Сталелитейное производство. Крупнейшие предприятия металлургии в мире. Виды получаемых сталей по химическому составу

Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

Расплавление породы

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием - оксидом кальция (CaO) - распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Раскисление металла

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном;
  • сосуды конверторов и их несущие кольца;
  • оборудование для фильтрации пыли;
  • система для удаления конверторного газа.

Участок электропечей:

  • печи индукционного типа;
  • дуговые печи;
  • емкости, с помощью которых выполняется загрузка;
  • участок складирования металлического лома;
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

  • LF-оборудование;
  • SL-оборудование.

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей;
  • ковши литейного и разливочного типа;
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами;
  • оборудование для осуществления непрерывной разливки;
  • вагонетки, на которых транспортируются промежуточные ковши;
  • лотки и сосуды, предназначенные для аварийных ситуаций;
  • промежуточные ковши и площадки для складирования;
  • пробочный механизм;
  • мобильные мешалки для чугуна;
  • оборудование для обеспечения охлаждения;
  • участки, на которых выполняется непрерывная разливка;
  • внутренние транспортные средства рельсового типа.
Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

Cтраница 1


Сталелитейное производство может располагаться в виде отдельного комплекса на кузнечно-литейном заводе с учетом централизованной поставки стального литья машиностроительным заводам и горячих слитков кузнечному комплексу собственного завода. Возможно расположение в одном промышленном узле двух крупных централизованных заводов: литейного и кузнечного, с учетом организации поставок на центрокуз горячих слитков.  

Современное сталелитейное производство использует дуплекс-процесс, на первом этапе которого получают сплавы в мощных вакуумных дуговых или индукционных печах емкостью до нескольких десятков тонн. На втором этапе применяют вакуумные печи малой емкости, из которых производится отливка изделий. Однако вакуумная плавка - дело непростое. Получить и сохранить глубокий вакуум трудно и дорого. Кроме того, такие компоненты жаропрочных сплавов, как марганец и хром, при вакуумной плавке испаряются.  

В сталелитейном производстве марганец играет важную роль как десуль-фуратор. Он широко применяется также в качестве раскислителя расплавленной стали. Большая часть марганца при выплавке стали переходит в шлак. Хотя для этих целей обычно применяют ферромарганец, во многих случаях вге же идет и чистый марганец, особенно при выплавке специальных сталей или когда требуется максимально снизить содержание углерода и фосфора в металле. Его добавляют для целей очистки к сталям основной мартеновской плавки, кислой и основной электроплавки, а также к тигельной стали.  

В сталелитейном производстве, как и в чугунолитейном, удельный вес машинной формовки и заливки литья на конвейерах на крупных объектах значительно выше, чем на слабо специализированных мелких объектах.  

В сталелитейном производстве первым продуктом, получаемым из железной руды, являются стальные слитки, из которых затем производят различные сталепрокатные изделия. Управляющий производством заметил слишком большую задержку между получением и непосредственным их прокатом на прокатных станах. В идеале прокатка слитков должна начинаться сразу после получения их из печи, чтобы уменьшить потребность повторного нагрева слитков. Первоначально эта проблема группой экспертов ИО была представлена в виде линейной модели, оптимизирующей баланс между производительностью литейной печи и пропускной способностью прокатного стана. В процессе исследования ситуации эксперты строили простые графики производительности плавильной печи, суммируя производство стальных слитков в течение ее трехсменной работы. Они обнаружили, что, хотя третья смена начинается в 23 часа, наибольшая производительность достигается только между 2 и 5 часами утра. Дальнейшие наблюдения показали, что операторы печи, работающие в третью смену, имели привычку в начале смены устроить себе довольно длительный период раскачки, наверстывая этот простой в утренние часы. Таким образом, данная проблема решалась простым выравниванием производства слитков в течение всех рабочих смен, для чего пришлось поработать с человеческим фактором.  

В сталелитейном производстве должно быть обращено особое внимание на улучшение теплового хозяйства мартеновских печей, на усиление завалочных, уборочных и транспортных средств п на значительно более интенсивное, чем это запроектировано, использование бессемеровских цехов.  

В сталелитейном производстве существует ряд разновидностей технологического процесса: мартеновский, бессемеровский, томасовский, электроплавильный. Все они основаны на плавке и обработке металла или обработке уже расплавленного чугуна с целью удаления из железа углерода, серы, кремния и других примесей.  

Однако закрытие сталелитейного производства, включенное во второй сценарий в конце 2002 г. приведет к уменьшению возможностей для обеспечения персонала работой, но руководство предприятия против увольнения работников. Следовательно, по мнению / Л / С, целью для руководства компании должно являться создание как можно большего количества новых прибыльных рабочих мест с настоящего момента до года закрытия производства, чтобы избежать или свести к минимуму вынужденное сокращение персонала и социальные издержки безработицы.  

Обухова в основании сталелитейного производства в России.  

Решающий шаг в совершенствовании сталелитейного производства был сделан в 50 - х годах XX века разработкой кислородно-конвертерного метода выплавки стали, который позволил использовать в качестве сырья не только чугун, но и стальной лом и руду, существенно повысить производительность и улучшить качество стали. В настоящее время этот метод, наряду с электроплавильным, преобладает.  

Мартеновский шлак - отход сталелитейного производства, содержащий не менее 80 % углекислого кальция в виде силикатов кальция и магния. В качестве полезных примесей в нем находится фосфор, марганец и многие другие микроэлементы.  

Применение принудительного охлаждения в сталелитейном производстве способствует удлинению срока службы изложниц и улучшению структуры слитков.  

Что касается инструментальной стали, сталелитейные производства обычно поставляют три сорта стали, четко различающиеся между собой: высококачественная, качественная и обычная инструментальная.  

В области теории и практики доменного и сталелитейного производства, а также коксохимии долго и успешно работал акад. Его творческие усилия были направлены на создание новых конструкций печей для производства кокса, на расширение сырьевой базы коксохимической промышленности. Ученый предложил коксовать каменные угли с добавкой железной руды и колошниковой пыли. Так был впервые получен железококс - новый вид сырья для доменной плавки.  

Добыча железа началась, по крайней мере, за два тысячелетия до нашей эры. Получение чистого железа , его сплавов стало возможным благодаря опыту, накопленному древними металлургами по выплавке меди и её сплавов с оловом , серебром , свинцом и другими легкоплавкими металлами.

Плавку железа в древности производили в ямах-горнах, обмазанных глиной или выложенных камнем. В горн загружали дрова и древесный уголь . Через отверстие в нижней части горна нагнетали с помощью кожаных мехов воздух. На смесь древесного угля и дров засыпали измельченную железную руду . Сгорание дров и угля проходило интенсивно. Внутри горна достигалась относительно высокая температура .

Благодаря взаимодействию угля и оксида углерода СО, образовавшегося при сгорании угля, с оксидами железа, содержавшимися в руде, железо восстанавливалось и в виде тестообразных кусков накапливалось на дне горна. Куски были загрязнены золой, шлаком, выплавлявшимся из составляющих руды. Такое железо называли сыродутным. Из него необходимо было удалить примеси прежде, чем приступить к изготовлению изделий. Разогретый металл ковали и на наковальне выжимали остатки шлака, примесей и др. Отдельные куски железа сваривали в единое целое. Такой способ существовал вплоть до XII-XIII вв.

Когда стали использовать энергию падающей воды и приводить в движение меха механическим способом, удалось увеличить объём воздуха, подаваемого в горн. Горн сделали больше, стенки его выросли из земли, он стал прообразом доменной печи - домницей. Домницы имели высоту в несколько метров и сужались кверху. Сначала они были квадратными, потом стали круглыми. Подачу воздуха производили через несколько фурм. В нижней части домницы имелось отверстие, замазываемое глиной, через которое после окончания плавки вынимали готовое железо. Улучшение технологии плавки, обкладки стенок домницы природным огнеупорным камнем позволили значительно повысить температуру в горне. На дне печи образовывался жидкий сплав железа с углеродом - чугун . Вначале чугун считали отходом производства, так как он был хрупким (отсюда появилось английское название чугуна - pig iron , свиное железо). Позже заметили, что чугун обладает хорошими литейными свойствами и из него стали отливать пушки, ядра, архитектурные украшения .

В начале XIV в. из чугуна научились приготовлять ковкое железо, появился двухступенчатый способ производства металла. Куски чугуна переплавляли в небольших тиглях - горнах, в которых удавалось получать высокую температуру и создавать окислительные условия в области фурм. Благодаря окислению из чугуна выжигали большую часть углерода, марганца, кремния. На дне тигля собирался слой железной массы - крица . Масса была загрязнена остатками шлака. Её извлекали из тигля клещами или ломом и тут же в разогретом состоянии подвергали ковке для выдавливания загрязнений и сваривания в один прочный кусок. Такие горны назывались кричными. Они обладали большей производительностью, чем сыродутные, и давали металл более высокого качества. Поэтому со временем получение сыродутного железа было прекращено. Выгоднее было получать железо из чугуна, чем непосредственно из руды. По мере улучшения качества железа возрастали и потребности в нём в сельском хозяйстве, военном деле, строительстве, промышленности. Возрастало производство чугуна, домницы увеличивались в размерах, постепенно превращаясь в доменные печи. В XIV в. высота доменных печей достигала уже 8 м.

Ускоренное развитие металлургии началось после замены древесного угля коксом . Вырубка лесов для получения древесного угля привела к тому, что уже в XV в. в Англии было запрещено использовать древесный уголь в металлургии. Применение кокса не только удачно решило проблему топлива, но и благоприятствовало росту производительности доменных печей. Благодаря повышенной прочности и хорошей теплотворной способности кокса стало возможным увеличение диаметра и высоты печей. Позднее были успешно проведены опыты по использованию доменного колошникового газа для подогрева дутья. Раньше все газы выбрасывались в атмосферу, теперь колошник стали делать закрытым и улавливали отходящие газы.

Одновременно совершенствовался и способ получения стали. Кричный способ уже не мог удовлетворить потребности в железе. Прочность сталям придавал углерод . Науглероживание кричного железа производили либо в твердом состоянии, либо сплавлением с чугуном в маленьких тиглях. Но такие методы не могли дать много стали. В конце XVIII в. на металлургических заводах появился новый процесс - пудлингование . Сущность процесса пудлингования заключалась в том, что топка была отделена от ванны, в которой расплавляют чугун. По мере окисления примесей из жидкого чугуна выпадали кристаллы твердого железа, которые накапливались на поду ванны. Ванну перемешивали ломом, намораживали на него тестообразную железную массу (до 50 кг) и вытаскивали из печи. Эту массу - крицу обжимали под молотом и получали железо.

В 1864 г. в Европе появились первые мартеновские печи , в которых расплавление чугуна, окисление его примесей производили в подовых (отражательных) печах. Печи работали на жидком и газообразном топливе. Газ и воздух подогревали теплом отходящих газов. Благодаря этому в печи развивались настолько высокие температуры, что стало возможным на поду ванны иметь не только жидкий чугун, но и поддерживать в жидком состоянии более тугоплавкое железо и его сплавы. В мартеновских печах начали получать из чугуна сталь любого состава и использовать для переплава стальной и чугунный лом. В начале XX в появились электрические дуговые и индукционные печи. В этих печах выплавляли легированные высококачественные стали и ферросплавы. В 50-х годах XX в. начали использовать процесс передела чугуна в сталь в кислородном конвертере продувкой чугуна кислородом через фурму сверху. Сегодня это наиболее производительный метод получения стали. В последние годы появились значительно усовершенствованные по сравнению с прошлым процессы прямого получения железа из руды.

Развитие сталеплавильного производства повлекло за собой и развитие нового оборудования для горячей и холодней обработки стали. В конце XVIII в. появились прокатные станы для обжатия слитков и проката готовых изделий. В первой половине XIX в. начали применять крупные паровые и воздушные молоты для ковки тяжелых слитков. Последняя четверть XIX в. ознаменовалась появлением крупных прокатных станов и станов для непрерывной прокатки с электрическими приводами.

История развития чёрной металлургии в России

В России до XVII в. производство железа носило кустарный характер. Выплавкой железа занимались отдельные крестьянские семьи или совместно несколько крестьянских дворов. Строили домницы на землях Новгородчины, Псковщины, в Карелии. В начале XVII в. появились доменные печи на Городищенских заводах около Тулы , началось строительство заводов на Урале . В 1699 г. был построен Невьянский завод . Бурное производство чугуна началось при Петре I. Демидовыми на Урале была построена колоссальная по тем временам печь высотой в 13 м, выплавлявшая в сутки 14 т чугуна. Большие земельные вотчины , лежащие рядом с заводом, приписывались к заводу вместе с крестьянами, которые обязаны были отрабатывать на нём определённое время. Крепостное право в течение длительного времени обеспечивало заводы рабочей силой. Хорошие природные условия - руда, лес, из которого выжигали уголь, обилие воды, энергию которой использовали для приведения в движение различных механизмов, - способствовали бурному развитию русской металлургии. Чугун начали экспортировать за границу .

Но в XIX в. крепостное право стало тормозом в развитии производства. Страны Европы и США обогнали Россию по производству чугуна и стали. Если с 1800 по 1860 г. производство чугуна в России увеличилось только в два раза, то в Англии оно возросло в десять раз, во Франции - в восемь раз. Владельцы русских заводов, имевшие в своем распоряжении дешёвую рабочую силу, не заботились о развитии производства, о внедрении технических новшеств, облегчении условий труда рабочих. Постепенно старые уральские заводы приходили в упадок и останавливались.

Министерство финансов, в ведении которого находилась горно-металлургическая отрасль, стремилось внедрять в стране передовые технические достижения, в первую очередь британские. Отчёты о достижениях европейской промышленности, составляемые зарубежными «агентами» Корпуса Горных Инженеров , регулярно печатались на страницах «Горного журнала ». Так, например, об изобретении Нилсоном нагрева доменного дутья и многих других, российские металлурги и промышленники узнавали уже через несколько месяцев после их оглашения. Например, ещё в 1830-х гг., вскоре после того, как Дж. Нилсон внедрил своe изобретение, Христофор Иоакимович Лазарев , представитель знаменитого армянского рода промышленников и меценатов, провёл на Чёрмозском заводе в Пермском крае успешные опыты по использованию нагретого дутья. Но даже готовые технические решения практически не были востребованы, поскольку внешний спрос на русское железо иссяк ещё в начале века, после того, как Великобритания стала сама обеспечивать себя металлом, а внутренний спрос был крайне низок. Количество инициативных, предприимчивых людей, способных и желающих внедрять инновации, было невелико, поскольку бо́льшая часть населения страны не имела никаких прав, не говоря уже о капиталах. В результате даже те инновации, которые внедрялись наиболее технически грамотными и предприимчивыми заводовладельцами, представляли собой скорее дань технической моде, нежели реальный инструмент повышения экономической эффективности .

Ситуация изменилась в конце XIX в. - наметился подъём в чёрной металлургии России, особенно в южных районах (Украина). В 1870 г. русский купец Пастухов построил в г. Сулине завод для выплавки чугуна на донецком антраците . В местечке Юзовка (ныне г. Донецк) был пущен крупнейший по тому времени Юзовский металлургический завод . Бурное развитие металлургия Юга получила с открытием залежей железных руд Кривого Рога . В сочетании с запасами донецких углей это стало основой развития горнорудной промышленности Юга России. В отличие от заводов Урала южные заводы были оборудованы более крупными агрегатами. В доменные печи загружали кокс и выдавали в сутки примерно в шесть-семь раз больше чугуна, чем в печах, работающих на древесном угле.

В годы гражданской войны развитие металлургии было приостановлено, и только в 1926 г. был достигнут уровень 1913 г. - максимальной дореволюционной выплавки стали в 4,3 млн т. Интенсивное развитие чёрная металлургия в СССР получила в годы первых пятилеток. Были построены крупнейшие в мире комбинаты - Магнитогорский и Кузнецкий ; заводы Запорожский, «Азовсталь », Криворожский. Подвергались коренной реконструкции старые заводы: Днепропетровский, Макеевский, Ннжие-Днепровскнй, Таганрогский. Построены новые заводы высококачественных сталей: «Электросталь », «Днепроспецсталь ». В 1940 г. производство стали достигло 18,5 млн т и проката 13,1 млн т.

Большую роль в развитии отечественной металлургии сыграли выдающиеся ученые .

  • П. П. Аносов разработал основы теории производства литой высококачественной стали.
  • Д. К. Чернов является основоположником научного металловедения , его труды по кристаллизации стали не потеряли своего значения и в настоящее время.
  • Академики А. А. Байков , М. А. Павлов , Н. С. Курнаков создали глубокие теоретические разработки в области восстановления металлов, доменного производства , физико-химического анализа.
  • В. Е. Грум-Гржимайло , А. М. Самарин , М. М. Карнаухов заложили основы современного сталеплавильного и электросталеплавильного производства.
  • Академик И. П. Бардин известен во всем мире своими трудами в области доменного производства и организацией научных металлургических исследований.

Состав

В состав чёрной металлургии входят следующие основные подотрасли:

  • добыча и обогащение руд чёрных металлов (железная , хромовая и марганцевая руда);
  • добыча и обогащение нерудного сырья для чёрной металлургии (флюсовых известняков , огнеупорных глин и т. п. );
  • подготовка сырья к доменной плавке (окускование);
  • производство чёрных металлов (чугуна , углеродистой стали , проката , металлических порошков чёрных металлов);
  • производство стальных и чугунных труб ;
  • коксохимическая промышленность (производство кокса , коксового газа и пр.);
  • вторичная обработка чёрных металлов (разделка лома и отходов чёрных металлов).

Металлургический цикл

Предприятие чёрной металлургии - завод Algoma Steel, Онтарио, Канада

Собственно металлургическим циклом является:

  • чугунно-доменное производство ;
  • производство стали (мартеновское , кислородноконвертерное и электросталеплавильное) + непрерывная разливка ;
  • производство проката (прокатное производство).

Предприятия, выпускающие чугун, углеродистую сталь и прокат, относятся к металлургическим предприятиям полного цикла . Предприятия без выплавки чугуна относят к так называемой передельной металлургии . «Малая металлургия» представляет собой выпуск стали и проката на машиностроительных заводах. Основным типом предприятий чёрной металлургии являются комбинаты . В размещении чёрной металлургии полного цикла большую роль играет сырьё и топливо, особенно велика роль сочетаний железных руд и коксующихся углей . С середины 20 века в металлургии начинает применяться прямое восстановление железа .

Все металлургические переделы являются источниками загрязнения пылью, оксидами углерода и серы

В России

Особенность промышленности России заключается в больших расстояниях между производствами различных циклов. Металлургические комбинаты , производящие чугун и сталь из руды, традиционно располагались около месторождений железных руд в районах, богатых лесом, так как для восстановления железа использовали древесный уголь . И в настоящее время металлургические комбинаты металлургической отрасли России расположены вблизи месторождений железной руды: Новолипецкий и Оскольский - около месторождений центральной России, Череповецкий («Северсталь») - около Карельского и Костомукшского, Магнитогорский - около горы Магнитная (уже выработанное месторождение) и в 300 км от Соколовско-Сарбайского в Казахстане, бывший Орско-Халиловский комбинат (в настоящее время «Уральская сталь») около месторождений природнолегированных руд, Нижнетагильский - вблизи Качканарского ГОКа , Новокузнецкий и Западно-Сибирский - около месторождений Кузбасса . Все комбинаты России расположены в местах, где ещё в XVIII веке и ранее существовало производство железа и изделий из него с использованием древесного угля. Месторождения коксующегося угля расположены чаще всего вдали от комбинатов именно по этой причине. Только Новокузнецкий и Западно-Сибирский металлургические комбинаты расположены непосредственно на месторождениях каменного угля Кузбасса. Череповецкий металлургический комбинат снабжается углём, добываемом в Печорском угольном бассейне .

В центральной части России большая часть железорудного сырья добывается в районе Курской аномалии . В промышленных масштабах железорудное сырьё производится также в Карелии и на Урале , а также в Сибири (добыча ведётся в Кузбассе , Красноярском крае, Хакасии и близких им районах). Большие запасы железной руды в Восточной Сибири практически не осваиваются из-за отсутствия инфраструктуры (железных дорог для вывоза сырья).

Два основных района производства коксующегося угля в России - Печорский и Кузнецкий угольные бассейны. Крупные угольные поля есть также в Восточной Сибири ; они отчасти разрабатываются, однако промышленное их освоение упирается в отсутствие транспортной инфраструктуры.

Центральная часть России, в частности Воронеж, Тула не богаты металлами, поэтому в основном для внутренних нужд все сырьё привозится из других регионов. Крупнейшими поставщиками металла в центральный регион являются общероссийские компании, такие как ЕВРАЗ Металл Инпром , и местные, такие как ПРОТЭК и Союзметаллкомплект.

При строительстве всех крупных металлургических комбинатов России (в советское время) одновременно велось и строительство ориентированного на каждый завод горно-обогатительного комбината. Однако, после распада СССР , некоторые комплексы оказались разбросанными по территории СНГ . Например, Соколовско-Сарбайское ГПО, поставщик руды на Магнитогорский меткомбинат, теперь находится в Казахстане. Железорудные предприятия Сибири ориентированы на Западно-Сибирский и Новокузнецкий меткомбинаты. Качканарский ГОК поставляет руду на Нижнетагильский меткомбинат. Костомукшский ГОК поставляет руду в основном на

1. Технико-экономическая и организационная характеристика сталеплавильного производства.

2. Время действия агрегатов в сталеплавильных цехах.

3. Определение суточной производительности сталеплавильных агрегатов.

4. Производственная программа сталеплавильных цехов.

5. Организация производства и труда в сталеплавильных цехах.


1. Технико-экономическая и организационная характеристика сталеплавильного производства

Выплавка стали, ведется в основном тремя способами: мартеновским, конверторным и электросталеплавильным. В настоящее время мартеновский способ уступает место более прогрессивным – конвертерному и электросталеплавильному. При относительном уменьшении доли мартеновской стали, абсолютный объем ее производства из года в год возрастает.

Конвертерный процесс, как процесс технически более совершенен и экономически более эффективен, имеет целый ряд преимуществ перед другими способами, и в первую очередь перед мартеновским:

1. Более высокая производительность на единицу емкости агрегата и на одного трудящегося.

2. Удельные капитальные вложения на строительство цеха такой же производительности, как мартеновского, с учетом затрат на кислородные станции.

3. Расход огнеупоров на единицу мощности агрегата в 2-3 раза меньше.

4. В хорошо работающих цехах при оценке лома по цене чугуна себестоимость стали ниже мартеновской.

Производство стали в электродуговых печах обладает рядом технологических преимуществ перед конверторным и мартеновским способами производства. Во-первых, высокая температура в значительной мере экранированных от стен и свода источников тепловой энергии позволяет быстро нагревать и поддерживать требуемую температуру металла в ванне. Во-вторых, возможность создавать в рабочем пространстве электропечи как окислительную, так и восстановительную атмосферу. Указанные преимущества позволяют с высокой достоверностью контролировать ход плавки с точки зрения:

Эффективного рафинирования металла от вредных примесей;

Легирования металла при минимальных потерях дорогостоящих элементов.

Сталеплавильные цехи занимают промежуточное место в общем, металлургическом цикле, имеют тесные производственные связи с доменными и прокатными цехами. Такое положение требует четкой согласованности во время снабжения сталеплавильных агрегатов жидким чугуном, а прокатных станов горячими слитками и заготовками. Сталеплавильное производство характеризуется нестабильностью многих факторов процесса (разная длительность отдельных периодов плавки стали, непостоянное качество используемых материалов, изменение длительности плавки в течение компании печи и др.). сталеплавильные агрегаты обслуживаются общими участками (шихтовый двор, миксерное отделение, отделение подготовки изложниц и раздевания слитков) и оборудованием (завалочные машины, разливочные, разливочные и уборочные краны и др.).

Приведенные особенности обуславливают необходимость строгой регламентации производственного процесса каждого агрегата в отдельности и всех агрегатов вместе, требуют увязки работы всех участков цеха между собой и согласования его работы с работой смежных и обслуживающих цехов. Решение этих вопросов невозможно без регламентации производственных процессов.

В первую очередь регламентации подлежит:

1. состав шихты (химический состав чугуна, пропорции составных частей – количество тяжеловесного лома, размеры материалов);

2. время и порядок завалки различных материалов шихты и заливки жидкого чугуна;

3. время и порядок подачи шихтовых материалов на рабочую площадку;

4. длительность плавки по периодам;

5. тепловой и температурный режимы по периодам плавки;

6. время и порядок подготовки разливочного пролета к приему и разливке стали (подготовка ковшей, скорость разливки стали, время выдержки металла в ковше);

7. время и порядок уборки продуктов плавки (время выдержки стали после разливки, транспортировки составов к нагревательным колодцам прокатного цеха, смета шлаковых чаш);

8. расход шихтовых материалов на одну тонну стали и выход годного;

9. сроки и длительность ремонтов печей и оборудования;

10. штат рабочих и руководителей по участкам и цеху в целом;

11. нормы выработки, нормы времени по видам работ и порядок оплаты труда (система зарплаты, расценки, показатели премирования);

12. рациональные приемы работы, устанавливаемые на основе передового опыта и внедрение планов ОНОТ;

13. требования, предъявляемые к другим цехам и хозяйствам.

Кислородно-конверторные цехи по сравнению с мартеновскими более компактны, оборудование их более простое, условия труда значительно лучше. Однако сравнительно малая длительность плавки (40-50 мин) требует особенно четкой организации работы. Электросталеплавильные цехи по характеру и длительности операции технологического процесса, составу участков и организации обслуживания печей весьма сходны с мартеновскими. В ферросплавных цехах самостоятельными участками являются: подготовка и подача шихты, печной пролет (собственно плавка), разливка и уборка продуктов плавки. Ферросплавы выплавляют двумя способами: периодическим и непрерывным, что вносит соответствующие особенности в организации работы этих цехов. Регламентация процесса и увязка во времени всех производственных операций на участках цеха обеспечивают ритмичную и высокопроизводительную работу печей.

2. Время действия агрегатов в сталеплавильных цехах

Сталеплавильные процессы протекают при высоких температурах. Поэтому наиболее экономичный для них режим непрерывной круглосуточной работы. При планировании объема выплавки стали, во всех сталеплавильных цехах по каждому агрегату определяют время его работы в планируемом периоде и производительность в единицу времени. Время работы различают: календарное, номинальное и фактическое. Время действия сталеплавильных агрегатов включает простой печей на капитальных и текущих ремонтах. Фактическое время определяют, исключая горячие простои. Капитальные холодные ремонты вызываются, как правило, ремонтом кладки и связанные с полным охлаждением, последующей сушкой и разогревом печи и футеровки конвертера. Текущие (холодные) ремонты устанавливаются исходя из сроков службы отдельных элементов печи. Продолжительность простоя на холодном ремонте зависит от емкости печи и категории ремонта. Капитальные ремонты финансируются за счет амортизационных отчислений, а текущие – за счет производства, то есть затраты на их проведение включаются в себестоимость стали с равномерным распределением на весь межремонтный период. Номинальным (производственным) считается время нахождения печи в горячем состоянии. Определяется оно исключением из календарного времени холодных простоев (ремонтов), в течении которых печь полностью охлаждается.

Простои на холодных ремонтах в планируемом периоде определяют по каждой печи исходя из сроков службы отдельных ее элементов, даты последнего ремонта и последовательности чередования ремонтов. Горячие простои вызываются горячими, (печь находится в горячем состоянии) ремонтами: ремонт пода, огнеупорной кладки, оборудования и др. В основном это ремонты пода. К простоям печи относятся остановки по причине ремонта кожуха, футеровки, электрического оборудования высокого и низкого напряжения, механического оборудования, из за недостатка шихты, электроэнергии, электродов и т.д. Простоем считается время, когда трансформатор отключен (все типы ферросплавных печей) или, работают в холостую – без внешней нагрузки (рафинировочные печи). К холодным простоям относятся остановки печи на плановые ремонты. Продолжительность холодных простоев считается с момента отключения печи после выпуска последней плавки до выпуска первой плавки после ремонта. Разогрев печей после текущих и капитальных ремонтов не планируется. Время на разогрев входит в номинальное время работы печей. При необходимости разогрева печей после плановых холодных ремонтов планируемая среднесуточная производительность печей на данный месяц снижается. Производительность печей после капитального ремонта на период разогрева определяется, утверждается отдельно. Продолжительность перевода печей со сплава на сплав определяется как время с момента начала промывки или подачи в печь шихты на новый сплав до начала выпуска первой из пяти годных плавок, полученных подряд при переводе. Время перевода со сплава на сплав входит в состав холодных простоев и в технических отчетах показывается на том сплаве, из-за которого переводят печь. Горячими простоями считается незапланированные (аварийные) остановки печи, в течение которых невозможно вести технологический процесс. Причинами таких остановок могут быть:

1. неисправность оборудования (электрического, механического)

2. обламывание или разрушение электродов, аварии у горна, выбросы из печи, интенсивные ошлаковывание ванны

3. отсутствие шихты

4. отсутствие электроэнергии

5. отсутствие разливочной машины и т.д.

Первые три вида относятся к числу простоев по техническим причинам, остальные – по организационным причинам.

Технологическими простоями считаются время, необходимое для проведения таких технологических операций, при которых не подается электроэнергия; они входят в номинальное время работы печей. К технологическим простоям рафинировочных печей относят:

1. время, необходимое для выпуска металла и шлака;

2. время необходимое для наращивания и перепуска электродов или для их смены;

3. время на затравку ванны.

График ремонта печей на планируемый год разрабатывается в соответствии с нормативами периодичности и продолжительности ремонтов оборудования. Продолжительность и периодичность капитальных ремонтов конвертеров определяется объемом работ и методами их выполнения. Остановки на планово предупредительный ремонт, включаемые в календарное время, вызываются главным образом заменой футеровки и профилактикой оборудования. Частота замены футеровки зависит от ее стойкости. В среднем на предприятиях она колеблется от 700 и более плавок, а продолжительность ее замены от двух до двух с половиной суток. С повышением стойкости футеровки и сокращением времени ее замены при классической схеме работы агрегата значительно возрастает время нахождения конвертера в резерве. Опыт свидетельствует о возможности одновременной работы тремя конвертерами, что исключает простои в резерве и значительно увеличивает номинальное время работы конвертеров и объем выплавки стали, однако при этом требуется обеспечить достаточную пропускную способность участков цеха и согласовать работу конвертеров со сметными и обслуживающими цехами. Номинальное время работы конвертеров определяется исключением из календарного простоев на капитальном и ППР во время нахождения конвертеров (при классической схеме работы) в резерве.



Касса