Что такое режим p ttl. Что такое TTL замер и зачем он нужен. Переключение в ручной режим

TTL - время жизни пакета данных в протоколе IP. Чем TTL может заинтересовать обычного пользователя? Наверняка, большинство из Вас оказались на этой странице с целью узнать, как обойти ограничения на раздачу интернета со смартфона. Контроль TTL используется операторами мобильной связи для обнаружения трафика несанкционированного подключенного устройства. Из этого обзора Вы узнаете, как именно TTL помогает провайдеру узнать о раздаче интернета с помощью Wi-Fi или USB и каким образом обычному абоненту обхитрить жадного оператора. Мы постараемся доходчиво объяснить, что такое TTL и как это значение может помочь абонентам.

Принцип работы TTL

К сожалению, безлимитный мобильный интернет без каких-либо ограничений на сегодняшний день не предоставляется ни одним оператором. Существуют тарифы, которые предусматривают отсутствие ограничений по скорости и трафику, но при использовании SIM-карты только в смартфоне. Также нельзя делиться интернетом с другими устройствами. Если вы включите на смартфоне точку доступа Wi-Fi или подключитесь к ноутбуку по USB, оператор моментально зафиксирует этот факт и предпримет соответствующие меры (предложит дополнительно заплатить). Многие недоумевают, что за технологии позволяют провайдеру вычислить раздачу интернета. На самом деле все гораздо проще, чем кажется. Чтобы не позволять абонентам делиться интернетом с другими устройствами, оператору достаточно контролировать TTL. Например, если Вы включите на телефоне режим модема, исходящий от подключенных устройств TTL будет на 1 меньше, чем у смартфона, на что незамедлительно отреагирует провайдер. Манипуляции с ТТЛ позволяют обойти ограничение на тетеринг.

Если вы все еще не поняли, что такое TTL и какой у него принцип работы, ознакомьтесь с приведенной ниже инфографикой.

Девайс работает без раздачи интернета.


У iOS и Android устройств TTL по умолчанию равен 64. Если телефон не раздает интернет другим устройствам, все пакеты уходят к оператору со значением TTL=64.

Девайс раздает интернет.

При попытке раздачи интернета с помощью Wi-Fi, Bluetooth или USB на другие устройства, например, ноутбук и еще один телефон, пакеты от раздающего устройства, по-прежнему, уходят со значением TTL=64. Пакеты от компьютера/ноутбука до раздающего интернет устройства доходят со значением TTL=128 (значение для Windows по умолчанию), теряют единицу на раздающем устройстве и уходят к оператору с TTL=127. Пакеты от принимающего интернет телефона доходят до раздающего устройства с TTL=64 и уходят к оператору с TTL=63, потеряв одну единицу. Для оператора это означает, что абонент раздает интернет, о чем свидетельствуют пакеты с тремя разными значениями TTL. В итоге, провайдер предпринимает соответствующие меры в отношении такого абонента.

Девайс раздает интернет с корректировкой TTL.

Чтобы оператор не вычислил факт запуска тетеринга, необходимо изменить на раздающем интернет устройстве TTL по умолчанию таким образом, чтобы пакеты с других устройств при потере единицы от TTL имели значение, которое было задано для раздающего устройства “по умолчанию”. На приведенной выше картинке видно, что после корректировки значение TTL на раздающем интернет телефоне равно 63. iOS и Android девайсы имеют TTL=64, но после прохождения пакетов через раздающее устройства TTL теряет единицу и поступает к оператору со значением 63. Получается, оператор не видит ничего подозрительного и абонент может раздавать интернет без каких-либо ограничений и дополнительной оплаты.

Если принимающее интернет устройство имеет TTL по умолчанию не 64, нужно внести соответствующие изменения. Например, если вы хотите раздать интернет на ноутбук или компьютер, который имеет TTL=128, вам нужно изменить его на 64. Такая схема позволяет одновременно раздавать интернет на компьютер, а также iOS и Android устройства. Если по какой-то причине Вы не можете изменить TTL на ПК, то измените TTL раздающего устройства на 127. В итоге пакеты будут уходить к оператору с одинаковым значением и никаких подозрений не возникнет. Правда, у такой схемы есть недостаток. У вас не получится одновременно с компьютером подключить к интернету iOS и Android устройства, если у них TTL по умолчанию не 128.

Девайс раздает интернет с корректировкой и фиксацией TTL.

Данная схема является самой удобной. Вам необходимо изменить и зафиксировать TTL для любых исходящих пакетов. То есть, абсолютно не важно, какие устройства будут подключаться к интернету. Такой вариант будет идеальным для тех, кто не может изменить TTL на принимающем устройстве, например, smart-tv или игровые приставки. Недостаток этого способа заключается в том, что он подходит не для всех телефонов.

Заключение

Надеемся Вы поняли, что такое TTL и чем корректировка этого значения может быть полезна для обычного абонента. Мы постарались объяснить все коротко и доступно. Если у вас остались вопросы, задавайте их в комментариях и мы постараемся Вам помочь. Напомним, что этот обзор предназначен для того, чтобы вы получили представление о таком понятии, как TTL. Что касается практических способов изменения этого значения, то все они описаны в отдельной статье.

При съемки со вспышкой типа "горячий башмак" есть кое-какие основные правила. Как мне правильно настроить параметры вспышки? Как режимы TTL влиют на фото? Что такое синхронизация вспышки и, что еще важнее, в чем разница между синхронизацией на первой и второй шторках? Где выставлять значения вспышки? Что такое флеш-зум? Все эти и другие вопросы найдут ответы в этой статье.

Режимы работы вспышки.

При работе с горячим башмаком в ручном режиме вы, в основном, устанавливаете питание вспышки. Большинство вспышек позволяют выставлять максимальную или минимальную мощность или что-то среднее между ними. Как и камеры, у вспышки есть режимы. Это касается мощности и измеряется в частичных величинах: 1(или полная), 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 и так далее. Проще говоря - полная мощность, половина, четверть и в том же духе. Перемещение на один шаг по этой шкале (от полной мощности до половины, от половины до четверти) - это одно переключение. Так же, как в настройках экспозиции, выдержки или диафрагмы.

В зависимости от вашей конкретной вспышки, от ее модели или марки, можно выставить половину или даже треть, как в настройках выдержки или диафрагмой. На некоторых вспышках мощность устанавливается непосредственно на вспышке и отображается на ее ЖК-дисплее.

Другие вспышки, особенно небольшие, могут быть настроены только через меню камеры, так как они полностью контролируются датчиками. Правильная настройка вспышки, совместимой с вашей камерой, может сделать вашу фото-жизнь намного проще. Речь идет не только о дополнительном удобстве, но и о расширенной функциональности.

При изменении значений мощности вспышки важно помнить, что вы тем самым не меняете количество света, которое испускает вспышка. Количество света всегда одинаково. При снижении мощности вы на самом деле изменяете только продолжительность излучения этого света. Так, увеличение мощности приведет к тому, что вспышка будет гореть чуть дольше.

Другой факт в том, что количество света на полной мощности разное у разных торговых марок и моделей, и диапазон настроек питания между максимумом и минимумом тоже разный. Например, Canon 580 EX куда мощнее, чем Canon 430 EX, и предлагает ряд параметров питания вплоть до значения 1/128, в то время как 430-ая останавливается на 1/64.

Для вспышки Canon, E-TTL расшифровывается как "оценочное измерение через объектив). При установки вспышки в режим ETTL, вспышка излучает свет на самом деле еще до съемки. Это предварительная вспышка. Измеренное количество света возвращается через объектив и сравнивает его с исходным количеством, излучаемым от камеры до объекта. На основании этих двух критериев, камера расчитывает какой уровень питания вспышки нужно установить, чтобы снять соответствующую экспозицию.

Следующие изображения показывают два различных режима работы вспышки. В первом - вспышка установлена в ручном режиме на 1/2 мощности. Во втором - ETTL-режим, а это означает, что камера автоматически установит нужную мощность в соответствии с данным освещением.

Помните, в ручном режиме за все огрехи отвечаете вы сами. Это значит, что какую вы мощность вспышки установите, такая она и будет от одного снимка к другому, пока вы сами, собственноручно, не измените ее значения. В режиме TTL камера работает со вспышкой для определения мощности, необходимой для конкретного сюжета, и, если нужно, меняет эти значения. Таким образом, если меняется расстояние до объекта или освещение, вспышка обнаружит это, и камера изменит ее параметры.

Синхронизация вспышки

Сихронизация вспышки изначально зависела от скорости затвора, при которой и камера, и вспышка могут функционировать нормально. Добиться этого было довольно сложно. Теперь синхронизация вспышки больше относится к тому, как вспышка работает по отношению к вашей экспозиции. Лучше всего это продемонстрировать, представив длительную работу, около 6 секунд. Вспышка можнт работать сразу при раскрытой диафрагме или перед второй шторкой, когда затвор начинает закрываться. Для первой шторки синхронизация произойдет в момент открытия затвора. Для второй - в момент активации вспышки.

Оба способа хороши и создают определенный эффект в конечном изображении.

Если ваш объект и камера неподвижны, то не будет иметь значения момент вспышки. Если есть движение, то со вспышкой в первом режиме будет освещен объект и запечатлен в той точке, когда затвор открыт полностью, а затем окружающий свет будет освещать любоей движение, происходящее в остальной части экспозиции.

Во втором режиме вы сможете записывать движение до того момента, как вторая шторка полностью закроется, и объект будет запечатлен, освещенный вспышкой. Так, вы можете получить на снимке все этапы движения.

Если объект движется слева направо, используйте синхронизацию на первой шторке, размытие будет справа от запечатленного объекта, если вы выставили подходящую выдержку. При съемке на второй шторке - размытие будет слева от предмета. Если у вас проблемы с этим, уменьшите скорость затвора. Не бойтесь, 1/2 секунды или немного больше - это не страшно. Оба снимка ниже были сделаны во втором режиме.

Флеш-зум (Зум вспышки)

Флеш-зум означает, как широко будет распространяться свет. Некоторые вспышки не имеют параметров масштабирования. В автоматическом режиме флеш-зум определяет фокусное расстояние от объектива и регулирует широту света в соответствии с этим.

Чтобы сделать это, вспышка изменяет расстояние между фактической импульсной лампой (свет) и диффузором (пластик в передней части вспышки). Если вы используете зум-объектив, некоторые вспышки могут снова изменить жто расстояние, так как увеличение или уменьшение масштаба не может сраниваться с новым фокусным расстоянием. Если вы используете простой объектив, нужно, очевидно, регулировать только вспышку.

Разные марки и модели вспышек предлагают различные значения диапазона зума. Например, Canon 430 и 580 серий предлаеют использовать фокусное расстояние от 24 до 105 мм при использовании совместимого на полном кадре (35 мм) объектива EOS DSLR. Если вы используете камеры DX(APS-C), диапазон будет составлять от 15 до 65 мм.

Вы также можете установить вспышку в режим ручного управления зумом. Таким образом, можно менять зону масштабирования и распространение света вспышки в зависимости от фокусного расстояния вашего объектива. Вы также можете использовать ручной флеш-зум для решения творческих задач, меняя угол обзора флеш-зума. Это позволит осветить определенную зону кадра.

Направление вспышки.

Некоторые модели вспышек предлагают вам возможность отразить свет от потолка, стен, отражателей, чтобы смягчить его воздействие на объект. Эти вспышки имеют наклон и/или вращающуюся головку, которая может перемещаться вверх, вниз, влево, вправо и наоборот. Наклон и свобода панорамы зависят от кокнретной модели. Например, Canon 580 серии может наклоняться от 7 градусов (вниз) до 90 градусов (вверх), а серии 430 - до 90 градусов вверх.

Со вспышкой с вращающейся головкой очень удобно, это дает возможность манипулировать светом таким образом, что свет окружает ваш предмет со всех сторон, а не только с одной. Отраженный от стен и потолка свет может сделать кадр более естественным, смягчая тени. Обычно это приводит к более приятному контрасту.

Если вы находитесь в месте, где потолки слишком высоко для света, чтобы отразиться, вы можете попробовать провести рукой прямо перед вспышкой, чтобы бросить немного света вперед. Некоторые вспышки оснащены специальной встроенной картой для этой цели. Можно сделать ее самостоятельно, прикрепив к вспышке резинкой.

Как правило, вспышка устанавливается таким образом, что свет составляет примерно половину расстояния до объекта съемки. Если объект очень близко к стене, можно установить головку вспышки в верхний угол, где стены и потолок сходятся. Еще один способ - повернуть головку вспышки к стене, прямо позади вас, так свет отразится обратно на объект.

Решиться купить

Есть множество моделей и брендов. Некоторые могут предложить все функции и возможности, о которых мы говорили только что, а некоторые не могут. Конечно, чем больше доступных функций, тем легче вам будет контролировать вспышку, экспериментировать с ней и просто творить. Разумеется, вспышки, о которых шла речь, стоят дорого.

Основные производители камер, такие, как Nikon и Canon имеют свои собственные линии вспышек, идеально совместимые с тушками камер и предоставляющие широкий спектр возможностей. Но ценники, наверняка, толкнут вас на поиски более дешевого аналога для вашей камеры. Иногда вспышки дешевле действительно имеют хорошие функции. Если вы не уверены, что готовы вложить в это дело большие деньги, покупайте подешевле, это убережет вас от лишних трат.

Размещайте ваши советы о съемке со вспышкой в комментариях! Ну а если вы хотите научиться получать с обычной вспышкой профессиональные фото как в глянцевых журналах, то кликните по картинке ниже!

При работе с накамерными системными вспышками, наиболее корректным методом экспонометрии является замер света, прошедшего через объектив фотокамеры (от англ. Through The Lens «через объектив» ). В таком случае автоматически учитываются все поправки на светосилу объектива, используемые светофильтры и насадки, а угол замера – также автоматически согласовывается с углом зрения объектива. Поэтому современные системы управления вспышкой построены именно на принципе TTL-замера. Естественно, автоматический TTL-замер не лишён недостатков, и каждая фирма, разрабатывая и совершенствуя свою собственную систему управления вспышкой, шла по своему пути.

В основе работы вспышек Canon EOS system лежит технология TTL , которая включает в себя модуль с датчиками, расположенными в нижней части внутреннего пространства зеркальной камеры. Датчики измеряют освещённость поля кадра в момент съёмки. Как только экспозиция (произведение освещенности и времени экспонирования) поля кадра достигает пороговой величины, электроника фотоаппарата прерывает импульс вспышки.

На сегодняшний день существует три поколения системы EOS flash system: A-TTL, E-TTL и E-TTL II.

A-TTL(англ. Advanced-Through The Lens ) - первая реализация технологии EOS flash system, впервые появившаяся в камере Canon T90 1986 года. Принцип работы A-TTL заключается в использовании дополнительной инфракрасной лампы, установленной на неподвижной части корпуса вспышки. Там же находится датчик освещённости, который измеряет количество света, отраженное от объекта съёмки после импульса инфракрасной вспышки.

В момент нажатия кнопки спуска затвора инфракрасная вспышка выдаёт импульс, направленный параллельно оси объектива. Датчик, расположенный на вспышке, производит замер отраженного от объекта света и передаёт данные (выдержка и диафрагма) в фотоаппарат для расчёта экспозиции и мощности основного импульса вспышки. Фотоаппарат, кроме того, производит замер общей освещённости поля кадра без вспышки (до инфракрасного импульса).

Данные, полученные в результате двух замеров, сравниваются, и при необходимости производится коррекция предварительных расчётов экспозиции. После этого открывается затвор и производится экспонирование. В это время срабатывает основная вспышка и TTL-датчики замеряют освещённость поля кадра на основе количества света, отраженного от плёнки или матрицы. При риске пересвета импульс вспышки отсекается.

Недостатки A-TTL замера

В случае, если объект в кадре имеет высокую отражающую способность (например, в кадре человек рядом с зеркалом), высока вероятность ошибки в расчётах мощности основного импульса и экспозиционных данных. Кроме того, ошибки могут возникать в том случае, если основной импульс производится не напрямую в объект съёмки, а в потолок или отражатель. A-TTL вспышки не работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с.

E-TTL(англ. Evaluative-Through The Lens ) - развитие технологии EOS flash system, в отличие от A-TTL предусматривающее использование основного излучателя для предварительной вспышки. Таким образом значительно сокращается вероятность ошибок расчёта экспозиции и мощности импульса при использовании отражающих свет поверхностей, если головка вспышки направлена не на объект съёмки. Кроме того, также как и в A-TTL, встроенный в камеру сенсор при необходимости прекращает работу вспышки.

Для расчёта экспозиции и мощности основного импульса используется тот же сенсор, что и для замера освещённости в обычных условиях (а не отдельный, как в A-TTL). E-TTL вспышки работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с, вплоть до 1/8000 с (в зависимости от возможностей фотоаппарата). Если в режиме обычной синхронизации сначала полностью открывается затвор, после чего вспышка при открытом затворе экспонирует кадр, то в режиме сверхскоростной синхронизации вспышка выдаёт высокочастотный, растянутый по времени импульс, который дольше, чем время, на которое открывается затвор и состоит из множества коротких импульсов. Совокупная мощность импульса при таком способе работы меньше, чем при обычном режиме работы.

Последовательность замера экспозиции в E-TTL следующая:

1) при полунажатии на спуск производится замер яркости от постоянного освещения,
2) включается предвспышка небольшой мощности и сенсоры экспозиции замеряют новое значение яркости,
3) из измерения яркости со вспышкой вычитается значение первоначального замера без вспышки,
4) в момент полного нажатия на спуск происходит еще один замер яркости от окружающего света без вспышки (чтобы учесть возможность перекадрировки) и вычисляется требуемая величина импульса вспышки,
5) производится экспонирование, срабатывает вспышка.

Если съемка производится в режиме автофокуса, расчет экспозиции производится с учетом положения фокусировочной зоны. В случае ручного фокуса акцент при расчете экспозиции делается на самую «яркую» зону.

E-TTL впервые появилась в 1995 году в камере Canon EOS 50.

E-TTL II(англ. Evaluative-Through The Lens 2 ) - последний на сегодня механизм взаимодействия камеры и вспышки, впервые появившийся в камере Canon EOS-1D Mark II в 2004 году. В отличие от предшественницы, E-TTL II использует все доступные зоны замера экспозиции, а также учитывает расстояние до объекта.

В E-TTL II кроме данных об экспозиции без оценочного импульса и с ним, учитывает и дистанцию до объекта съемки, которая «сообщается» сфокусированным на объект объективом. Зачем это нужно? Приведем один возможный пример. Может случиться так, что объект занимает небольшую часть кадра и E-TTL попросту не учтет его и вся экспозиция будет рассчитана под окружающий фон. А если положение объекта в пространстве задано, то в экспозицию будет внесена нужная корректива.

Сегодня снова про вспышку.

Фотохитрости. Часть 9. Снято на I-TTL BL FP SB-900

Немножко поясню как работает вспышка в автоматическом режиме. Обычно, автоматический режим вспышки в своем названии имеет приставку TTL. Расшифровывается очень просто — Through the lens — сквозь объектив (сквозь линзу). Это означает, что мощность вспышки настраивается с помощью света, который прошел через объектив.

Делается это довольно интересно: вспышка дает пробный импульс света. Обычно, мощность такого импульса составляет 1\128 от полной мощности вспышки. Свет от вспышки отражается от того, что мы фотографируем, проходит через объектив и попадает на датчики экспонометра. Датчик передает значение мощности светового потока процессору камеры. Процессор долго думает, анализирует, и высчитывает, какая должна быть мощность основного импульса вспышки. Процессор знает, что первый импульс имел мощность, скажем, 1\128, при этом экспонометр получил значения, которые не удовлетворяют экспозицию на 3 ступени, потому, процессор дает понять вспышке, что основной импульс должен быть мощней на 3 ступени, и соответствовать 1\16 мощности вспышки. Таким образом мы получаем хорошенький снимок с правильной экспозицией.

Самое интересное: в современных ЦЗК пробного импульса практически не видно. Такое ощущение, что вспышка сразу дает нужный импульс света. Но это не так, в режимах TTL импульсы идут очень и очень быстро один за другим серией в режиме стробоскопа. Человеческий глаз и человеческая реакция практически не замечает пробный импульс.

Пробный импульс часто называют «предвспых «. Предвспыхов может быть целое множество, а не один, и их мощность может быть разной. Честно говоря, я не знаю, какую мощность имеют предвспыхи моих вспышек Nikon , . Для Nikon, задержка между пробным и основным импульсом составляет порядка 0.4 с .

Со вспышкой. TLL через зонт, легкий блюр от командных импульсов

Важно: в обычных цифровых камерах система экспо замера не столь хорошо продумана, а процессоры не столь мощные, да и вспышки не могут давать большое количество «залпов» одновременно, потому, я легко замечаю предвспыхи на обычны цифровых камерах (мыльницах). Также, очень ярко видны пробные или управляющие импульсы встроенных и внешних вспышек моих камер и вспышек при работе в системе креативного освещения .

При работе в TTL режиме я натолкнулся на пару интересных особенностей :

  1. Много людей имеют очень быструю реакцию, и при фотографировании со вспышкой они начинают жмуриться на первый импульс, а основной «рисует» их на снимке с прищуренными глазами.
  2. Предвспыхи заполняют фон лишним светом, это часто дает блюр (замыленность) в глазах людей. Лишние переотражения никому не нужны.
  3. Вспышка таким образом быстрее нагревается и сильней расходует заряд аккумуляторов.

Чтобы побороть такой недуг, TTL достаточно использовать вспышку в . При ручном управлении мощность вспышки нет пробных срабатываний, и вспышка сразу подает основной импульс. Прелесть такого режима в том, что:

  1. Моргание глаз полностью устраняется. Импульс моей вспышки Nikon имеет длительность от 1\800 до 1\40.000, за такое время ни один человек не успеет моргнуть. Да, человек моргает, но уже после вспышки, а свет лампы вспышки «рисует» на фотографии человека с открытыми глазами.
  2. Уменьшается блюр в глазах. В студиях все работают со вспышками с ручным управлением мощностью, проблемы блюра в глазах практически нет. Правда, там другая проблема, в глазах ярко видны сами осветительные приборы, часто прямоугольной формы, что делают глаза человека похожими на глаза кошек (не естественными).
  3. Перезарядка длится быстрей, не тратится лишняя энергия. Возможно, даже увеличивается ведущее число, так как вся доза света подается сразу.

Вот такие вот преимущества ручного управления вспышкой.



Отчетность за сотрудников