Что такое электроэнергетика. Генерация электрической энергии. Год выполнения плана гоэлро

Электроэнергетика занимается производством и передачей электроэнергии и является одной из базовых отраслей тяжелой промышленности.

По производству электроэнергии Россия находится на 2-м месте в мире после США, но разрыв по этому показателю между нашими странами весьма значителен (в 1992 г.

В России было произведено 976 млрд кВт?ч электроэнергии, а в США - более 3000, т. е. более чем втрое.

В последние пятьдесят лет электроэнергетика была в нашей стране одной из наиболее динамично развивающихся отраслей, она опережала по темпам развития как промышленность в целом, так и тяжелую индустрию. Однако последние годы характеризовались снижением темпов увеличения производства электроэнергии, а в 1991 году впервые произошло уменьшение абсолютных показателей производства (табл. 3.1).

Таблица 3.1. Производство электроэнергии в России, млрд кВт-ч.*

* Из кн.: Российский статистический ежегодник. - М., 1997. - С. 344.

В настоящее время электроэнергетика России находится в глубоком кризисе. Ежегодный ввод мощностей снизился до уровня 1950-х гг., более половины электроэнергетического оборудования устарело, нуждается в реконструкции, а часть - в немедленной замене. Резкое сокращение резервов мощностей приводит к сложному положению со снабжением электроэнергией в ряде регионов (особенно на Северном Кавказе, Дальнем Востоке).

Основная часть электроэнергии, производимой в России, 1 используется промышленностью - 60% (в США соответственно 39,5), причем большую часть потребляет тяжелая индустрия - машиностроение, металлургии, химическая, лесная, 9% электрической энергии потребляется в сельском хозяйстве (в США - 4,2), 9,7% - транспортом (в США - 0,2%), 13,5% - другими отраслями - сфера обслуживания и быта, реклама и пр. (в США это основная сфера потребления электроэнергии - 44,5%). Часть производимой электроэнергии идет на экспорт. Потери электроэнергии в России составляют около 8% ее производства (в США - 11,6%).

Отличительная особенность экономики России (так же и ранее СССР) - более высокая по сравнению с развитым: странами удельная энергоемкость производимого национального дохода (почти в полтора раза выше, чем в США), поэтому необходимо широко внедрять энергосберегающие технологии и технику. Тем не менее даже в условиях снижения энергоемкости ВНП спецификой развития производства энергии является постоянно возрастающая потребность в ней производственной и социальной сферы. Важную роль электроэнергетика играет в условиях перехода к рыночной экономике, от ее развития во многом зависит выход из экономического кризиса, решение социальных проблем. На решение социальных задач в 1991-2000 гг. пойдет свыше 50% прироста потребления электроэнергии, а в 2000-2010 гг. - почти 60%.

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и по размерам (разумеется, с учетом потерь), и во времени. Существуют устойчивые межрайонные связи по ввозу и вывозу электроэнергии: электроэнергетика является отраслью специализации Поволжского и Восточно-Сибирского крупных экономических районов. Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоемкие и теплоемкие производства (выплавка алюминия, титана, ферросплавов, производство химических волокон и др.). Например, Саянский ТПК (на базе Саяно-Шушенской ГЭС) - электрометаллургия: сооружается Саянский алюминиевый завод, завод по обработке цветных металлов, строится молибденовый комбинат, в перспективе намечается строительство электрометаллургического комбината.

В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Представить без электроэнергии наш быт также невозможно. Столь широкое распространение объясняется ее специфическими свойствами:

· возможности превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и т.п.);

· способности относительно просто передаваться на значительные расстояния в больших количествах;

· огромным скоростям протекания электромагнитных процессов;

· способности к дроблению энергии и образование ее параметров (изменение напряжения, частоты).

В промышленности электрическая энергия применяется для приведения в действие различных механизмов и непосредственно в технологических процессах. Работа современных средств связи (телеграфа, телефона, радио, телевидения) основана на применении электроэнергии. Без нее невозможно было бы развитие кибернетики, вычислительной техники, космической техники.

В сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и др.) были созданы благодаря развитию электротехнической промышленности.

Электроэнергетика - важнейшая часть жизнедеятельности человека. Уровень ее развития отражает уровень развития производительных сил общества и возможности научно-технического прогресса.

Становление электроэнергетики России связано с планом ГОЭЛРО (1920 г.) План ГОЭЛРО, рассчитанный на 10-15 лет, предусматривал строительство 10 гидроэлектростанций и 20 паровых электростанций суммарной мощностью 1,5 млн кВт. Фактически план был реализован за 10 лет - к 1931 году, а к концу 1935 г. вместо 30 электростанций были построены 40 районных электростанций, в том числе Свирская и Волховская гидроэлектростанции, Шатурская ГРЭС на торфе и Каширская ГРЭС на подмосковных углях.

Основу плана составили:

· широкое использование на электростанциях местных топливных ресурсов;

· создание высоковольтных электрических сетей, объединяющих мощные станции;

· экономическое использование топлива, достигаемое параллельной работой ТЭС и ГЭС;

· сооружение ГЭС в первую очередь в районах, бедных органическим топливом.

План ГОЭЛРО создал базу индустриализации России. В 1920-е годы наша страна занимала одно из последних мест по выработке энергии, а уже в конце 1940-х годов она заняла первое место в Европе и второе в мире.

Развитие и размещение основных типов электростанций в России. В последующие годы электроэнергетика развивалась быстрыми темпами, строились линии электропередач (ЛЭП). Одновременно с гидравлическими и тепловыми электростанциями стала развиваться атомная энергетика.

Тепловые электростанции (ТЭС). Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн кВт) ГРЭС - государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

На размещение тепловых электростанция оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива. Тепловые электростанции, использующие местные виды топлива (торф, сланцы, низкокалорийные и многозольные угли), ориентируются на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Что же касается тепловых электростанций, работающих на мазуте, то они располагаются преимущественно в центрах нефтеперерабатывающей промышленности. В табл. 3.2 приводятся характеристики крупнейших ГРЭС.

Таблица 3.2. ГРЭС мощностью более 2 млн кВт

Крупными тепловыми электростанциями являются ГРЭС на углях Канско-Ачинского бассейна, Березовская ГРЭС-1 и ГРЭС-2. Сургутская ГРЭС-2, Уренгойская ГРЭС (работает на газе).

На базе Канско-Ачинского бассейна создается мощный территориально-производственный комплекс. Проект ТПК предполагал создание на территории около 10 тыс. км2 вокруг Красноярска 10 уникальных сверхмощных ГРЭС по 6,4 млн кВт. В настоящее время число запланированных ГРЭС уменьшено пока до 8 (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах).

На данный момент начато сооружение только 1-й очереди ТПК. В 1989 г. был введен в эксплуатацию 1-й агрегат Березовской ГРЭС-1 мощностью 800 тыс. кВт и уже решен вопрос о строительстве ГРЭС-2 и ГРЭС-3 такой же мощности (на расстоянии всего 9 км друг от друга).

Преимущества тепловых электростанций по сравнению с другими типами электростанций заключаются в следующем: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний (в отличие от ГРЭС).

К недостаткам относятся: использование невозобновимых топливных ресурсов; низкий КПД, крайне неблагоприятное воздействие на окружающую среду.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрида; они поглощают огромное количество кислорода воздуха. К настоящему времени установлено, что и радиоактивная обстановка вокруг тепловых электростанций, работающих на угле, в среднем (в мире) в 100 раз выше, чем вблизи АЭС такой же мощности (так как обычный уголь в качестве микропримесей почти всегда содержит уран-238, торий-232 и радиоактивный изотоп углерода). ТЭС нашей страны в отличие от зарубежных до сих пор не оснащены сколь-либо эффективными системами очистки уходящих газов от оксидов серы и азота. Правда, ТЭС на природном газе существенно экологически чище угольных, мазутных и сланцевых, но огромный экологический вред наносит природе прокладка газопроводов, особенно в северных районах.

Несмотря на отмеченные недостатки, в ближайшей перспективе (до 2000 года) доля ТЭС в приросте производства электроэнергии должна составить 78-88% (так как прирост производства на АЭС в связи с повышением требований и их безопасности в лучшем случае будет весьма незначительным, сооружение ГЭС будет ограничиваться возведением плотин главным образом в условиях с минимальными площадями затопления).

Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута. В ближайшей перспективе планируется увеличение доли газа в топливном балансе электростанций западных районов, в регионах со сложной экологической обстановкой, особенно в крупных городах. Тепловые электростанции восточных районов будут базироваться в основном на угле, прежде всего дешевом угле открытой добычи Канско-Ачинского бассейна.

Гидравлические электростанции (ГЭС). На втором месте по количеству вырабатываемой электроэнергии находится ГЭС (в 1991 г. - 16,5%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, обладают простотой управления (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД (более 80%). В результате производимая на ГЭС энергия самая дешевая. Огромное достоинство ГЭС - высокая маневренность, т. е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных "пиковых" электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

Но строительство ГЭС требует больших сроков и больших удельных капиталовложений, ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период времени, причем только в многоводные годы. Поэтому несмотря на обеспеченность России гидроэнергетическими ресурсами гидроэнергетика не может служит основой выработки электроэнергии в стране.

Наиболее мощные ГЭС построены в Сибири, где осваиваются гидроресурсы наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны (табл. 3.3).

Таблица 3.3. ГЭС мощностью более 2 млн кВт

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - это группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы; ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для создания нормального судоходства и орошения это необходимо.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре, строится Богучанская ГЭС (4 млн кВт).

В европейской части страны создан крупный каскад ГЭС на Волге: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская им. В.И. Ленина, Саратовская, Волжская.

Весьма перспективным является строительство гидроаккумулирующих электростанций - ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность в электроэнергии, мала вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой ночью электростанциями. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ГЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС (а также ПГУ, ГТУ). Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (2,6 млн кВт).

Атомные электростанции. Доля АЭС в суммарной выработке электроэнергии - около 12% (в США - 19,6%, в Великобритании - 18,9, в ФРГ - 34%, в Бельгии - 65%, во Франции - свыше 76%). Планировалось, что удельный вес АЭС в производстве электроэнергии достигнет в СССР в 1990 г. 20%, фактически было достигнуто только 12,3%. Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только 4 энергоблока.

В настоящее время ситуация меняется, правительством было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт (табл. 3.4). Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

Таблица 3.4. Мощность действующих АЭС

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта.

Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий.

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

2. Катастрофические последствия аварий на наших АЭС - вследствие несовершенной системы защиты.

3. Тепловое загрязнение используемых АЭС водоемов. Функционирование АЭС как объектов повышенной опасности требует участия государственных органов власти и управления в формировании направлений развития, выделении необходимых средств.

Все большее внимание в перспективе будет уделяться использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла земли, морских приливов. Уже построены опытные электростанции на этих нетрадиционных источниках энергии: на приливных волнах на Кольском полуострове Кислогубская и Мезенская, на термальных водах Камчатки - электростанции близ реки Паужетки и др. Ветровые энергоустановки в жилых поселках Крайнего Севера мощностью до 4 кВт используются для защиты от коррозии магистральных газо- и нефтепроводов, на морских промыслах. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса.

Для более экономичного, рационального и комплексного использования общего потенциала электростанции нашей страны создана Единая энергетическая система (ЕЭС), в которой работают свыше 700 крупных электростанций, имеющих общую мощность свыше 250 млн кВт (т. е. 84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра, оснащенного электронно-вычислительной техникой.

Экономические преимущества Единой энергосистемы очевидны. Мощные линии электропередачи значительно повышают надежность снабжения электроэнергией народного хозяйства, выращивают суточные и годовые графики потребления электроэнергии, улучшают экономические показатели станций, создают условия для полной электрификации районов, еще испытывающих недостаток в электроэнергии. В состав ЕЭС на территории бывшего СССР входят многочисленные электростанции, которые работают параллельно в едином режиме, сосредоточивая 4/5 суммарной мощности электростанций страны. ЕЭС распространяет свое влияние на территорию свыше 10 млн км2 с населением около 220 млн чел. Всего в стране насчитывается примерно 100 районных энергосистем. Они образуют 11 объединенных энергетических систем. Самые крупные из них - Южная, Центральная, Сибирская, Уральская.

ОЭС Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа и Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВт), Самара - Челябинск, Волгоград - Москва (500 кВт), Волгоград - Донбасс (800 кВт), Москва - Санкт-Петербург (750 кВт) и др.

Сегодня в условиях перехода к рынку ознакомление с опытом координации деятельности и конкуренции различных собственников в электроэнергетическом секторе западных стран может быть полезным для выбора наиболее рациональных принципов совместной работы собственников элекгроэнергетических объектов, функционирующих в составе Единой энергосистемы.

Создан координационный орган - Электроэнергетический совет стран СНГ. Разработаны и согласованы принципы совместной работы объединенных энергосистем СНГ.

Развитие электроэнергетического хозяйства в современных условиях должно учитывать следующие принципы:

· вести строительство экологически чистых электростанций и переводить ТЭС на более чистое топливо - природный газ;

· создавать ТЭЦ для теплофикации отраслей промышленности, сельского хозяйства и коммунального хозяйства, что обеспечивает экономию топлива и вдвое увеличивает КПД электростанций;

· строить небольшие по мощности электростанции с учетом потребностей в электроэнергии крупных регионов;

· объединять различные типы электростанций в единую энергосистему;

· сооружать гидроаккумулирующие станции на малых реках, особенно в остродефицитных по энергии районах России;

· использовать в получении электрической энергии нетрадиционные виды топлива, энергии ветра, солнца, морских приливов, геотермальных вод и т.д.

Необходимость разработки новой энергетической политики России определяется рядом объективных факторов:

· распадом СССР и становлением Российской Федерации как подлинно суверенного государства;

· коренными изменениями социально-политического устройства, экономического и геополитического положения страны, принятым курсом на ее интеграцию в мировую экономическую систему;

· принципиальным расширением прав субъектов Федерации - республик, краев, областей и т.д.;

· коренным изменением отношений между органами государственного управления и хозяйственно самостоятельными предприятиями, быстрым ростом независимых коммерческих структур;

· глубоким кризисом экономики и энергетики страны, в преодолении которого энергетика может сыграть важную роль;

· переориентацией топливно-энергетического комплекса на приоритетное решение социальных задач общества, возросшими требованиями охраны окружающей среды.

В отличие от прежних энергетических программ, создававшихся в рамках планово-административной системы управления и определявших непосредственно объемы производства энергоресурсов и выделяемые для этого ресурсы, новая энергетическая политика имеет совершенно иное содержание.

Основными инструментами новой энергетической политики должны стать:

· приведение одновременно с конвертируемостью рубля цен на энергоносители в соответствии с мировыми ценами с постепенным сглаживанием скачков цен на внутреннем рынке;

· акционирование предприятий топливно-энергетического комплекса с привлечением денежных средств населения, зарубежных инвесторов и отечественных коммерческих структур;

· поддержка независимых производителей энергоносителей, прежде всего ориентированных на использование местных и возобновляемых энергетических ресурсов.

Приняты законодательные акты для энергетического комплекса, основными целями которых являются:

1. Сохранение целостности электроэнергетического комплекса и ЕЭС России.

2. Организация конкурентоспособного рынка электроэнергии как инструмента стабилизации цен на энергию и повышения эффективности электроэнергетики.

3. Расширение возможностей привлечения инвестиций на развитие Единой энергетической системы России и региональных энергетических компаний.

4. Повышение роли субъектов Федерации (областей, краев, автономий) в управлении развитием ЕЭС Российской Федерации.

В перспективе Россия должна отказаться от строительства новых и крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС.

Новые ТЭЦ будут строиться на газе и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС.

Важным аспектом расширения рынка энергоносителей является возможность увеличения экспорта топлива и энергии из России.

Основу энергетической стратегии России составляют следующие три главные цели:

1. Сдерживание инфляции путем наличия больших запасов энергоресурсов, которые должны дать внутреннее и внешнее финансирование страны.

2. Обеспечение достойной роли энергии как фактора роста производительности труда и улучшения жизни населения.

3. Снижение техногенной нагрузки топливно-энергетического комплекса на окружающую среду.

Высшим приоритетом энергетической стратегии является повышение эффективности энергопотребления и энергосбережения.

На период становления и развития рыночных отношений выработана структурная политика в области энергетики и топливной промышленности на ближайшие 10-15 лет. Она предусматривает:

· повышение эффективности использования природного газа и его доли во внутреннем потреблении и в экспорте;

· увеличение глубокой переработки и комплексного использования углеводородного сырья;

· повышение качества углепродуктов, стабилизация и наращивание объемов угледобычи (в основном открытым способом) по мере освоения экологически приемлемых технологий его использования;

· преодоление спада и умеренный рост добычи нефти.

· интенсификацию местных энергоресурсов гидроэнергии, торфа, значительное увеличение использования возобновляемых энергоресурсов - солнечной, ветровой, геотермической энергии, шахтного метана, биогаза и т. д.;

· повышение надежности АЭС. Освоение предельно безопасных и экономических новых реакторов, в том числе и малой мощности.

Электроэнергетика объединяет все процессы производства, передачи, трансформации и потребления электроэнергии. Она решающим образом влияет на уровень развития НТП в стране, а также на территориальную организацию народного хозяйства.

Россия занимает второе место в мире по производству электроэнергии (786,9 млрд. кВт/ч в 1997 г.), однако показатель выработки электроэнергии на душу населения пока еще ниже, чем в развитых странах. Электроэнергетика наряду с газовой промышленностью принадлежит к отраслям ТЭК, сохранившим стабильность развития.

На размещение предприятий электроэнергетики, в основном, влияют два фактора: наличие топливно-энергетической базы и потребителей энергии. Раньше 9/10 всей электроэнергии в стране производилось в европейской части России, в настоящее время наметился сдвиг в размещении отрасли на восток.

В структуре производства электроэнергии более 70% приходится на ТЭС, 20% - на ГЭС, около 10% - на АЭС.

Основными в составе электроэнергетики являются тепловые станции (ТЭС). Они дают свыше 2/3 электроэнергии. Это связано с тем, что Россия обладает большими и разнообразными запасами топливных ресурсов, ТЭС можно размещать непосредственно вблизи потребителя.

Тепловые станции России работают на угле, мазуте, природном газе, сланцах, торфе, используют внутреннюю энергию Земли.

Теплоэлектростанции на традиционных видах топлива (угле, газе, мазуте, торфе) могут быть двух видов: конденсационные (когда прошедший через турбину отработанный пар охлаждается, конденсируется и вновь поступает в котел) и теплоэлектроцентрали (ТЭЦ). В последних отработанный пар затем используется для отопления. ТЭЦ строят обычно в крупных городах, поскольку передача пара или горячей воды пока возможна на расстоянии не более 20 км.

Конденсационные электростанции, обслуживающие большие территории, называют государственными районными электростанциями (ГРЭС). Именно на них вырабатывается большая часть электроэнергии.

В электроэнергетике сложилась тенденция строительства мощных ТЭС. Самые крупные из них (мощностью свыше 2 млн. кВт) - Костромская и Конаковская (в Центральном районе), Рефтинская и Троицкая (на Урале), Киришская (в Северо-Западном районе), Заинская (в Поволжье), Сургутская и Нижневартовская, Березовская, Назаровская, Не-рюнгринская (в Сибири и на Дальнем Востоке).

Россия обладает огромным гидропотенциалом, особенно в восточной части страны. Самые мощные гидроэлектростанции (ГЭС) построены на реках с большим падением и расходом воды. Это Саяно-Шушенская и Красноярская ГЭС на Енисее (обе мощностью по 6 млн. кВт), Братская и Усть-Илимс-кая на Ангаре (более чем по 4 млн. кВ). Но создание крупных ГЭС неблагоприятно влияет на окружающую среду. Особенно это касается ГЭС на равнинных реках, где водохранилища затапливают огромные территории, нарушают режим реки. Замедление течения реки приводит к резкому снижению ее способности к самоочистке, заиливанию русла, нарушению всей экосистемы в целом. Поэтому в перспективе планируется создание средних и малых ГЭС.

Значительный экономический эффект дают также гидроаккумулирующие станции (ГАЭС), покрывающие «пиковые нагрузки» на энергетические системы. Очень перспективным направлением развития гидроэнергетики является также создание приливных электростанций (ПЭС), использующих энергию морских вод. В России сейчас действует опытная Кислогубская ПЭС, планируется создание еще нескольких ПЭС.

Атомные электростанции (АЭС) - важная часть электроэнергетики всех развитых стран мира. Первая на планете АЭС была сооружена в г. Обнинске в 1954 г. С тех пор в России и бывших союзных республиках построено достаточно много АЭС, большинство - в европейской части России, на Украине и в Литве. Сейчас в стране действуют девять крупных АЭС - Курская (4 млн. кВт), Смоленская, Тверская, Нововоронежская, Ленинградская, Балашовская, Белоярская, Кольская.

После аварии на Чернобыльской АЭС в 1986 году строительство многих электростанций и ввод новых энергоблоков были приостановлены, темпы развития атомной энергетики замедлялись.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России, объединяющая многочисленные электростанции европейской части и Сибири. Передача электроэнергии на большие расстояния осуществляется с помощью высоковольтных линий электропередачи (ЛЭП).

Современное состояние ТЭК в России, как и в других странах, требует решить ряд проблем. Во-первых, это колоссальное увеличение добычи невозобновляемых источников энергии за последние десятилетия и все возрастающее загрязнение окружающей среды. На долю ТЭК в нашей стране приходится около 48% выбросов вредных веществ в атмосферу, 36% сточных вод и свыше 30% твердых отходов от всех загрязнителей. Все это требует не только внедрения новых технологий производства электроэнергии, но и использования возобновляемых источников энергии (ВИЗ). В мире сейчас 1/7 электроэнергии получают за счет ВИЗ: солнечного излучения, ветра, тепла Земли, энергии приливов. Вопрос о расширении использования ВИЗ для России особенно актуален, так как у нас энергоснабжение более 70% территории базируется в основном на привозном органическом топливе; транспортировка его очень дорога (до 1/5 стоимости топлива), а в условиях экономического кризиса регулярность снабжения нарушается. Поэтому перестройка энергобаланса должна идти и в направлении увеличения доли ВИЗ до 20% в среднем по России (в некоторых регионах - до 50% и более).

Во-вторых, перспективы развития ТЭК связаны также с проведением энергосберегающей политики, так как почти 2/3 производимой энергии не доходит до потребителя, преобразуясь в тепловую энергию.

Процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями называется генерацией электроэнергии .

В настоящее время существуют следующие виды генерации:

  • 1) Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • - Конденсационные (КЭС, также используется старая аббревиатура ГРЭС);
    • - Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы, но принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • 2) Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, т. к., в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделятся не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились.
  • 3) Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности, так называемый верхний и нижний бьеф. Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, т. к. они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;
  • 4) Альтернативная энергетика . К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
    • · Ветроэнергетика -- использование кинетической энергии ветра для получения электроэнергии;
    • · Гелиоэнергетика -- получение электрической энергии из энергии солнечных лучей;

Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;

  • 5) Геотермальная энергетика -- использование естественного тепла Земли для выработки электрической энергии. По сути, геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, т. е., там, где естественные источники тепла наиболее доступны;
  • 6) Водородная энергетика -- использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;
  • 7) Стоит также отметить: приливную и волновую энергетику . В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.

Эле́ктроэнерге́тика - отрасль энергетики , включающая в себя производство, передачу и сбыт электроэнергии . Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния.

Федеральный закон «Об электроэнергетике» даёт следующее определение электроэнергетики:

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Определение электроэнергетики содержится также в ГОСТ 19431-84:

Электроэнергетика - раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.

Энциклопедичный YouTube

    1 / 5

    ✪ Специалисты будущего - Электроэнергетика и электротехника

    ✪ Электроэнергетика, тепловая и атомная

    ✪ [ОтУС] Умная электроэнергетика: фантастика и реальность

    ✪ How ELECTRICITY works - working principle

    ✪ What is electricity? - Electricity Explained - (1)

    Субтитры

История

История российской электроэнергетики

История российской, да и, пожалуй, мировой электроэнергетики, берет начало в 1891 году , когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трёхфазного напряжения , изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт∙час. После революции, по предложению В. И. Ленина был развёрнут знаменитый план электрификации России ГОЭЛРО . Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

История белорусской электроэнергетики

Первые сведения об использовании электрической энергии в Белоруссии относятся к концу XIX века. Однако и в начале прошлого столетия энергетическая база Белоруссии находилась на очень низком уровне развития, что определяло отсталость товарного производства и социальной сферы: на одного жителя приходилось почти в пять раз меньше промышленной продукции, чем в среднем по Российской империи. Основными источниками освещения в городах и деревнях были керосиновые лампы, свечи, лучины.

Первая электростанция в Минске появилась в 1894 году. Она обладала мощностью 300 л. с. К 1913 году на станции были установлены три дизеля разных фирм и её мощность достигла 1400 л. с.

В ноябре 1897 года дала первый ток электростанция постоянного тока в городе Витебске .

В 1913 году на территории Белоруссии была только одна передовая по техническому оборудованию паротурбинная электростанция, которая принадлежала Добрушской бумажной фабрике.

Развитие энергетического комплекса Белоруссии начиналось с реализации плана ГОЭЛРО , ставшего первым после революции 1917 г. перспективным планом развития народного хозяйства советского государства. Решение грандиозной задачи электрификации всей страны дало возможность активизировать работы по восстановлению, расширению и строительству новых электростанций в нашей республике. Если в 1913 году мощность всех электростанций на территории Белоруссии составляла всего 5,3 МВт, а годовое производство электроэнергии - 4,2 млн кВт∙ч, то к концу 30-х годов установленная мощность Белорусской энергосистемы уже достигла 129 МВт при годовой выработке электроэнергии 508 млн кВт∙ч .

Начало стремительному становлению отрасли положил ввод в эксплуатацию первой очереди Белорусской ГРЭС мощностью 10 МВт - крупнейшей станции в довоенный период. БелГРЭС дала мощный толчок развитию электрических сетей 35 и 110 кВ. В республике сложился технологически управляемый комплекс: электростанция - электрические сети - потребители электроэнергии. Белорусская энергетическая система была создана де-факто, а 15 мая 1931 года принято решение об организации Районного управления государственных электрических станций и сетей Белорусской ССР - «Белэнерго».

На протяжении многих лет Белорусская ГРЭС оставалась ведущей электростанцией республики. Вместе с тем в 1930-е годы развитие энергетической отрасли идет семимильными шагами - появляются новые ТЭЦ, значительно увеличивается протяженность высоковольтных линий, создается потенциал профессиональных кадров. Однако этот яркий рывок вперед был перечеркнут Великой Отечественной. Война привела к практически полному уничтожению электроэнергетической базы республики. После освобождения Белоруссии мощность её электростанций составляла всего 3,4 МВт.

Энергетикам понадобились без преувеличения героические усилия для того, чтобы восстановить и превысить довоенный уровень установленной мощности электростанций и производства электроэнергии.

В последующие десятилетия отрасль продолжала развиваться, её структура совершенствовалась, создавались новые энергетические предприятия. В конце 1964 года впервые в Белоруссии заработала линия электропередачи 330 кВ - «Минск-Вильнюс», которая интегрировала нашу энергосистему в Объединенную энергосистему Северо-Запада, связанную с Единой энергосистемой Европейской части СССР.

Мощность электростанций за 1960-1970 годы выросла с 756 до 3464 МВт, а производство электроэнергии увеличилось с 2,6 до 14,8 млрд кВт∙ч.

Дальнейшее развитие энергетики страны привело к тому, что в 1975 году мощность электростанций достигла 5487 МВт, производство электроэнергии возросло почти в два раза по сравнению с 1970 годом. В последующий период развитие электроэнергетики замедлилось: по сравнению с 1975 годом мощность электростанций в 1991 году увеличилась немногим больше чем на 11 %, а производство электроэнергии - на 7 %.

В 1960-1990 годы общая протяженность электросетей выросла в 7,3 раза. Длина системообразующих ВЛ 220-750 кВ за 30 лет увеличилась в 16 раз и достигла 5875 км.

На 1 января 2010 года мощность электростанций республики составила 8 386,2 МВт, в том числе по ГПО «Белэнерго» - 7 983,8 МВт. Этой мощности достаточно для полного обеспечения потребности страны в электрической энергии. Вместе с тем ежегодно импортируется от 2,4 до 4,5 млрд кВт∙ч из России, с Украины, из Литвы и Латвии в целях загрузки наиболее эффективных мощностей и с учетом проведения ремонта электростанций. Такие поставки способствуют устойчивости параллельной работы энергосистемы Белоруссии с другими энергосистемами и надежного энергоснабжения потребителей .

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год - млрд. кВт*ч):

Доля различных источников
в мировом производстве электроенергии
Уголь Природный газ ГЭС АЭС Нефть Прочие Всего
1973 год 38,3 % 12,1 % 20,9 % 3,3 % 24,8 % 0,6 % 6 131 ТВт
2014 год 40,8 % 21,6 % 16,4 % 10,6 % 4,3 % 6,3 % 23 816 ТВт

Основные технологические процессы в электроэнергетике

Генерация электрической энергии

Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

  • Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив . К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • Конденсационные (КЭС , также используется старая аббревиатура ГРЭС);
    • Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл , в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину , где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора - таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе . Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
  • Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

В последнее время исследования показали, что мощность морских течений на много порядков превышает мощность всех рек мира. В связи с этим ведётся создание опытных морских гидроэлектростанций.

    • Ветроэнергетика - использование кинетической энергии ветра для получения электроэнергии;
    • Гелиоэнергетика - получение электрической энергии из энергии солнечных лучей ; Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
    • Геотермальная энергетика - использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
    • Водородная энергетика - использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах. На самом деле, водород - всего лишь носитель энергии, и никак не снимает проблемы добычи этой энергии.
    • Приливная энергетика использует энергию морских приливов . Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.
    • Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль («мёртвая зыбь »). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России - до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям . Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов , находящихся на подстанциях .

  • Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное , поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .
    • Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты . Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:
      • широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;
      • незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;
      • эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.
    • Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах . Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же

Значение электроэнергии

XVI XVIII XIX XIX

XX

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1.1.1).

Рис. 1.1.1. Электроэнергетика в современной экономике

Роль электроэнергетики в ХХ I в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно корреспондирует с уровнем деловой активности и с уровнем жизни населения. Научно-технический прогресс и развитие новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни населения предопределяют расширение сфер использования электроэнергии и усиление требований к надежному и бесперебойному энергоснабжению.

Особенности электроэнергетики как отрасли обуславливаются спецификой ее основного продукта – электроэнергии, а также характером процессов ее производства и потребления.

Электроэнергия по своим свойствам подобна услуге: время производства совпадает со временем потребления. Однако это подобие не является неотъемлемым физическим свойством электроэнергии - ситуация изменится, если появятся эффективные технологии хранения электроэнергии в значительных масштабах. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива. Чем больше максимальное (хотя и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги.

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса производства, передачи и потребления электроэнергии. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла производства, передачи и потребления продукта, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя. Последнее обстоятельство, по понятным причинам, может иметь большое число совершенно неожиданных следствий.

Очевидно, потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, от времени суток, от технологических режимов различных производственных процессов в отраслях-потребителях, от особенностей домашних хозяйств и даже от программы телепередач. Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции и вида технологического топлива, от степени ее загрузки и режима работы. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей в электроэнергетике необходимо и целесообразно объединение устройств, производящих энергию – генераторов, в единую энергетическую систему , что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Эти же свойства обуславливают наличие в отрасли системного оператора, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии. Решения системного оператора принимаются на основании рыночных сигналов от производителей о возможностях и стоимости производства электроэнергии, от потребителей – о спросе на нее в определенные временные интервалы. В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Большая часть производства электроэнергии в мире осуществляется на электрических станциях трех типов :

· на тепловых электростанциях (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор, преобразуясь, таким образом, в электроэнергию. Опыт продемонстрировал эффективность одновременного производства тепла и электроэнергии на ТЭЦ, что привело к распространению в ряде стран централизованного теплоснабжения;

· на гидроэлектростанциях (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

· на атомных электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.

Три типа электростанций определяют состав используемых в электроэнергетике энергоресурсов . Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.

Первичные энергоносители – это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. В разговорной речи эти материалы называют просто «первичной энергией». Солнечное излучение, ветер, водные ресурсы – все это тоже первичная энергия.

Вторичная энергия – это продукт переработки, «облагораживания» первичной энергии, например электричество, бензин, мазут. Та энергия, которая попадает непосредственному потребителю, именуется конечной энергией. Чаще всего это вторичная энергия – электричество или мазут, но иногда конечная энергия бывает и первичной, например дрова, солнечное излучение или природный газ.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, и они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, ядерное топливо, по большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь. Это объясняется относительной дешевизной и широкой распространенностью запасов данного вида топлива. Однако транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает нерентабельным этот вид топлива для электростанций, находящихся на значительном удалении от мест добычи угля. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде. В последние десятилетия ХХ века появились технологии, позволяющие использовать уголь для производства электроэнергии с большей эффективностью и меньшим загрязнением окружающей среды по сравнению с тем, как это происходило в первых двух третях ХХ в.

Значительный рост использования газа в мировой электроэнергетике за последние годы объясняется существенным ростом его добычи, появлением высокоэффективных технологий производства электроэнергии, основанных на применении данного вида топлива, а также ужесточением политики по охране окружающей среды. Использование газа при производстве электроэнергии позволяет сократить выброс в атмосферу вредных веществ, в первую очередь углекислого газа.

Все более широкое распространение получает производство электроэнергии за счет использования урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако использование урана и прочих радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии, а также чрезвычайно высокой капиталоемкостью возведения АЭС и утилизации отработанного топлива. Кроме того, сдерживающим фактором для развития этого вида энергетики является сложность технологии производства атомной энергии. Пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.

Сохраняют высокую значимость в структуре источников электроэнергии гидроресурсы, хотя их доля несколько сократилась за последние десятилетия. Важность данного источника электроэнергии заключается в его возобновляемости и относительной дешевизне. Однако возведение гидростанций сопряжено с необратимым воздействием на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водоемов на планете и зависимость водных ресурсов от климатических условий ограничивают их гидроэнергетический потенциал.

Существенное сокращение использования нефти и нефтепродуктов для производства электроэнергии за последние тридцать лет объясняется как ростом стоимости данного вида топлива, высокой эффективностью его применения в других отраслях, так и дороговизной его транспортировки на значительные расстояния, а также возросшими требованиями к экологической безопасности.

В последние десятилетия резко возросло внимание к возобновляемым источникам энергии . В частности, активно разрабатываются технологии использования энергии солнца и ветра. Потенциал данных источников энергии огромен. Однако, на сегодняшний день производство электроэнергии в промышленных масштабах из солнечной энергии в большинстве случаев оказывается менее эффективным, чем ее производство из традиционных видов ресурсов. Что касается энергии ветра, то здесь ситуация несколько иная. В развитых странах, особенно под влиянием экологических движений, преобразование энергии ветра в электрическую выросло весьма значительно. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов: Исландия, Новая Зеландия, Россия (Камчатка, Ставропольский край, Краснодарский край, Калининградская область). Однако пока еще все эти виды электрогенерации успешно развиваются в тех странах, где производство и (или) потребление электроэнергии на основе возобновляемых ресурсов дотируется государством.

В конце XX – начале XXI резко возрос интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе заняло заметное место в энергетическом балансе. В США бала принята специальная программа субсидирования биотоплива. Однако, в настоящее время резко возросли сомнения в перспективах развития данного направления в электроэнергетике. С одной стороны, оказалось, что при производстве биотоплива очень неэффективно используются такие природные ресурсы, как земля и вода; с другой – отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно. Все это в обозримой перспективе делает весьма проблематичным широкое использование биотоплива в электроэнергетике.

Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия - товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия - важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды.

Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение - например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.

В каком-то смысле электроэнергия - стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т.н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. - двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.

Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.

Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми сектора

Закрытие ИП