Парогазовые установки электростанций. Большая энциклопедия нефти и газа

К сожалению, переход на сооружение парогазовых ТЭЦ (ПГУ ТЭЦ) вместо паротурбинных привел к еще более резкому снижению теплофикации в общем производстве энергии. Это, в свою очередь, приводит к повышению энергоемкости ВВП и снижению конкурентоспособности отечественной продукции, а также увеличению затрат на жилищно-коммунальные нужды.

¦ высокий КПД выработки электроэнергии на ПГУ ТЭЦ по конденсационному циклу до 60%;

¦ трудности размещения ПГУ ТЭЦ в условиях плотной городской застройки, а также рост поставок топлива в города;

¦ по сложившейся традиции ПГУ ТЭЦ оснащаются, также как и паротурбинные станции, теплофикационными турбинами типа Т.

Строительство ТЭЦ с турбинами типа Р, начиная с 1990-х гг. прошлого века, было практически прекращено. В доперестроечное время около 60% тепловой нагрузки городов приходилось на долю промышленных предприятий. Их потребность в тепле для осуществления технологических процессов в течение года была достаточно стабильной. В часы утреннего и вечернего максимумов электропотребления городов пики электроснабжения сглаживались путем введения соответствующих режимов ограничения поставок электрической энергии промышленным предприятиям. Установка на ТЭЦ турбин типа Р была экономически оправдана из-за их меньшей стоимости и более эффективного расходования энергоресурсов по сравнению с турбинами типа Т. парогазовый энергоресурс топливо

Последние 20 лет из-за резкого спада промышленного производства существенно изменился режим энергоснабжения городов. В настоящее время городские ТЭЦ работают по отопительному графику, при котором летняя тепловая нагрузка составляет всего 15-20% расчетной величины. Суточный график электропотребления стал более неравномерным из-за включения электрической нагрузки населением в вечерние часы, который связан со шквальным ростом оснащения населения электрической бытовой техникой. Кроме того, выравнивание графика энергопотребления за счет введения соответствующих ограничений промышленных потребителей из-за их малой доли в общем энергопотреблении оказалось невозможным. Единственным не очень эффективным способом решения проблемы явилось сокращение вечернего максимума за счет введения сниженных тарифов в ночные часы .

Поэтому в паротурбинных ТЭЦ с турбинами типа Р, где выработка тепловой и электрической энергии жестко взаимосвязаны, применение таких турбин оказалось нерентабельным. Противодавленческие турбины производятся теперь только малой мощности для повышения эффективности работы городских паровых котельных путем перевода их в режим когенерации.

Такой установившийся подход сохранился и на сооружении ПГУ ТЭЦ. Вместе с тем при парогазовом цикле жесткая взаимосвязь между отпуском тепловой и электрической энергии отсутствует. На этих станциях с турбинами типа Р покрытие вечернего максимума электрической нагрузки может осуществляться путем временного увеличения отпуска электроэнергии в газотурбинном цикле. Кратковременное снижение отпуска тепла в систему теплоснабжения не сказывается на качестве отопления благодаря теплоаккумулирующей способности зданий и тепловой сети.

Принципиальная схема ПГУ ТЭЦ с противодавленческими турбинами включает две газовые турбины, котел-утилизатор, турбину типа Р и пиковый котел (рис. 2). Пиковый котел, который может быть установлен вне площадки ПГУ, на схеме не показан .

Из рис. 2 видно, что ПГУ ТЭЦ состоит из газотурбинной установки в составе компрессора 1, камеры сгорания 2 и газовой турбины 3. Выхлопные газы из ГТУ направляются в котел-утилизатор (КУ) 6 или в байпасную трубу 5 в зависимости от положения шибера 4 и проходят ряд теплообменников, в которых вода нагревается, пар сепарируется в барабанах низкого 7 и высокого давления 8, направляется в паротурбинную установку (ПТУ) 11. Причем насыщенный пар низкого давления поступает в промежуточный отсек ПТУ, а пар высокого давления предварительно перегревается в котле-утилизаторе и направляется в голову ПТУ Выходящий из ПТУ пар конденсируется в теплообменнике сетевой воды 12 и конденсатными насосами 13 направляется в газовой подогреватель конденсата 14, а затем направляется в деаэратор 9 и из него в КУ.

При тепловой нагрузке, не превышающей базовую, станция работает полностью по отопительному графику (АТЭЦ=1). Если тепловая нагрузка превышает базовую, включается пиковый котел. Потребное количество электроэнергии поступает от внешних источников генерации по городским электрическим сетям.

Однако возможны ситуации, когда потребность в электроэнергии превышает объем ее подачи от внешних источников: в морозные дни при росте потребления электроэнергии бытовыми нагревательными приборами; при авариях на генерирующих мощностях и в электрических сетях. В таких ситуациях величина мощности газовых турбин при традиционном подходе тесно привязана к производительности котла- утилизатора, которая в свою очередь диктуется потребностью в тепловой энергии в соответствии с отопительным графиком и может оказаться недостаточной для удовлетворения возросшего спроса на электроэнергию.

Чтобы покрыть возникший дефицит электроэнергии, газовая турбина переключается частично на сброс отработанных продуктов сгорания помимо котла-утилизатора непосредственно в атмосферу. Таким образом, ПГУ ТЭЦ переводится временно в смешанный режим - с парогазовым и газотурбинным циклами.

Известно, что газотурбинные установки обладают высокой маневренностью (скорости набора и сброса электрической мощности). Поэтому еще в советское время их предполагалось наряду с гидроаккумулирующими станциями использовать для сглаживания режима электроснабжения.

Кроме того, надо отметить, что развиваемая ими мощность увеличивается с понижением температуры наружного воздуха и именно при низких температурах в самое холодное время года наблюдается максимум электропотребления. Это показано в таблице .

При достижении мощности, составляющей более 60% от расчетной величины, выбросы вредных газов NOx и CO минимальны (рис. 3).

В межотопительный период, чтобы не допустить снижения мощности газовых турбин более чем на 40%, одна из них отключается.

Повышение энергетической эффективности ТЭЦ может быть достигнуто за счет централизованного холодоснабжения городских микрорайонов . При аварийных ситуациях на ПГУ ТЭЦ целесообразно в отдельных зданиях строить газотурбинные установки малой мощности .

В районах плотной городской застройки крупных городов при реконструкции существующих ТЭЦ с паровыми турбинами, выработавшими свой ресурс, целесообразно создавать на их базе ПГУ ТЭЦ с турбинами типа Р. В результате высвобождаются значительные площади, занятые системой охлаждения (градирни и др.), которые могут быть использованы для других целей.

Сопоставление ПГУ ТЭЦ с турбинами с противодавлением (типа Р) и ПГУ ТЭЦ с конденсационно-отборными турбинами (типа Т) позволяет сделать следующие выводы.

  • 1. И в том, и в другом варианте коэффициент полезного использования топлива зависит от доли выработки электроэнергии на базе теплового потребления в общем объеме генерации.
  • 2. В ПГУ ТЭЦ с турбинами типа Т потери тепловой энергии в контуре охлаждения конденсата имеют место в течение всего года; наибольшие потери - в летний период, когда размер теплового потребления ограничен только горячим водоснабжением.
  • 3. В ПГУ ТЭЦ с турбинами типа Р КПД станции снижается только в ограниченный промежуток времени, когда необходимо покрыть возникший дефицит в электроснабжении.
  • 4. Маневренные характеристики (скорости набора и сброса нагрузки) газовых турбин многократно выше характеристик паровых турбин.

Таким образом, для условий строительства станций в центрах больших городов ПГУ ТЭЦ с противодавленческими турбинами (типа Р) превосходят парогазовые ТЭЦ с конденсационноотборными турбинами (типа Т) по всем показателям. Для их размещения требуется значительно меньшая территория, они более экономично расходуют топливо и их вредное воздействие на окружающую среду также меньше.

Однако, для этого необходимо внести соответствующие изменения в нормативную базу по проектированию парогазовых станций.

Практика последних лет показывает, что инвесторами, сооружающими загородные ПГУ ТЭЦ и на достаточно свободных территориях, приоритет отдается выработке электроэнергии, а отпуск тепла рассматривается ими как побочный вид деятельности. Объясняется это тем, что КПД станций даже в конденсационном режиме может достигать 60%, а сооружение теплотрасс требует дополнительных затрат и многочисленных согласований с разными структурами. В итоге коэффициент теплофикации АТЭЦ может быть меньше 0,3.

Поэтому при проектировании ПГУ ТЭЦ нецелесообразно для каждой отдельной станции закладывать в техническом решении оптимальное значение АТЭЦ. Задача заключается в нахождении оптимальной доли теплофикации в системе теплоснабжения всего города.

Сейчас вновь стала актуальной разработанная в советское время концепция строительства мощных ТЭЦ в местах добычи топлива, вдали от больших городов. Это диктуется как увеличением доли использования местных видов топлива в ТЭК регионов, так и созданием новых конструкций теплопроводов (воздушная прокладка) с практически ничтожным падением температурного потенциала при транспортировке теплоносителя.

Подобные ТЭЦ могут создаваться как на основе паротурбинного цикла с непосредственным сжиганием местного топлива, так и парогазового цикла с использованием газа, получаемого на газогенераторных установках.


Cтраница 1


Парогазовые электростанции представляют собой комбинацию паротурбинных и газотурбинных установок. Это позволяет повысить КПД и снизить удельные капитальные затраты.  

На рис. 27 - 6 6 показана перспективная парогазовая электростанция с высоконапорным парогенератором ЦКТИ. Воздух для горения подается в топку парогенератора компрессором газотурбинной установки. В газовую турбину подводятся газы, уходящие под избыточным давлением из парогенератора. Пар из парогенератора подается в паровую турбину. Такая схема характерна для установок с котлами типа Велокс. В обоих случаях газотурбинные установки самостоятельных камер сгорания не имеют, их заменяет топочная камера высоконапорного парогенератора. Топливом должен служить газ или мазут.  

Схема ГТУ с турбиной ГТ-100-750.  

Электростанции, сочетающие в одной общей тепловой схеме паротурбинные и парогазовые установки, называют парогазовыми электростанциями. Тепловая экономичность таких электростанций заметно выше обычных ТЭС и ГТУ.  

В аннотации записано: В книге представлен термодинамический анализ циклов и изложены методы технико-экономических расчетов оптимальных параметров тепловых схем парогазовых электростанций большой мощности. Эта обстоятельная по своему содержанию и методической отработанности книга является хорошим пособием при изучении термодинамической теории парогазовых установок и их проектировании.  

Создание подогревателя высокого давления принципиальных трудностей не представляет, л ак как подобные аппараты (парогенераторы высокого давления) уже внедрены в промышленность и используются на парогазовых электростанциях. Подогреватель под давлением может быть заменен обычным и установлена газовая турбина со стандартной камерой сгорания. При этом тепловая экономичность установки несколько снизится, но останется достаточно высокой.  


В результате оказывается возможным расположение основного оборудования электростанции в одном помещении - машинном зале. Главный корпус запроектированных отечественных парогазовых электростанций обычно предусматривается двухпролетным, состоящим из параллельно расположенных помещений: машинного зала, в котором поперек его оси устанавливаются паровые и газовые турбогенераторы, а также парогенераторы; трехэтажной деаэра-торной этажерки, где размещаются деаэраторы, тепловой щит и распределительное устройство собственного расхода; к деаэратор ной этажерке примыкают установленные вне помещения водяные экономайзеры.  

В этой главе, называемой Основы термодинамического расчета циклов парогазовых электростанций, рассматриваются следующие вопросы: рациональное построение циклов парогазовых установок; сравнение термодинамической эффективности различных схем парогазовых установок; расчеты оптимальных параметров газовой части цикла; выбор параметров паровой части цикла; рациональные циклы и схемы теплофикационных парогазовых установок.  

Сочетание паротурбинной и газотурбинной установок, объединяемых общим технологическим циклом, называют парогазовой установкой (ПГУ) электростанции. Соединение этих установок в единое целое позволяет снизить потерю теплоты с уходящими газами ГТУ или парового котла, использовать газы за газовыми турбинами в качестве подогретого окислителя при сжигании топлива, получить дополнительную мощность за счет частичного вытеснения регенерации паротурбинных установок и в конечном итоге повысить КПД парогазовой электростанции по сравнению с паротурбинной и газотурбинной электростанциями.  

Китая и во внутренних районах Кореи. Еще более явно эффективность российского природного газа проявляется при его сопоставлении с углем. Даже в электроэнергетике (где потребительский эффект от использования газа взамен угля меньше, чем в технологических процессах промышленности и особенно в быту) сооружение новой парогазовой электростанции на российском газе даст, например, в районе Пекина или Харбина чистую прибыль в размере 20 - 30 долл / тыс. м по сравнению со строительством экономически чистой электростанции на местных углях.  

Газотурбинные установки применяют в основном на электростанциях, использующих газ и мазут. Особенно значительны потери тепла ГТУ с отработавшим газом турбин. Применение газотурбинных установок становится экономичным на крупных тепловых электростанциях в сочетании с мощными паротурбинными блоками. Тепловую электростанцию с паротурбинными и газотурбинными агрегатами, характеризующуюся общей тепловой схемой и совместным использованием тепловых потоков, называют парогазовой электростанцией.  

Повышенные начальные температуры газа Гнт в ГТ уменьшают срок службы оборудования, расположенного в зоне высоких температур, и, наоборот, пониженные температуры его увеличивают. Такая зависимость дает возможность уравновешивать негативное воздействие режимов пиковой нагрузки изменением продолжительности периодов работы на частичной нагрузке. Однако следует обратить внимание на тот факт, что снижение нагрузки не всегда приводит к снижению начальной температуры газов. При работе ГТУ в схеме ПГУ (режим утилизации теплоты), когда от мощности паротурбинной установки зависит общий КПД парогазовой электростанции, понижение нагрузки осуществляется постепенным закрытием ВНА.  

Страницы:      1

Введение

Парогазовые установки

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций

Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ

Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика

Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей

Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики

Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»

Повышение эксплуатационных характеристик энергетических установок

Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т

Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

Введение

В любой стране энергетика является базовой отраслью экономики, стратегически важной для государства. От её состояния и развития зависят соответствующие темпы роста других отраслей хозяйства, стабильность их работы и энерговооруженность. Энергетика создает предпосылки для применения новых технологий, обеспечивает наряду с другими факторами современный уровень жизни населения. На независимости страны от внешних, импортируемых энергоресурсов, также как и на развитом оборонном вооруженном комплексе основывается высокая позиция государства на международной политической арене.

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации. Современная техника пока не позволяет создать более или менее мощные установки для получения электричества непосредственно из тепла. Все установки такого типа пока могут работать или только кратковременно, или при крайне малых мощностях, или при низких кпд, или зависят от временных факторов, таких как погодные условия, время суток, и т.п. В любом случае они не могут гарантировать достаточную стабильность в энергоснабжении страны.

Поэтому на тепловых электростанциях нельзя обойтись без тепловых двигателей. Перспективное направлении развития энергетики связано с газотурбинными (ГТУ) и парогазовыми (ПГУ) энергетическими установками тепловых электростанций. Эти установки имеют особые конструкции основного и вспомогательного оборудования, режимы работы и управление. ПГУ на природном газе – единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с электрическим кпд более 58% .

В энергетике реализован ряд тепловых схем ПГУ, имеющих свои особенности и различия в технологическом процессе. Происходит постоянная оптимизация как самих схем, так и улучшение технических характеристик её узлов и элементов. Основными показателями, характеризующими качество работы энергетической установки, являются её производительность (или кпд) и надёжность.

В этой работе особое внимание уделяется практической стороне вопроса, т.е. на сколько выгодно с экономической и экологической точки зрения использование ПГУ в энергетике.

Парогазовые установки ( ГОСТ 27240-87)

Парогазовые установки (в англоязычном мире используется название combined-cycle power plant) - сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной (ГТУ) и паросиловой (ПС) установок. В ГТУ вращение вала турбины обеспечивается образовавшимися в результате сжигания природного газа, мазута или солярки продуктами горения - газами. Образовавшиеся в камере сгорания газотурбинной установки продукты горения вращают ротор турбины, а та, в свою очередь, крутит вал первого генератора.

В первом, газотурбинном, цикле КПД редко превышает 38%. Отработавшие в ГТУ, но все еще сохраняющие высокую температуру продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры и давления (500 градусов по Цельсию и 80 атмосфер), достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором, паросиловом, цикле используется еще около 20% энергии сгоревшего топлива. В сумме КПД всей установки оказывается около 58%. Существуют и некоторые другие типы комбинированных ПГУ, но погоды в современной энергетике они не делают. Как правило, такие системы используются генерирующими компаниями в случае, когда необходимо максимизировать производство электрической энергии. Когенерация в этом случае играет подчиненную роль и обеспечивается за счет отвода части тепла из паровой турбины. Паровые энергоблоки хорошо освоены. Они надежны и долговечны. Их единичная мощность достигает 800-1200 МВт, а коэффициент полезного действия (КПД), представляющий собой отношение произведенной электроэнергии к теплотворности использованного топлива, составляет до 40-41%, а на наиболее совершенных электростанциях за рубежом - 45-48%. Также уже длительное время в энергетике используются газотурбинные установки (ГТУ). Это двигатель совершенно иного типа. В ГТУ атмосферный воздух сжимается до 15-20 атмосфер, в нем топливо сжигается с образованием высокотемпературных (1200-1500 °С) продуктов сгорания, которые расширяются в турбине до атмосферного давления. Вследствие более высокой температуры турбина развивает примерно вдвое большую мощность, чем необходимо для вращения компрессора. Избыток ее используется для привода электрического генератора. За рубежом эксплуатируются ГТУ единичной мощностью 260-280 МВт с КПД 36-38%. Температура отработавших в них газов составляет 550-620 °С. Вследствие принципиальной простоты цикла и схемы стоимость газотурбинных установок существенно ниже, чем паровых. Они занимают меньше места, не нуждаются в охлаждении водой, быстро запускаются и изменяют режимы работы. ГТУ легче обслуживать и полностью автоматизировать.

Так как рабочей средой газовых турбин являются продукты сгорания, сохранять работоспособность деталей, которые омываются ими, можно, только используя чистые виды топлива: природный газ или жидкие дистилляты

ГТУ быстро развиваются, с повышением параметров, единичной мощности и КПД. За рубежом они освоены и эксплуатируются с такими же показателями надежности, как и паровые энергоблоки.

Разумеется, тепло отработавших в ГТУ газов может быть использовано. Проще всего это сделать путем подогрева воды для отопления или выработки технологического пара. Количество произведенного тепла оказывается несколько больше, чем количество электроэнергии, а общий коэффициент использования тепла топлива может достигать 85-90%.

Есть и другая, еще более привлекательная, возможность заставить это тепло работать. Из термодинамики известно, что КПД наиболее совершенного цикла теплового двигателя (его придумал Карно почти 200 лет назад) пропорционально отношению температур подвода и отвода тепла. В ГТУ подвод тепла происходит в процессе сгорания. Температура образующихся продуктов, которые являются рабочей средой турбин, не ограничивается стенкой (как в котле), через которую необходимо передавать тепло, и может быть существенно выше. Освоено охлаждение омываемых горячими газами деталей, позволяющее поддерживать их температуры на допустимом уровне.

В паровых энергоустановках температура перегретого пара не может превышать допустимую для металла труб котельных пароперегревателей и таких неохлаждаемых узлов, как паропроводы, коллекторы, арматура, - она составляет сейчас 540-565 °С, а в самых современных установках - 600-620 °С. Зато отвод тепла в конденсаторах паровых турбин осуществляется циркуляционной водой при температурах, близких к температуре окружающей среды.

Указанные особенности позволяют существенно повысить КПД производства электроэнергии путем объединения в одной парогазовой установке (ПГУ) высокотемпературного подвода (в ГТУ) и низкотемпературного отвода тепла (в конденсаторе паровой турбины). Для этого отработавшие в турбине газы подаются в котел-утилизатор, где генерируется и перегревается пар, поступающий затем в паровую турбину. Вращаемый ею электрический генератор при неизменном расходе топлива в камере сгорания ГТУ увеличивает выработку электроэнергии в 1,5 раза. В итоге КПД лучших современных ПГУ составляет 55-58%. Такие ПГУ называют бинарными потому, что в них осуществляется двойной термодинамический цикл: пар в котле-утилизаторе и работа паровой турбины производятся за счет тепла, подведенного в камере сгорания ГТУ и уже отработавшего в верхнем газотурбинном цикле.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые.

Привлекательными особенностями таких ПГУ, помимо высоких КПД, являются умеренная удельная стоимость (в 1,5-2 раза ниже, чем у паровых энергоблоков близкой мощности), возможность сооружения за короткое (два года) время, вдвое меньшая потребность в охлаждающей воде, хорошая маневренность.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые. При техническом перевооружении электростанций возможны два варианта создания бинарных ПГУ.

Мы уже рассказывали о том почему в России будет происходить революция в энергетике связанная с внедрением ПГУ.

Головной проектный институт энергетической отрасли - ОАО “Институт теплоэлектропроект (ТЭП) в Москве - так определил приоритеты в намечаемом крупномасштабном применении парогазовых технологий в России на ближайшие 15-20 лет:

Парогазовые установки (ПГУ) утилизационного типа с КПД более 50 % - ввести до 60 млн. кВт с блоками ПГУ-325, ПГУ-480 и ПГУ-650 (более 100 блоков);

ПГУ по схеме сброса газов газотурбинной установки (ГТУ) в энергетические котлы с КПД до 44-46 % - ввести около 18 млн. кВт с блоками ПГУ-220, ПГУ-260, ПГУ-360 и П ГУ-430 (более 50 блоков);

ПГУ по схеме с вытеснением регенерации с КПД до 42-43 % - ввести около 2 млн. кВт с ГТУ единичной мощностью 23-45 МВт (несколько десятков блоков).

Расчет ведется на газ

При этом имелось в виду, что ос­новным топливом в теплоэнергетике России на ближайшие де­сятилетия будет природный газ.

Положенные в основу выбора таких приоритетов технико-экономические расчеты показали снижение капитальных затрат по сравнению с традиционными паросиловыми установками (ПСУ) на 30 % для первой группы и на 7-8 % для второй и третьей групп. Увеличение капиталь­ных затрат при обеспечении одной и той же требуемой мощно­сти может быт компенсировано практически только за счет эко­номии топлива.

Поскольку ПГУ значительно превосходят ПСУ по эффективности сжигания топлива, то сейчас и на обозри­мую перспективу, когда топливо будет дорожать (приближать­ся к мировому уровню цен), преимущество ПГУ по сравнению с ПСУ будет только очевидней.

Читайте также: Технические особенности при выборе парогазовой установки для ТЭЦ

Для справки: за рубежом современные цены на природ­ный газ находятся в основном в пределах 40-80 дол. США за 1000 м 3 (0,04-0,08 дол. США за м 3), в России - в пределах 20-35 дол. США за 1000 м 3 (0,012-0,018 дол. США за м 3).

Оставляем паровые турбины и пристраиваем газовые

Надстройка существующих паросиловых блоков газотур­бинными приставками повышает мощность и КПД при удель­ных затратах, в 3-4 раза меньших, чем при строительстве но­вых бинарных ПГУ аналогичной мощности, а также улучшает экологические показатели и может представлять некоторый ин­терес для потенциальных инвесторов.

Появившиеся в России в последнее десятилетие газовые тур­бины большой мощности - ГТУ-110, ГТЭ-160- открывают перспективу широкого внедрения установок комбинированного цик­ла в большую энергетику.

Иностранные ПГУ в Москве

Вместе с тем ряд фирм пока отдает предпочтение отработанным и высокоэффективным зарубежным ГТУ. Так, например, в ноябре 2001 года компанией “Сити-Энерго” заключен контракт с фирмой Alstom на поставку в Москву ПГУ-ТЭЦ мощностью 225 МВт. Она будет расположена в центре Москвы и предназначена для обеспечения электроэнергией и теплом стро­ящегося Московского делового центра “Москва-Сити”. Строитель­ство установки в центре столицы стало возможным благодаря вы­соким экологическим характеристикам газовых турбин GTX100.

ГТУ для Сургутнефтегаз

В 2001 году газотурбинные электростанции были постав­лены в АО “Сургутнефтегаз” (на базе газовых турбин Tornado 6,75 и ГТУ-4П), в ОАО НК “Юкос” и на Северо-Губкинское нефтегазовое месторождение.

Нужны длинные деньги

В современных российских условиях главной причиной, за­держивающей развитие энергетики и других отраслей эконо­мики, является недостаточность или полное отсутствие инве­стиций.

Государственный и региональные бюджеты не имеют средств для крупномасштабных вложений в энергетику. Для частных структур вложения в проекты со сроками окупаемос­ти 8-10 лет и более равносильны безвозвратным ссудам.



Доверенности