливную трубу. В чистом отсеке образуется примерно 80% пара, в солевом 20%. Следовательно, из чистого в солевой отсек поступает 20% котловой воды, которая для чистого отсека является продувочной. Поэтому продувка чистого отсека происходит без тепловых потерь, обеспечивая низкое солесодержание котловой воды в нем.

Существенным недостатком является возможность обратного перетока воды в чистый отсек при «вялой» циркуляции. Для устранения этого недостатка применяют ступенчатое испарение с выносными циклонами, которые являются солевыми отсеками (ДКВР-20). При использовании выносных циклонов в качестве сепарационного объема разность уровней в отсеках может быть выбрана достаточной по условиям предотвращения обратного перетока воды. Поэтому схемы с выносными циклонами предпочтительны, особенно при небольшой производительности солевого отсека.

Питательная вода поступает в барабан, который служит чистым отсеком. Продувочная вода из барабана поступает в циклоны, для которых эта вода является питательной. Циклон имеет отдельный контур циркуляции и выдает пар в барабан котла. Пар проходит через сепарационное устройство чистого отсека и дополнительно очищается. Непрерывная продувка осуществляется только из циклона, если он есть. При ступенчатом испарении уменьшаются потери тепла с продувкой и повышается качество пара

Эффективность ступенчатого испарения возрастает с увеличением числа ступеней испарения, однако это нарастание с ростом числа ступеней затухает. Наибольшее распространение получили двух- и трехступенчатые схемы. При этом вторая ступень испарения может быть организована либо внутри барабана, либо вне его - в выносных циклонах. В трехступенчатой схеме обычно первую и вторую ступени выполняют в барабане, а третью - в выносном циклоне.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку. Ступенчатое испарение позволяет также повысить экономичность паротурбинной установки вследствие уменьшения продувки без заметного снижения качества пара.

Качество перегретого пара, отвечающее требованиям ПТЭ электростанций и сетей, обеспечивается в прямоточных котлах питанием их водой высокой чистоты, а в барабанных котлах - за счет высокой чистоты насыщенного пара, которая достигается путем питания котла водой надлежащего качества, организацией продувки водяного объема, ступенчатым испарением, промывкой насыщенного пара высоких давлений питательной водой с последующим уменьшением его влажности путем сепарации влаги.

Поддержание солесодержания котловой воды барабанных котлов в пределах норм при их эксплуатации осуществляется с помощью продувки (периодической и непрерывной). Периодическая продувка осуществляется из нижних точек барабана и коллекторов 2 раза в смену в целях вывода из котла твердых примесей (шлама и продуктов коррозии). Непрерывная продувка осуществляется из барабана или выносных циклонов для удаления части котловой воды с повышенной концентрацией растворенных примесей. Расход продувки устанавливается на базе результатов теплотехнических испытаний котла.

Ступенчатое испарение

Улучшение качества пара в барабанных котлах без увеличения непрерывной продувки достигается организацией в них ступенчатого испарения.

Ступенчатое испарение (рис.) реализуется путем разделения барабана котла на несколько ступеней (отсеков) с самостоятельными контурами циркуляции и организацией последовательного поступления в них котловой воды и непрерывной продувки из последней ступени. Концентрация солей в котловой воде по ступеням изменяется от меньшей концентрации к большей, насыщенный пар отводится только из чистого отсека. Пар солевых отсеков поступает в паровое пространство чистого отсека и вместе с общим потоком пара чистого отсека проходит завершающую ступень сепарации. В зависимости от качества питательной воды применяются схемы как с одной, так и с двумя или тремя ступенями испарения. На практике чаще всего используется двухступенчатая схема испарения с выносной второй ступенью (рис.). Выбор каждой ступени испарения осуществляется из условия обеспечения минимального соле- и кремнесодержания пара до промывочного устройства с использованием уравнений солевых балансов.

Схема двухступенчатого испарения в барабанах котла
I, II - соответственно первая и вторая ступени испарения; 1 - подъемные трубы; 2 - опусные трубы; 3- подвод питательной воды; 4 - барабан; 5 - пароотводящие трубы; 6 - пароперепускные трубы; 7 - выносной циклон; 8 - коллектор; 9 - продувка; 10 - водоперепускные трубы

Допустимое значение влажности пара на выходе из барабана определяется давлением и наличием промывки. При отсутствии последней влажность пара должна быть не более 0,02 %. При высоких давлениях, когда необходимое качество пара достигается промывкой его питательной водой, влажность может быть выше, но не более 0,1 %.

Внутрибарабанные устройства

Необходимый уровень влажности пара достигается с помощью внутрибарабанных устройств за счет снижения кинетической энергии пароводяных струй, истекающих из парообразующих труб, начального разделения пароводяной смеси, равномерной раздачи пара по зеркалу испарения и полной его осушки.

Тип и конструктивное оформление применяемых в барабане устройств зависят от единичной мощности котла и параметров пара. Гашение кинетической энергии струй пароводяной смеси и начальное разделение последней в барабанах котлов среднего давления осуществляются с помощью отбойных щитков, жалюзийнодроссельных стенок с горизонтальным расположением пластин и других устройств, а в котлах высокого давления - внутрибарабанных циклонов (рис.).

Схемы типовых внутрибарабанных устройств котлов высокого (а), среднего (б) и низкого (в) давления
а - для котлов высокого давления с внутрибарабанными циклонами; б и в - для котлов среднего давления с отбойными щитками и погруженным дырчатым щитом соответственно; 1 - барабан; 2 - ввод пароводяной смеси; 3 - короб; 4 - циклон; 5 - сливной короб; 6 - крышка; 7 - дырчатый лист промывочного устройства; 8 - пароприемный потолок; 9 - раздающий короб питательной воды; 10 - пароотводящие трубы; 11 - подвод питательной воды; 12 - опускные трубы; 13 - труба аварийного слива воды; 14 - жалюзийный сепаратор; 15 - затопленный дырчатый щит; 16 - отбойные подушки

Равномерное распределение пара по сечению барабана и пароотводящим трубам обеспечивается с помощью установки соответственно дроссельных щитов в водяном объеме (дырчатых погруженных щитов) и дырчатых листов в паровом объеме на выходе из барабана (пароприемных потолков).

Тонкая осушка достигается за счет осадительной сепарации в паровом объеме барабана и использования в котлах с давлением меньше 11 МПа жалюзийного сепаратора.

Размеры барабана определяются исходя из допустимой удельной паровой нагрузки (средняя массовая нагрузка на метр длины цилиндрической части).

Схемы типовых внутрибарабанных устройств, проверенных в и освоенных в производстве, показаны на рис. Погруженный дырчатый щит (в) располагают на 50-75 мм ниже наинизшего массового уровня в барабане с расстоянием до его стенок, не менее 150 мм для стока воды. Отверстия в погруженном щите выполняют диаметром не менее 10 мм для предотвращения забивания шламом. Щит снабжают закраинами высотой не менее 50 мм, чтобы предотвратить прорыв пара помимо щита. Питательную воду подают поверх дырчатого щита со скоростью не менее 1, но не более 4 м/с во избежание попадания относительно холодной воды на противоположную стенку корпуса барабана.

В паровом пространстве барабана перед пароотводящими трубами на максимальной конструктивно выполнимой высоте устанавливается потолочный дырчатый лист (пароприемный потолок). Диаметр отверстий 5 мм. Степень перфорации определяется из условия обеспечения рекомендуемых значений скорости пара в отверстиях потолочного дырчатого листа.

Для тонкой очистки пара от капель воды в барабанах с давлением меньше 11,3 МПа используют жалюзийный сепаратор (рис.). Отделение капель воды в нем происходит за счет изменения направления движения пароводяного потока при прохождении криволинейных каналов, образуемых волнистыми пластинами, установленными с шагом 10 мм. Капли влаги, попадая на пластины, смачивают их поверхность и стекают в виде струек, захват влаги из которых невозможен, так как скорости пара малы, а капли влаги укрупнены.

Горизонтальный жалюзийный сепаратор
1 - дырчатый щит; 2 - жалюзийный сепаратор

По расположению в паровом пространстве пакеты жалюзи подразделяются на горизонтальные (рис.) и наклонные, устанавливаемые под углом 10-30° к вертикали. Наклонные пакеты жалюзи обеспечивают относительно большую эффективность сепарации и работают при более высоких допустимых скоростях набегания среды. Поэтому их целесообразнее всего применять при высоких удельных нагрузках барабана.

Снижение уноса кремниевой кислоты в котлах высокого давления достигается за счет промывки пара питательной воды в паропромывочном устройстве барабана (а). Оно состоит из барботажных дырчатых листов, устройств подачи питательной воды на них и сливных коробов.

Начальное разделение пароводяной смеси, гашение кинетической энергии двухфазного потока, а также двухступенчатая сепарация пара в барабанах котлов высокого давления осуществляются во внутрибарабанных циклонах (рис.). Эти устройства, кроме того, позволяют снизить пенообразование котловой воды, устранить захват пара в опускные трубы. Первая ступень сепарации - центробежная, она создается за счет тангенциальной подачи пароводяной смеси в циклон, вторая - осадительная. Важно обеспечить равномерное распределение потока по сечению циклона для получения возможно меньших скоростей. Это достигается установкой в верхней части циклона жалюзийного сепаратора. Уровень воды в барабане должен быть не выше середины подводящего патрубка. Для предотвращения прорыва пара через циклон он перекрывается донышком, образующим кольцевое сечение, с расположенными в нем направляющими лопатками. Последние дают возможность осуществить спокойный сток воды. Внутрибарабанные циклоны обеспечивают равномерную выдачу пара в паровой объем барабана по его длине и являются хорошими сепараторами. Однако установка их сложна, особенно монтаж всех соединительных коробов.

Внутрибарабанный циклон
1 - крышка; 2 - подводящий патрубок; 3 - цилиндрический корпус; 4 - направляющие лопатки; 5 - донышко

Конструкция, размеры и составные элементы внутрибарабанных циклонов выбираются в соответствии с требованиями. Ширина патрубка выбирается на основании результатов гидравлического расчета каждого контура, включающего внутрибарабанные циклоны, исходя из условий обеспечения их сопротивления в пределах по надежности циркуляции (а).

При ступенчатом испарении пар последней ступени, как правило, осушается в выносных циклонах (рис.). Для разделения пароводяной смеси на воду и пар в них устанавливается внутренняя направляющая лопасть, которая вместе с приваренными к ней донышками образует с внутренней поверхностью криволинейный канал, ширину которого рекомендуется принимать 15-25 мм. Высота щели определяется конструктивно. При расстоянии между штуцерами, подводящими пароводяную смесь, 290 мм высоту щели рекомендуется принимать равной 420 мм.

Выносной циклон
1 - штуцер для трубопровода, подводящего котловую воду; 2 - штуцер для трубопровода непрерывной продувки; 3 - штуцер для воздушника; 4 - штуцер для пароотводящего трубопровода; 5 - пароприемный дырчатый щит; 6 - корпус; 7 - штуцера для трубопровода пароводяной снеси; 8 - крестовина; 9 - штуцер для водоопускной трубы; 10 - вставка для образования улитки

Выравнивание поля скоростей пара по сечению циклона достигается за счет дырчатого листа, располагаемого в верхней части циклона. Суммарная площадь отверстий дырчатого листа принимается равной 10-20 % площади поперечного сечения циклона. Диаметр отверстий 6-10 мм. Высота активного сепарационного объема от верхнего штуцера ввода пароводяной смеси до дырчатого листа принимается не менее 1200 мм. Высота водяного объема в циклоне при номинальной нагрузке и минимальном уровне не менее 1800 мм. В нижней части водяного объема устанавливается крестовина, препятствующая воронкообразованию и захвату пара в опускные трубы. Подвод пароводяной смеси к циклонам осуществляется выше уровня воды в барабане на 200-500 мм, считая от нижнего штуцера. Циклоны изготовляются в одиночном исполнении и в виде блока, состоящего из двух, в отдельных случаях из трех циклонов. Конструкция и основные параметры их стандартизованы (ОСТ 108.030.03-85).

Суммарная производительность и количество выносных циклонов выбираются, исходя из расчета схемы ступенчатого испарения с учетом допустимых нагрузок на циклон.

Регулирование температуры перегретого пара

В барабанных котлах регулирование температуры перегретого пара осуществляют поверхностными пароохладителями и впрыском собственного конденсата, получаемого за счет конденсации насыщенного пара.

В прямоточных котлах поддержание температуры перегрева в тракте высокого давления достигается соблюдением постоянства между количеством переданной пару теплоты и его расходом. Средством подрегулировки является впрыск питательной воды.

Температура промежуточного перегрева поддерживается постоянной с помощью ППТО - паропаровых (твердое топливо), ввода рециркуляции газов, через горелки (газ, мазут) или в верхнюю часть топки (газ, мазут, твёрдые топлива), а также перераспределения количества газов, проходящих через газоходы, где расположены промежуточный пароперегреватель и экономайзер (схема «расщепленный хвост»).

Ступенчатое испарение

метод повышения чистоты пара, вырабатываемого барабанным паровым котлом, путём искусств, распределения солей и иных примесей в котловой воде. Метод С. и. основан на создании повышенной концентрации примесей в той части котла, откуда ведётся продувка, и пониженной - в той части, где вырабатывается основное количество пара и откуда он уходит в Пароперегреватель . Водяной объём котла при С. и. разделяется перегородками на несколько отсеков. Питательная вода непрерывно подаётся в отсек 1-й ступени; благодаря наличию разности уровней между смежными отсеками котловая вода 1-й ступени перетекает через отверстия в перегородке в отсеки 2-й ступени, являясь для них питательной водой, и т. д. Солесодержание котловой воды увеличивается в каждой последующей ступени испарения; непрерывная Продувка котла ведётся из последней ступени. Обычно применяется двухступенчатое или трёхступенчатое (рис. ) испарение, причём иногда солевые отсеки выполняются в виде выносных циклонов.

Метод С. и. предложен в 1937 в СССР профессором Э. И. Роммом. Длительная эксплуатация котлов, оборудованных устройствами С. и., показала значительное повышение качества пара.

И. Н. Розенгауз.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ступенчатое испарение" в других словарях:

    ступенчатое испарение

    Разработанный в СССР метод повышения чистоты пара, вырабатываемого барабанным паровым котлом, путём создания в водяном объёме и парообразующих циркуляц. контурах котла отд. отсеков, соединённых параллельно по пару и последовательно по воде. Питат …

    СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов - Терминология СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов: В первой области показатель степени составляет 1 2,5 (в зависимости от конструкции сепарационных устройств), при этом влажность… …

    8.2.1 В колбу вместимостью 100 см3 отбирают аликвотную часть щелочного фильтрата по 7.1.2 в соответствии с таблицей 3 или 50 см3 при массовой доле оксида фосфора (V) от 0,5 % до 2,5 % и 25 см3 при массовой доле от 2,5 % до 5 % раствора по 4.3.2.… … Словарь-справочник терминов нормативно-технической документации

    В третьей области - показатель степени равен 8 10, а влажность отпускаемого пара более 0,2 %. В этой области процесс носит кризисный характер и действительный уровень воды в барабане приближается к пароотборным трубам. Точка перехода из 2 й области в 3 ю называется… … Словарь-справочник терминов нормативно-технической документации

    Отделение воды от насыщенного пара (См. Насыщенный пар), вырабатываемого в парогенераторах. С. п. предотвращает осаждение минеральных примесей, содержащихся в воде, на внутренних поверхностях труб пароперегревателей и на лопатках паровых… …

    Котлоагрегат теплоэлектроцентрали (ТЭЦ), обеспечивающий одновременное снабжение паром теплофикационных турбин и производство пара или горячей воды для технологических, отопительных и др. нужд. В отличие от котлов конденсационных… … Большая советская энциклопедия

    1) П. двухтактного двигателя внутреннего сгорания процесс очистки цилиндра двигателя от отработавших газов и заполнения его свежим зарядом; производится в конце рабочего хода поршня и в начале хода сжатия. 2) П. парового котла непрерывное… … Большой энциклопедический политехнический словарь

    - (англ. Boiler water mode) совокупность показателей качества воды и пара, поддерживаемых с помощью химических и теплотехнических мероприятий в заданных пределах, обеспечивающих предотвращение процессов накипеобразования, коррозии и загрязнения… … Википедия

    mehrstufige Verdampfung - pakopinis garinimas statusas T sritis Energetika apibrėžtis Garo švarumo didinimo būdas. atitikmenys: angl. stage evaporation vok. mehrstufige Verdampfung, f rus. ступенчатое испарение, n pranc. vaporisation à étages, f; vaporisation échelonnée,… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Один из наиболее эффективных методов снижения потерь тепла котловой воды с непрерывной продувкой и получения более чистого пара является ступенчатое испарение.

Рисунок 2.21 - Ступенчатое испарение

Оно заключается в том, что в водном объеме барабана котла создаются зоны с различным содержанием солей в котловой воде. Это достигается разделением водяного объема барабана котла с его поверхностями нагрева на отдельные отсеки. Непрерывная продувка производится из отсека с наиболее высоким солесодержанием, а отбор пара с наименьшим. Верхний барабан разделен перегородкой с отверстием (переливной трубой) на два отсека - чистый и солевой. Питательная вода поступает в чистый отсек, а солевой питается из чистого отсека через переливную трубу. В чистом отсеке образуется примерно 80% пара, в солевом 20%. Следовательно, из чистого в солевой отсек поступает 20% котловой воды, которая для чистого отсека является продувочной. Поэтому продувка чистого отсека происходит без тепловых потерь, обеспечивая низкое солесодержание котловой воды в нем.

Существенным недостатком является возможность обратного перетока воды в чистый отсек при «вялой» циркуляции. Для устранения этого недостатка применяют ступенчатое испарение с выносными циклонами, которые являются солевыми отсеками (ДКВР-20). При использовании выносных циклонов в качестве сепарационного объема разность уровней в отсеках может быть выбрана достаточной по условиям предотвращения обратного перетока воды. Поэтому схемы с выносными циклонами предпочтительны, особенно при небольшой производительности солевого отсека.

Питательная вода поступает в барабан который служит чистым отсеком. Продувочная вода из барабана поступает в циклоны, для которых эта вода является питательной. Циклон имеет отдельный контур циркуляции и выдает пар в барабан котла. Пар проходит через сепарационное устройство чистого отсека и дополнительно очищается. Непрерывная продувка осуществляется только из циклона, если он есть. При ступенчатом испарении уменьшаются потери тепла с продувкой и повышается качество пара.

Эффективность ступенчатого испарения возрастает с увеличением числа ступеней испарения, однако это нарастание с ростом числа ступеней затухает. Наибольшее распространение получили двух- и трехступенчатые схемы. При этом вторая ступень испарения может быть организована либо внутри барабана, либо вне его — в выносных циклонах. В трехступенчатой схеме обычно первую и вторую ступени выполняют в барабане, а третью — в выносном циклоне.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку. Ступенчатое испарение позволяет также повысить экономичность паротурбинной установки вследствие уменьшения продувки без заметного снижения качества пара.

Рисунок 2.22 - Схема трехступенчатого испарение с выносной третьей ступенью:

1 - барабан котла; 2 - нижний коллектор; 3 - опускная труба; 4 - подъемная труба; 5 - подвод питательной воды; 6 - вывод (продувка) части воды из контура циркуляции; 7 - отвод насыщенного пара; 8 - выносной циклон; 9, 10 - опускные и парообразующие трубы контура солевого отсека; 11 - отвод пароводяной смеси в циклон; 12, 13 - водо- и пароперепускные трубы; 14 - периодическая продувка.

Ступенчатое испарение и промывка пара

Советский ученый Э. И. Ромм предложил оригинальный способ получения пара высокого качества в парогенераторах барабанного типа при экономически приемлемой величине продувки, который получил название ступенчатое испарение. Сущность этого способа состоит в получении пара из зон с различной концентрацией солей в котловой воде. В обычных условиях питательная вода с малым солесодержанием и низкой щелочностью, поступая в барабан, смешивается с концентрированной котловой водой, и выделение пара происходит из воды, имеющей значительно более высокую концентрацию солей и щелочей, чем питательная вода. При этом концентрации котловой и продувочной воды одинаковы, и тем самым качество насыщенного пара в значительной мере определяется концентрацией примесей в котловой воде, с которой генерируемый пар находится в контакте перед выходом его в паровой объем парогенератора. Между тем, если поддерживать пониженные концентрации веществ в котловой воде, из которой генерируется пар, и более высокую концентрацию их в продувочной воде, то качество пара будет определяться низкой концентрацией веществ в котловой воде парогенератора.

При наличии внутри водяного объема парогенератора зон с различной концентрацией солей в котловой воде благодаря искусственно созданной неравномерности солесодержания, т. е. некоторому организованному «химическому перекосу», качество котловой воды отличается от качества продувочной воды, и последняя не определяет чистоты пара.

Рис. 5.4. Схема двухступенчатого испарения с двусторонним

расположением солевых отсеков в барабане парогенератора:

1 – продувка; 2 – питательная вода; 3 – пар

Парогенератор со ступенчатым испарением представляет собой обычный парогенератор с естественной циркуляцией, который установленными в барабане и коллекторах перегородками разделен на несколько самостоятельных контуров циркуляции. Водяные объемы этих контуров сообщаются только через отверстие, сделанное в разделительной внутрибарабанной перегородке. Теоретически парогенератор может быть разделен на любое число ступеней, но в практических условиях обычно ограничиваются двумя или тремя ступенями испарения.

При двухступенчатом испарении часть парогенератора, в которую подается питательная вода, называют «чистым» отсеком (первая ступень испарения), а остальную часть – «солевым» отсеком (вторая ступень испарения). В парогенераторах, оснащенных устройствами трехступенчатого испарения, имеются соответственно чистый отсек и солевые отсеки второй и третьей ступеней испарения.

Для второй ступени испарения отделяется часть объема с одного или двух торцов барабана (рис. 5.4) либо устанавливаются выносные циклоны, подключенные к боковым экранным поверхностям парогенератора (рис. 5.5).

Рис. 4.5. Схема двухступенчатого испарения с выносными циклонами

1 – барабан парогенератора; 2 – циклон; 3 – боковой экран;
4 – подвод питательной воды

Благодаря тангенциальному подводу пароводяной смеси в вертикальный цилиндрический корпус циклона в нем гасится кинетическая энергия пароводяной смеси, а быстрое вращение ее в зоне зеркала испарения способствует интенсивному разрушению пены. Питательная вода подается в чистый отсек барабана, из которого осуществляется питание солевых отсеков в барабане либо выносных циклонов.

В результате такой организации питания отдельных циркуляционных контуров парогенератора солесодержание, щелочность и кремнесодержание котловой воды растут от первой ступени к последней, относительная продувка каждой ступени испарения получается весьма значительной, а продувка парогенератора в целом – очень небольшой. При этом, несмотря на повышенное кремнесодержание котловой воды в солевых отсеках, избирательный вынос кремниевой кислоты из них уменьшается благодаря более высокой гидратной щелочности котловой воды в этих отсеках.

Организация водного режима парогенератора со ступенчатым испарением имеет то преимущество перед парогенератором без ступенчатого испарения, что большая часть пара в нем вырабатывается в чистом отсеке с концентрациями котловой воды, существенно меньшими по сравнению с концентрацией продувочной воды, выводимой из меньших по паропроизводительности солевых отсеков.

Составим уравнения баланса солей для первой и второй ступеней испарения парогенератора с двухступенчатым испарением, пренебрегая уносом солей с паром:

(5.24)
(5.25)

где – концентрации примесей (солесодержание, кремнесодержание, содержание истинно растворенных окислов железа, щелочность) в котловых водах чистого и солевых отсеков, г/т; – количество пара, вырабатываемое второй ступенью испарения в парогенераторе, т/ч.

Остальные обозначения те же, что и при расчете продувки.

Разделив каждое уравнение на D п и введя обозначения D пр /D п = φ и D"/D п = n 2 , где φ - степень продувки в долях D п и n 2 – паропроизводительность второй ступени испарения (солевого отсека) в долях, получим:

Концентрации примесей в паре, вырабатываемом каждой ступенью испарения, будут:

где n 1 =1– n 2 – паропроизводительность первой ступени испарения в долях D п.

Значения коэффициентов распределения по отсекам парогенератора различаются, в особенности для кремниевой кислоты, для которой, как известно, значение . Однако для упрощения приняв и сделав элементарные преобразования, получим значение а п в граммах на тонну:

(5.31)

По этой формуле можно определить концентрацию примесей (солесодержание, кремнесодержание и щелочности) в паре при любых возможных значениях коэффициента распределения К р,степени продувки φ, относительных производительностях чистого n 1 и солевого n 2 отсеков и концентрации указанных примесей в питательной воде а п.в.

Опыт эксплуатации показывает, что в парогенератоpax, оснащенных устройствами ступенчатого испарения, качество пара (солесодержание, кремнесодержание) заметно улучшается по сравнению с парогенератором без этих устройств при сохранении той же величины продувки и того же качества питательной воды. При этом увеличивается вывод из парогенератора примесей с продувочной водой и соответственно уменьшается унос их с насыщенным паром (рис. 5.6).

Рис. 5.6. Количество кремниевой кислоты, удаляемой из парегенератора с продувочной водой, в зависимости от величины продувки парогенератора (в расчетах принято = 0,8 %; =0,3 %; n 2 = 30 %):

1 – парогенератор без ступенчатого испарения; 2 – парогенератор со ступенчатым испарением

Отношение концентраций котловых вод второй ступени испарения и чистого отсека называют кратностью концентраций k, величина которой характеризует эффективность ступенчатого испарения. Чем выше величина k,тем экономичнее схема. На практике величина kограничивается в пределах 3–10, так как при
k > 10 могут создаться высокие концентрации фосфатов и окислов железа в котловой воде, опасные с точки зрения образования отложений на поверхностях нагрева солевых отсеков.

Существенное влияние на ухудшение качества котловой воды в чистом отсеке оказывает обратный переток котловой воды из солевых отсеков в чистый через водо-перепускную трубу, по которой происходит продувка из чистого отсека в cолевой либо переброс котловой воды из солевого отсека в чистый при ее вспенивании и набухании. Подобные обратные перетоки и перебросы котловой воды могут привести к заметному снижению кратности солевых концентраций между ступенями, т.е. к уменьшению эффективности ступенчатого испарения. Чтобы избежать этого, предусматриваются специальные устройства для улавливания переброса и предотвращения обратных перетоков котловой воды.

Организация водного режима парогенератора с применением схемы ступенчатого испарения дает возможность значительно повысить концентрации примесей в продувочной воде без ухудшения качества пара. Тем самым представляется возможным уменьшить потребную продувку парогенератора до экономически приемлемой величины, а также снизить требования к соле- и кремнесодержанию питательной воды. В тех случаях, когда при заданных условиях (высокоминерализованная исходная вода, большая величина добавки питательной воды, высокое рабочее давление пара, лимитированная величина продувки и т. п.) оптимальные схемы ступенчатого испарения не в состоянии обеспечить требуемую чистоту пара, могут быть с успехом применены более эффективные схемы организации водного режима парогенераторов барабанного типа, а именно промывка предварительно осушенного насыщенного пара питательной водой либо сочетание промывки пара со ступенчатым испарением.

Сущность способа промывки пара состоит в том, что в процессе промывки вещества, унесенные в капельках котловой воды, а также истинно растворенные в паре, частично переходят в промывочную воду, а влажный промытый пар повторно осушается с помощью сепарационного устройства, расположенного в барабане парогенератора, после чего пар поступает в пароперегреватель.

Переход кремниевой кислоты и других растворенных в насыщенном паре веществ в промывочную воду происходит вследствие того, что равновесная концентрация кремниевой кислоты в паре при контакте его с промывочной водой меньше, чем при контакте его с котловой водой, из которой образовался пар. Этот переход начинается при прохождении пара через слой промывочной воды и продолжается в паровом пространстве над слоем промывочной воды, но уже в каплях воды, образующихся при разрыве пузырей при выходе их в паровой объем барабана.

Обеспечение с помощью промывки требуемого качества пара базируется на той закономерности, что чистота промытого пара определяется чистотой промывочной воды, с которой он контактируется. Степень промывки пара зависит от величины коэффициента распределения неорганических соединений между жидкой и паровой фазами, ибо промывочная вода не может поглощать вещество из пара больше определенной равновесной концентрации. Так как кремниевая кислота и другие неорганические соединения растворяются в воде больше, чем в паре, то при промывке пара эти вещества будут унесены с паром в количестве, пропорциональном содержанию их в промывочной, а не в котловой воде.

Чистоту промытого пара можно приближенно оценить, пользуясь формулой

(5.32)

где W – влажность промытого пара в долях единицы; К р – коэффициент распределения в долях единицы; а пр.в – концентрация примесей в промывочной воде.

Величина коэффициента распределения для кремниевой кислоты составляет для парогенераторов сверхвысокого давления 15 % при гидратной щелочности менее 0,1 ммоль/дм 3 и 5–10 % при гидратной щелочности 0,2–0,3 ммоль/дм 3 .

Для осуществления процесса промывки пара питательная вода подается в специальные устройства, расположенные в паровом объема барабана, парогенератора и отделенные от доступа котловой воды. Промывочная питательная вода, после того как она контактировала с насыщенным паром, поступает в котловую воду и смешивается с ней.

Известны следующие способы промывки пара: барботаж пара через слой питательной воды, пропуск его через сепараторы, смачиваемые питательной водой и, наконец, распыливание питательной воды в потоке пара. В современных парогенераторах барабанного типа широко применяется барботажная промывка пара, которая обеспечивает наиболее полный контакт пара с промывочной водой. Промывочное барботажное устройство представляет собой затопленный плоский дырчатый щит (рис. 5.7) с закраинами, отвечающими требующейся высоте промывочного слоя (приблизительно 40–50 мм).На конденсационных электростанциях и чисто отопительных ТЭЦ на барботажное промывочное устройство подается вся питательная вода, а на промышленных ТЭЦ, использующих в качестве добавки химически обработанную воду, на паропромывочное устройство подается от 50 до 100 % питательной воды.

Общий эффект от применения промывки пара определяется КПД как самого паропромывочного устройства, так и сепарирующих устройств, осушающих пар до и после промывки его. Коэффициент полезного действия, собственно промывки пара представляет собой отношение количества удаленного вещества к теоретически возможному количеству, т. е. он указывает, насколько промывка приближается к пределу очистки. Если бы содержание вещества в паре достигло концентрации, отвечающей коэффициенту распределения, то эффективность промывки была бы равна 100 %, т. е. отвечала бы максимально возможной (теоретической) очистке пара. При ограниченной высоте промывочного слоя, которая имеет место в случае размещения паропромывочного устройства в паровом объеме барабана, величина КПД собственно барботажной промывки составляет примерно 80 %.

Рис. 5.7. Барботажное промывочное устройство с затопленным дырчатым листом:

1 – промывочное устройство; 2 – жалюзийный сепаратор; 3 – питательное корыто;
4 – дырчатый лист; 5 – непрерывная продувка; 6 – питательная труба; 7 – ввод фосфатов

Для любой схемы внутрикотловых устройств важной характеристикой является доля уловленных ими в парогенераторе неорганических примесей от общей концентрации их в питательной воде. Применительно к парогенераторам с паропромывочными устройствами этот показатель зависит: а) от разности концентраций солей и кремниевой кислоты в паре, поступающем на промывочное устройство, и соответственно в промывочной воде; б) гидратной щелочности промывочной воды; в) отношения расхода промывочной воды к расходу пара; г) величины поверхности и продолжительности контактирования пара с промывочной водой; д) значений коэффициентов массообмена, характеризующих интенсивность перехода того или иного вещества, растворенного в воде, в промывочную воду.

Рис. 5.8. Схема трехступенчатого испарения с выносными циклонами
и барботажной промывкой пара:

1 – пароводяная система чистого отсека; 2 – вторая ступень испарения; 3 – третья ступень испарения; 4 – питательная вода; 5 – продувка; 6 – в пароперегреватель

Экспериментальные и эксплуатационные данные свидетельствуют о том, что паропромывочные устройства снижают кремнесодержание пара в среднем в 2–3 раза.

На промышленных ТЭЦ высокого давления (100 кгс/см 2)при значительной добавке химически обработанной воды обычно применяется комбинированная схема внутрикотловых устройств, которая предусматривает сочетание трехступенчатого испарения с барботажной промывкой питательной водой всего пара либо только пара из солевых отсеков (рис. 5.8). Иногда пар промывается котловой водой чистого отсека; с этой целью пар из солевых отсеков подается под уровень воды в чистом отсеке. На конденсационных электростанциях и чисто отопительных ТЭЦ, где парогенераторы барабанного типа сверхвысокого давления
13,8 МПа (140 кгс/см 2)питаются с добавкой химически обессоленной воды либо дистиллята испарителей, часто применяется схема двухступенчатого испарения с выносной второй ступенью, имеющей паропроизводительность 3–6 % D п, которая сочетается с барботажной промывкой пара. Из этих парогенераторов с паром уносится от 2 до 8 % кремниевой кислоты, внесенной питательной водой.

5.1.4. Влияние водно-химического режима на состав
и структуру отложений

Выполнение регламентируемых показателей по качеству питательной и котловой воды не может полностью исключить образование отложений в экранных трубах котлов. На скорость образования отложений оказывают влияние различные факторы, и прежде всего тепловое напряжение, качество питательной и котловой воды и рабочие параметры среды.

Оценку состояния водно-химического режима ведут по результатам оперативного контроля показателей качества питательной и котловой воды. Объем и периодичность оперативного контроля определяют для каждой электростанции исходя из местных условий эксплуатации. Итоговую оценку состояния водно-химического режима за конкретный период получают по изменению температуры металла труб и загрязненности внутренней поверхности труб, определенной методом выборочной вырезки контрольных образцов.

Для контроля за изменением температуры экранных труб в них вваривают специальные температурные вставки с встроенными термопарами. Показания термопар выводят на регистрирующий прибор. Температурные вставки обычно устанавливают в зоне повышенных тепловых напряжений, т. е. в наиболее благоприятных условиях для образования отложений.

При отсутствии температурного контроля металла производят выборочную вырезку контрольных образцов. Зоны экранной поверхности, из которых должны производиться вырезки контрольных образцов, уточняют для каждого типа котлов в соответствии с особенностями топочного режима, расположением горелочных устройств, схемы циркуляции и вида сжигаемого топлива. Периодичность вырезок зависит от вида сжигаемого топлива и составляет для котлов, работающих на жидком топливе, 10 000–15 000 ч и на твердом топливе 18 000–21 000 ч.

Ориентировочный объем вырезок включает следующие поверхности: экономайзер – первая ступень (вход и выход), вторая ступень (выход); экранная поверхность – чистый отсек (фронтовой, задний и боковой экраны), солевой отсек (боковой экран слева и оправа); пароперегреватель – первая и вторая ступень (участки труб в районе гиба). Учет вырезок контрольных образцов целесообразно осуществлять по развернутым формулярам котлов. Вырезку образцов выполняют автогенной горелкой, а дальнейшее разделение каждого образца – на фрезерном или продольно-строгальном станке. Каждый образец разрезают вдоль по линии раздела огневой и тыловой сторон, затем поперек на отдельные участки для определения загрязненности и химического анализа отложений.

Перед снятием отложений на химический анализ осматривают внутреннюю поверхность трубы для оценки толщины, плотности и равномерности отложений. Для химического анализа снимают отложения только с огневой стороны послойно – вначале мягкие, затем твердые.

Загрязненность определяют методом катодного травления отдельно участков с огневой и тыловой сторон образца. После катодного травления осматривают состояние металла образцов, отмечая коррозионные разрушения. При наличии коррозионных язвин определяют их количество, размеры, глубину, а также характер разрушения металла в целом.

Четкое выполнение определенной системы контроля за состоянием поверхностей нагрева котлов позволяет по состоянию металла, структуре отложений, а также их составу оценить надежность водно-химического режима за конкретный период.

В табл. 5.1. приведен химический состав отложений котлов различных типов и рабочих параметров электростанций. Качество питательной воды этих котлов по всем составляющим соответствует нормативным значениям ПТЭ. Коррекционную обработку котловой воды осуществляют различными реагентами, тринатрийфосфатом и трилоном Б. Данные табл. 5.1 могут характеризовать некоторые особенности коррекционной обработки котловой воды топочного режима, а также водно-химического режима в целом. Так, фосфатная обработка котловой воды всех приведенных в табл. 5.1 котлов, кроме ПК-14, выполняется в оптимальном режиме. В составе отложений содержание Р 2 О 5 эквивалентно сумме СаО + MgO гидроксилаппатита или фосфорита кальция. Образование феррофосфата в этих условиях маловероятно.

В отложениях котла ПК-14 содержание Р 2 О 5 значительно превышает сумму CaO + MgO из-за поддержания в котловой воде повышенного избытка фосфатов, и здесь возможно образование феррофосфата. В рассматриваемом случае дозу тринатрийфосфата целесообразно снизить, а выполнение нормативного значения рН котловой воды можно обеспечить подщелачиванием раствора тринатрийфосфата едким натром.

В отложениях котла TП-200 повышено содержание кремниевых соединений. Отложения очень плотные и трудноудаляемые в процессе химической очистки. Образование таких отложений обычно происходит при относительно низкой щелочности котловой воды. Здесь будет полезным внедрение подщелачивания котловой воды для перевода кремниевых соединений в хорошо растворимый силикат натрия.

О присутствии в отложениях котлов БКЗ-320 продуктов высокотемпературного термолиза органических соединений свидетельствует показатель п. п. п. (потери при прокаливании).

Отложения, содержащие в своем составе такие вещества, имеют относительно плотную структуру и почти не растворяются в минеральных кислотах. В связи с низкой теплопроводностью таких отложений наличие их даже при относительно невысоких тепловых нагрузках приводит к перегреву металла с последующим разрушением. Сопоставление данных по составу отложений труб заднего и бокового экранов чистого отсека всех котлов свидетельствует о повышенном тепловом напряжении в зоне заднего экрана, так как в отложениях этой поверхности высокое содержание меди.

Повышенное содержание кремнекислых соединений в отложениях котла
БК3-75, работающего в комплексонном водном режиме, является следствием низкой щелочности котловой воды. Для комплексонной обработки целесообразно использовать щелочной раствор трилона Б. В составе отложений на экранных поверхностях этого котла невысоко содержание катионов кальция и магния. Это обстоятельство свидетельствует об эффективности процесса комплексообразования трилоном Б этих катионов. Образовавшиеся при этом ЭДТАцетаты кальция и магния в условиях параметров котловой воды не подвержены термическому разложению и удаляются из котла продувкой. Высокое содержание меди в отложениях труб заднего экрана, поверхности с повышенными тепловыми потоками следует объяснить протеканием процесса термолиза ЭДТАцетата меди, в результате которого происходит образование медистых отложений. ЭДТАцетат меди имеет наименьшую термическую устойчивость в сравнении с ЭДТАцетатами железа, кальция и магния. Так, при 300–320 °С отмечается практически полное разложение его.

5.2. Водно-химические режимы блоков СКД

Процесс в котлах СКД характерен значительными изменениями теплофизических свойств рабочего тела – плотности и температуры. Эти параметры пара определяют растворимость в нем различных соединений, поэтому и надежность работы блоков в большей степени зависит от внутрикотловых процессов, в том числе от водных режимов.

С ростом параметров и единичной мощности энергоблоков усиливается влияние водного режима на надежность и экономичность работы электростанций. Увеличение единичной мощности котлов ведет к росту тепловых напряжений поверхностей нагрева. В этих условиях даже незначительные отложения на внутренней поверхности труб вызывают перегрев и разрушение металла.

Повышение параметров пара увеличивает его растворяющую способность в отношении примесей, содержащихся в питательной воде. В результате возрастает интенсивность заноса проточной части турбин, последнее приводит к снижению экономичности энергоблоков и ограничению их мощности.

Существующие методы водоподготовки обеспечивают достаточно полную очистку добавочной воды как барабанных, так и прямоточных котлов от солевых загрязнений. Вывод загрязнений из пароводяного цикла прямоточных котлов осуществляется конденсатоочисткой. В этих условиях основными примесями питательной воды становятся не соли, а продукты коррозии конструкционных материалов, в основном оксиды железа и меди. Даже при сравнительно малых содержаниях оксидов железа в питательной воде прямоточных котлов СКД (10–12 мкг/дм 3) происходит постепенное накопление их на поверхностях нагрева, особенно в нижней радиационной части (НРЧ) котла, которая несет наибольшие тепловые нагрузки.

Опыт промышленной эксплуатации показал, что одной из основных причин аварийных остановов блоков 300 МВт, работающих на газомазутном топливе, является повреждаемость НРЧ, обусловленная главным образом образованием железооксидных отложений на внутренних поверхностях нагрева.

Осмотр контрольных образцов труб выходных и предвыходных экранов НРЧ котлов ТГМП-114 свидетельствует о наличии отложений на внутренней поверхности нагрева труб. Отложения имели вид черного сажистого порошка, по химическому составу состояли на 90–95 % из оксидов железа и в незначительном количестве содержали медь, цинк, марганец и никель. Плотность и количество отложений на огневой стороне были в 3–4 раза больше, чем на тыловой.



Касса