Сжигание твердого топлива. Особенности горения твердого топлива. Краткая характеристика основных видов твердого топлива


В связи с возрастающей популярностью твердотопливных котлов , огромное количество потенциальных покупателей данного оборудования интересует вопрос какому виду твердого топлива отдать предпочтение как основному, и в зависимости от принятого решения заказывать тот или иной вид отопительного оборудования.

Основным показателем любого топлива, не только твердого, является его теплоотдача, которую обеспечивает горение твердого топлива. При этом теплоотдача твердого топлива напрямую связана с его видом, свойствами и составом.

Немного химии

В состав твердого топлива входят следующие вещества: углерод, водород, кислород и минеральные соединения. При его сжигании топлива, углерод и водород соединяются с кислородом воздуха (сильнейшем природным окислителем) – происходит реакция горения с выделением большого количества тепловой энергии. Далее, газообразные продукты горения удаляются через систему дымоотведения, а твердые продукты горения (зола и шлак) выпадают в виде отходом сквозь колосниковую решетку.

Соответственно, основная задача, стоящая перед конструктором отопительного оборудования работающего на твердом топливе – обеспечить наиболее длительное горение печь твёрдое топливо или котел на твердом топливе. На данный момент времени в этой области достигнут определенный прогресс – в продаже появились твердотопливные котлы длительного горения работающие по принципу верхнего горения и процесса пиролиза .

Теплотворная способность основных видов твердого топлива

  • Дрова. В среднем (в зависимости от породы древесины) и влажности от 2800 до 3300 ккал/кг.
  • Торф – в зависимости от влажности от 3000 до 4000 ккал/кг.
  • Уголь – в зависимости от вида (антрацит, бурый или пламенный) от 4700 до 7200 ккал/кг.
  • Прессованные брикеты и пеллеты – 4500 ккал/кг.

Другими словами процесс горения твердого топлива различных видов сопровождается различным количеством выделяемой тепловой энергии, поэтому к выбору основного вида топлива следует походить очень ответственно – руководствоваться в этом вопросе сведениями, указанными в эксплуатационной документации (паспорте или Инструкции по Эксплуатации) на то или иное твердотопливное оборудование.

Краткая характеристика основных видов твердого топлива

Дрова

Наиболее доступный, поэтому наиболее распространенный в России вид топлива. Как уже было сказано, количество выделяемого тепла в процессе горение зависит от породы древесины и ее влажности. Стоит отметить, что при использовании дров в качестве топлива для пиролизного котла существует ограничение по влажности, которая в этом случае не должна превышать 15-20%.

Торф

Торф – это спрессованные остатки перегнивших растений, залегающие длительное время в толще почвы. По способу добычи различают верховой и низовой торф. А по агрегатному состоянию торф может быть: резной, кусковой и прессованный в виде брикетов. По количеству выделяемой тепловой энергии торф аналогичен дровам.

Уголь

Уголь является самым «калорийным» видом твердого топлива, который требует специальной технологии розжига. В общем случае, чтобы растопить печь или котел на каменном угле требуется вначале разжечь топку дровами и только потом, на хорошо разгоревшиеся дрова загружать каменный уголь (бурый, пламенный или антрацит).

Брикеты и пеллеты

Это новый вид твердого топлива, различающийся размерами отдельных элементов. Брикеты - более крупные, а пеллеты более мелкие. Исходным материалом для изготовления брикетов и пеллет может служить любое «горючее» вещество: древесная стружка, древесная пыль, солома, шелуха орехов, торф, шелуха подсолнечнике, кора, картон и прочие «массовые» горючие вещества, находящиеся в свободном доступе.

Преимущества брикетов и пеллет

  • Экологически чистое восполняемое топливо, имеющее высокую теплотворную способность.
  • Долгое горение, обусловленное высокой плотностью материала.
  • Удобство и компактность хранения.
  • Минимальное количество золы после сгорания – от 1до 3% от объема.
  • Низкая относительная стоимость.
  • Возможность автоматизации процесса работы котла.
  • Подходят для всех видов твердотопливных котлов и отопительных бытовых печей.

Горение твердого топлива (угольной пыли) включает два периода: тепловую подготовку и собственно горение (рис. 4.5).

В процессе тепловой подготовки (рис. 4.5, зона I) частица прогревается, высушивается, и при температуре выше 110 °С начинается тепловое разложение исходного вещества топлива с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц, условий теплообмена и составляет обычно десятые доли секунды. Протекание процессов в период тепловой подготовки связано с поглощением теплоты, главным образом, на прогрев, подсушку топлива и термическое разложение сложных молекулярных соединений, поэтому нагрев частицы в это время идет замедленно.

Собственно горение начинается с воспламенения летучих веществ (рис. 4.5, зона II) при температуре 400…600 °С, а выделяющаяся в процессе их горения теплота обеспечивает ускоренный прогрев и воспламенение твердого коксового остатка. Горение летучих веществ занимает 0,2…0,5 с. При большом выходе летучих (бурые и молодые каменные угли, сланцы, торф) выделяющейся теплоты их горения достаточно для воспламенения коксовой частицы, а при малом выходе летучих возникает необходимость дополнительного прогрева коксовой частицы от окружающих раскаленных газов (зона III).

Горение кокса (рис. 4.5, зона IV) начинается при температуре около 1000 °С и является наиболее длительным процессом. Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

В итоге общая длительность горения твердой частицы (1,0…2,5 с) в основном определяется горением коксового остатка (около 2/3 общего времени горения). Для топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание при разных начальных размерах происходит достаточно быстро и возможность недожога снижается. Старые по возрасту топлива имеют плотную коксовую частицу, горение которой занимает почти все время пребывания в топочной камере.

Коксовый остаток большинства твердых топлив в основном, а для ряда твердых топлив целиком, состоит из углерода (от 60 до 97% массы частицы). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающей среды к частице углерода за счет турбулентной диффузии - турбулентного массопереноса, имеющего достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии (рис. 4.6). Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся из частицы в ходе термического разложения. Количество кислорода, подводимого в единицу времени к единице поверхности частицы посредством турбулентной диффузии, определяется по формуле



В (4.16) и (4.17) С ПОТ - концентрация кислорода в окружающем частицу потоке; С СЛ - то же на внешней границе пограничного слоя; С ПОВ - то же на поверхности топлива; δ - толщина пограничного слоя; D - коэффициент молекулярной диффузии через пограничный слой; А - коэффициент турбулентного массообмена.

Совместное решение уравнений (4.16) и (4.17) приводит к выражению

4.18a
4.18б

в котором

4.19

Обобщенная константа скорости диффузии.

Из формулы (4.18) следует, что подвод кислорода к реагирующей поверхности твердого топлива определяется константой скорости диффузии и разностью концентраций кислорода в потоке и на реагирующей поверхности.

В установившемся процессе горения количество кислорода, подводимого диффузией к поверхности реагирования, равно количеству, прореагировавшему на поверхности в результате химической реакции. Отсюда скорость реакции горения углерода с поверхности К s находится из равенства массовых скоростей двух процессов - диффузионного подвода и расхода кислорода на поверхности в результате химической реакции

В соответствии с законом Аррениуса определяющим параметром скорости химической реакции является температура процесса. Константа скорости диффузии k Д слабо изменяется с ростом температуры (см. рис. 4.1, а), в то время как константа скорости реакции k р имеет экспоненциальную зависимость от температуры.

При относительно невысокой температуре (800…1000°С) химическая реакция протекает медленно, несмотря на избыток кислорода около твердой поверхности, так как k Д >> k Р. В этом случае горение тормозится кинетикой химической реакции, поэтому эту зону температур называют областью кинетического горения.

Наоборот, при высоких температурах горения (выше 1500°С) и сжигании угольной пыли значение k Р >> k Д и процесс горения тормозится условиями подвода (диффузии) кислорода к поверхности частицы. Этим условиям соответствует область диффузионного горения. Создание в этой зоне температур факела дополнительных условий для перемешивания горящей смеси (увеличение значения k Д) способствует ускорению и углублению выгорания топлива.

Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый теплообмен с окружающей средой и, таким образом, более высокое значение k Д. Повышение температуры приводит к смещению процесса окисления в область диффузионного горения.

Область чисто диффузионного горения пылевидного топлива характерна для ядра факела, отличающегося наиболее высокой температурой горения, и зоны догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области. В этой области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.

Задание………………………………………………………………………..3

Введение……………………………………………………………………...4

Теоретическая часть

1. Особенности горения твердого топлива ……………………….....6

2. Сжигание топлива в камерных топках ….………………………….9

3. Место и роль твердого топлива в энергетике России ……………..12

4. Снижение выбросов золовых частиц из топок котлов конструктивными и технологическими методами……………………14

5. Золоулавливание и типы золоуловителей…………………….…….15

6. Циклонные (инерционные) золоуловители…..……………………..16

Расчетная часть

1. Исходные данные…………………………………………………….18

2. Расчет элементарного состава рабочего топлива…………………..19
3. Расчет масс и объемов продуктов сгорания топлива при сжигании в котельных …………………………………...…………………………..19

4. Определение высоты трубы Н…………………………….…………20

5. Расчет рассеивания и нормативов предельно допустимых выбросов вредных веществ в атмосферу……………………………………….…20

6. Определение требуемой степени очистки……………………….… 21

Обоснование выбора циклона……………………………………………..22

Применяемые устройства……………………………………………. ……23

Заключение………………………………………………………………….24

Список использованной литературы……………………………………...26

Задание

1. По заданным расчетным характеристикам твердых топлив определить элементарный состав рабочего топлива.

2. Используя результаты п.1 и исходные данные, рассчитать выбросы и объемы продуктов сгорания твердых частиц А, оксидов серы SO x , оксида углерода CO, оксидов азота NO x , расход газов, поступающих в дымовую трубу при рабочих условиях котельной установки.

3. По результатам п.2 и исходным данным определить диаметр устья дымовой трубы. Определить высоту трубы H.

4. Определить наиболее ожидаемую концентрацию С м (мг/м 3) вредных веществ: оксида углерода СО, сернистого газа SO 2 , оксидов азота NO x , пыли, (золы) в приземном слое атмосферы при неблагоприятных условиях рассеивания.



5. Сравнить фактическое содержание вредных веществ в атмосферном воздухе с учетом фоновой концентрации (С м +С ф) с санитарно-гигиеническими нормами (ПДК), если ПДК СО =5 мг/м 3 , ПДК NO 2 = 0,085, ПДК SO 2 =0,5 мг/м 3 , ПДК пыли =0,5 мг/м 3 .

7. Определить требуемую степень очистки и дать рекомендации по снижению выбросов, если фактический выброс М какого-либо вещества превышает расчетный норматив (ПДВ).

8. Разработать и обосновать применяемые способы и устройства для очистки сбросных вредных веществ.

Теоретическая часть

Введение

Промышленное производство и другие виды хозяйственной деятельности человека сопровождаются выделением загрязняющих веществ в окружающую природную среду.

Значительный ущерб окружающей среде наносят котельные установки, использующие сжигание твёрдых, жидких и газообразных топлив при нагреве воды для систем отопления.

Основным источником негативного воздействия энергетики являются продукты, образующиеся при сжигании органического топлива.

Рабочая масса органического топлива состоит из углерода, водорода, кислорода, азота, серы, влаги и золы. В результате полного сгорания топлив образуются углекислый газ, водяные пары, оксиды серы (сернистый газ, серный ангидрид и зола). К числу токсичных относятся оксиды серы, зола. В ядре факела топочных камекотлов большой мощности происходит частичное окисление азота воздуха топлива с образованием оксидов азота (оксид и диоксид азота).

При неполном сгорании топлива в топках могут образовываться также оксид углерода СО 2 , углеводороды СН 4 , С 2 Н 6 , а также канцерогенные вещества. Продукты неполного сгорания весьма вредны, однако при современной технике сжигания их образование можно исключить или свести к минимуму.

Наибольшую зольность имеют горючие сланцы и бурые угли, а также некоторые сорта каменных углей. Жидкое топливо имеет небольшую зольность; природный газ является беззольным топливом.

Выбрасываемые в атмосферу из дымовых труб электростанций токсичные вещества оказывают вредное воздействие на весь комплекс живой природы и биосферу.

Комплексное решение проблемы защиты окружающей среды от воздействия вредных выбросов при сжигании топлив в котельных агрегатах включает:

· Разработку и внедрение технологических процессов, снижающих выбросы вредных веществ за счет полноты сгорания топлив и др.;

· Внедрение эффективных методов и способов очистки сбросных газов.

Наиболее эффективный путь решения экологических проблем на современном этапе – создание технологий, приближенных к безотходным. При этом одновременно решается проблема рационального использования природных ресурсов, как материальных, так и энергетических.

Особенности горения твердого топлива

Горение твердого топлива включает два периода: тепловую подготовку и собственно горение. В процессе тепловой подготовки топливо прогревается, высушивается, и при температуре около 110 начинается пирогенетическое разложение составляющих его компонентов с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц и условий теплообмена между окружающей топочной средой и частицами топлива. Протекание процессов в период тепловой подготовки связано с поглощением теплоты главным образом на подогрев, подсушку топлива и термическое разложение сложных молекулярных соединений.

Собственно горение начинается с воспламенения летучих веществ при температуре 400-600, а выделяющаяся в процессе горения теплота обеспечивает ускоренный прогрев и воспламенение коксового остатка.

Горение кокса начинается при температуре около 1000 и является наиболее длительным процессом.

Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

В итоге общая длительность горения твердой частицы в основном определяется горением коксового остатка (около 2/3 общего времени горения). У молодых топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание (при равных начальных размерах) происходит достаточно быстро и возможность недожога снижается. Старые виды твердых топлив обладают крупным коксовым остатком, близким к начальному размеру частицы, горение которого занимает все время пребывания частицы в топочной камере. Время сгорания частицы с начальным размером 1мм составляет от 1 до 2,5 с в зависимости от вида исходного топлива.

Коксовый остаток большинства твёрдых топлив в основном, а для ряда твердых топлив почти целиком состоит из углерода (от 60 до 97 % органической массы топлива). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающ0щей среды к частице углерода за счет турбулентной диффузии (турбулентного массопереноса), имеющей достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии.

Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся с поверхности углерода в ходе химической реакции.

Выделяют диффузионную, кинетическую и промежуточную область горения. В промежуточной и особенно в диффузионной области интенсификация горения возможна усилением подвода кислорода, активизацией обдувания потоком окислителя горящих частиц топлива. При больших скоростях потока уменьшаются толщина и сопротивление ламинарного слоя у поверхности и усиливается подвод кислорода. Чем выше эта скорость, тем интенсивнее перемешивание топлива с кислородом и тем при более высокой температуре происходит переход из кинетической в промежуточную зону, а из промежуточной - в диффузионную зону горения.

Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый тепломассообмен с окружающей средой. Таким образом, при уменьшении размера частиц пылевидного топлива расширяется область кинетического горения. Повышение температуры приводит к смещению в область диффузионного горения.

Область чисто диффузионного горения пылевидного топлива ограничена преимущественно ядром факела, отличающимся наиболее высокой температурой горения, и зоной догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области.

В кинетической области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.

Человечество на протяжении веков совершенствовало конструкции отопительных печей, в которых изначально задумывалось сжигать доступное повсеместно твердое топливо. В этом плане мало что изменилось, и сегодня в ХХI веке при наличии газа и жидкого топлива мы нередко обращаемся к традиционным отопительным технологиям. Как-то легко становится на сердце, если в современном доме помимо центрального отопления имеется еще и хорошая печь про запас. Ну, а традиционные бани и вовсе не могут обойтись без тепла дровяной печи.

Для эффективного и безопасного управления дровяной печью истопнику необходимо знать о тонкостях сжигания твердого топлива. Многие сегодня уже не помнят, как правильно топить печь, однако эксперименты в данном деле крайне нежелательны. В данном материале мы постараемся максимально осветить тему горения твердого топлива.

Под твердым топливом подразумеваются дрова, каменный уголь, антрацит, кокс, торф и прочее. В традиционных печах все это сжигается слоевым способом на колосниках или без таковых. В топку периодически загружается топливо, а образующийся шлак извлекается. Слоевой способ сжигания носит циклический характер. Замкнутый цикл имеет несколько стадий:

  • разогрев и подсушка слоя;
  • выделение горючих летучих веществ и их сгорание;
  • горение твердого топлива;
  • догорание остатков и остывание шлака (золы);
  • очистка топки от шлака.
  • Каждая из этих стадий имеет собственный тепловой режим, при этом показатели при горении топлива постоянно изменяются. Чтобы обеспечить оптимальный тепловой режим печи, необходимо периодически подкладывать новую порцию топлива (слой). Момент загрузки нового слоя определяется в индивидуальном порядке и зависит от многих факторов. Рассмотрим стадии послойного сжигания твердого топлива подробнее.

    Разогрев и подсушка слоя сопровождается поглощением тепла, т.е. носит эндотермический характер. Поставщиком тепла является пламя стартовой закладки из тонких сухих дров или уже разгоревшееся топливо, а также горячие стенки топливника.

    Стадия воспламенения и тления происходит с нарастающим тепловыделением. Излишнее поступление воздуха в топку в этот период нежелательно, поскольку он будет охлаждать дымовые газы, а, следовательно, дольше будет нагреваться дымоход. Воздушные заслонки на стадии воспламенения и тления должны быть лишь приоткрыты, при этом желательно, чтобы холодный воздух подавался только в зону воспламенения.

    Стадия горения нуждается в больших объемах кислорода воздуха, т.к. данный процесс является ни чем иным, как окислением углеводородов. Пламенный нагрев идет по нарастающей, и, по сути, ограничивается только количеством поступающего кислорода. Если сечение дымохода недостаточное, то пламя может выбиваться из отверстий подачи воздуха. В такой ситуации выход один - немедленно полностью открыть задвижку дымохода и прикрыть подачу воздуха. Когда подача воздуха уменьшается, языки пламени становятся длиннее и даже могут проникнуть в дымоход, что будет являться признаком недожига. Очевидно, что подаваемый воздух в режиме пламенного горения необходимо разделять на два управляемых потока. Первичный поток будет подаваться прямо в дрова, в зависимости от объема, увеличивая или уменьшая скорость выделения летучих веществ; а вторичный - на факел пламени, для регулировки полноты сгорания летучих веществ, т.е. длину языков пламени. Увеличение интенсивности вторичного потока приводит к сокращению длины последних вплоть до исчезновения, но при этом скорость горения дров не замедляется. Однако огневая мощь пламени дров на самом деле не такая большая, как кажется. Она способна разогреть стенки топливника металлической печи не выше 300-400°С.

    Горение углей обеспечивает нагревание металлического топливника докрасна - это наиболее экзотермическая стадия. Эффект тепловыделения увеличивается при увеличении подачи первичного воздуха (пропускание через слой). Вторичный воздух на данном этапе не нужен. Угли выгорят быстрее, если подать в топку сырых чурок: произойдет реакция газификации угля водяным паром. Если дрова сырые, то стадия горения и тления происходят практически одновременно.

    Виды топливных камер и процесс сжигания дров

    В простейшей печной топке каминного типа с глухим подом процесс горения проходит с избытком воздуха, поскольку площадь открытого портала обычно в 8-15 раз больше площади сечения дымовой трубы. В связи тем, что большие объемы засасываемого воздуха не дают трубе камина нагреваться выше 60-80°С, тяга в них значительно меньше, чем в печах с дверцей (250-400°С).

    Если каминную топку оснастить дверцей и поддувалом с заслонкой, то ее КПД существенно изменится в сторону увеличения. Однако у такой конструкции имеется серьезный недостаток - чрезмерное задымление камеры, при открытии которой дым вырывается наружу. Уменьшить дымление можно, переместив трубу максимально вперед, но тогда она перекроет верх печи, используемый для нагрева воды или камней. Компромиссным решением в данном случае может стать наклонная полка при заднем расположении трубы. Полка создаст максимальную тягу у самой дверцы, при открытии которой восходящий поток будет засасывать дым, не давая ему вырваться наружу. Такая конструкция хороша для длительного горения, т.к. воздух идет по поду, попадая под дрова, а в районе дымооборота хорошо перемешивается с летучими веществами, обеспечивая полноту их сгорания.

    Для акцента на пламенном горении используют вводы вторичного воздуха в поток летучих веществ. Реализации данного режима сжигания дров помогают также конструкции с колосниковой решеткой. Они хороши, прежде всего, тем, что обеспечивают подачу кислорода в любую область слоя. Однако большое количество поступающего воздуха снижает температуру стенок дымового канала, а, следовательно, тягу и конвективную теплоотдачу. Данное явление можно минимизировать, прикрыв периферию колосниковой решетки подом, оставив область продувки только в центре.

    Для сжигания дров подойдут любые колосниковые решетки. При необходимости можно их изготовить самостоятельно из арматуры или прута. А вот для сжигания каменного угля понадобятся чугунные колосники, форма сечения которых близка к треугольной. Такая форма не позволяет шлаку забивать собой щели между колосниками. Располагать колосники следует вдоль топки, чтобы можно было шуровать уголь кочергой. Чугунные колосниковые решетки бывают как для угля, так и для дров. У последних колосники тоньше, а щели между ними уже.

    Колосниковые печи способны развивать большую мощность, однако удержать их от разгона непросто. При коэффициенте подачи воздуха равном единице стенки печи разогреваются до красна, и дрова начинают газифицироваться по нарастающей. Пламени становится настолько много, что оно попадает в трубу и в этом случае требуется увеличить подачу воздуха, что в свою очередь вызывает еще большую газификацию и разогрев. Печь успокоится сама по себе только после выхода летучих веществ из дровяной закладки. Горение углей после этого уже хорошо поддается регулировке.

    Важно понять, что основной причиной разгона печи разгона являются разогретые до высокой температуры металлические стенки, которые уже не отбирают тепло дров, при этом последние начинают греть сами себя. Не допустить разгона печи можно, если при протопке держать заслонку трубы открытой только наполовину, а когда из топки станут раздаваться характерные газовые хлопки, - приоткрыть дверцу топливника и одновременно полностью открыть трубу. От резкого появления избытка воздуха стенки печи станут остывать, а когда они перестанут светиться, можно будет закрыть дверцу топливника и воздухозабор. Дымоход снова прикрывается наполовину. От этого печь плавно перейдет в режим тления.

    Немаловажный момент, влияющий на разгон печи, - порция закладываемых дров. Чтобы уменьшить вероятность условий разгона, дрова нужно закладывать небольшими порциями от 1 до 3 кг за один раз. При этом, чем крупнее диаметр полена, тем большей может быть масса закладки. С помощью регулировки подачи воздуха нужно стараться не допустить перегрев стенок. Разгон печи опасен, прежде всего, тем, что может привести к короблению или прогоранию металлических частей печи.

    В первую очередь от разгона страдает нижняя часть стенок топливника. Если металлическая печь раз от раза разгоняется, то стенки можно изнутри защитить огнеупорным кирпичом на высоту 20-30 см. Ошибкой будет обкладка стенок снаружи, т.к. это приведет к еще более сильному разогреву металла. Проблему разгона полностью снимает водяная рубашка - котел. Однако если говорить банных печах, то такое решение подходит не для саун, а для хаммама.

    Сквозные прогары топливника или скрытые трещины реально опасны при спонтанном разгоне металлической печи. Если при нормальном режиме горения они будут работать как воздухозаборные отверстия, то в режиме разгона станут «соплами», через которые станут вырываться наружу горящие летучие вещества.

    К атегория: Печи

    Основные особенности процессов сгорания топлива

    В отопительных печах может использоваться твердое, жидкое и газообразное топливо. Каждому из этих топлив свойственны свои особенности, которые влияют на эффективность использования печей.

    Конструкции отопительных печей создавались в течение длительного времени и предназначались для сжигания в них твердого топлива. Только в более поздний период стали создаваться конструкции, рассчитанные на использование жидкого и газообразного топлива. Чтобы наиболее эффективно использовать эти ценные виды в существующих печах, необходимо знать, чем отличаются процессы горения этих топлив от горения твердого топлива.

    Во всех печах твердое топливо (дрова, различные виды каменного угля, антрацит, кокс и др.) сжигается на колосниках слоевым способом, с периодической загрузкой топлива и очисткой колосников от шлака. Слоевой процесс сжигания имеет четкий циклический характер. Каждый цикл включает следующие стадии: загрузка топлива, подсушка и разогрев слоя, выделение летучих веществ и их горение, горение топлива в слое, догорание остатков и, наконец, удаление шлаков.

    На каждой из этих стадий создается определенный тепловой режим и процесс горения в печи происходит с непрерывно меняющимися показателями.
    Первичная стадия подсушки и разогрева слоя носит так называемый эндотермичный характер, т. е. она сопровождается не выделением, а поглощением теплоты, получаемой от раскаленных стен топливника и от недогоревших остатков. Далее по мере разогрева слоя начинается выделение газообразных горючих компонентов и их выгорание в газовом объеме. На этой стадии начинается тепловыделение в топке, которое постепенно увеличивается. Под влиянием разогрева начинается горение твердой коксовой основы слоя, дающей обычно наибольший тепловой эффект. По мере прогорания слоя тепловыделение постепенно уменьшается, и в конечной стадии имеет место малоинтенсивное дожигание горючих веществ. Известно, что роль и влияние отдельных стадий цикла слоевого горения зависит от следующих показателей качества твердого топлива: влажности, зольности, содержания летучих горючих веществ и углерода в горючей
    массе.

    Рассмотрим, как влияют эти составляющие на характер процесса горения в слое.

    Увлажнение топлива отрицательно влияет на горение так как на испарение влаги должна быть затрачена часть удельной теплоты сгорания топлива. В результате снижаются температуры в топливнике, ухудшаются условия сжигания, а сам цикл горения затягивается.

    Отрицательная роль зольности топлива проявляется в том, что зольная масса обволакивает горючие компоненты топлива и препятствует доступу к ним кислорода воздуха. В результате горючая масса топлива не догорает, образуется так называемый механический недожог.

    Исследованиями ученых установлено, что большое влияние на характер развития процессов горения оказывает соотношение содержания в твердом топливе летучих газообразных веществ и твердого углерода. Летучие горючие вещества начинают выделяться из твердого топлива при сравнительно низких температурах, начиная со 150-200 °С и выше. Летучие вещества разнообразны по составу и отличаются различными температурами выхода, поэтому процесс их выделения растянут по времени и его окончательная стадия обычно сочетается с горением твердой топливной части слоя.

    Летучие вещества имеют относительно низкую температуру воспламенения, так как содержат много водородеодержащих компонентов, горение их происходит в надслоевом газовом объеме топливника. Твердая часть топлива, остающаяся после выхода летучих веществ, состоит в основном из углерода, имеющего наиболее высокую температуру воспламенения (650-700°С). Горение углеродного остатка начинается в последнюю очередь. Оно протекает непосредственно в тонком слое колосниковой решетки, и ввиду интенсивного тепловыделения в нем развиваются высокие температуры.

    Типичная картина изменения температуры в топке и газоходах в течение цикла горения твердого топлива показана на рис. 1. Как видно, в начале топки наблюдается быстрое нарастание температур в топливнике и дымоходах, В стадии же догорания происходит резкое снижение температуры внутри печи, особенно в топливнике. Каждая из стадий требует подачи в топку определенного количества воздуха для горения. Однако, ввиду того что в топку поступает постоянное количество воздуха, на стадии интенсивного горения коэффициент избытка воздуха составляет величину ат=1,5-2, а на стадии догорания, продолжительность которой достигает 25-30% времени топки, коэффициент избытка воздуха достигает ат=8-10. На рис. 2 показано, как изменяется коэффициент избытка воздуха на протяжении одного цикла горения на колосниковой решетке трех видов твердого топлива: дров, торфа и каменного угля в типичной отопительной печи периодического действия.

    Рис. 1. Изменение температуры дымовых газов в различных сечениях отопительной печи при топке твердым топливом 1 - температура в топливнике (на расстоянии 0,23 м от колосниковой решетки); 1 - темперйтура в первом горизонтальном дымоходе; ’3 - температура в третьем горизонтальном дымоходе; 4 - температура в шестом горизонтальном дымоходе (перед заслонкой печи)

    Из рис. 2 видно, что коэффициент избытка воздуха в печах, работающих с периодической загрузкой твердого топлива, непрерывно изменяется.

    При этом на стадии интенсивного выхода летучих веществ количества поступающего в топку воздуха обычно недостаточно для полного их сгорания, а на стадиях предварительного разогрева и дожигания горючих веществ количество воздуха в несколько раз превышает теоретически необходимое.

    В результате на стадии интенсивного выхода летучих веществ происходит химический недожог выделившихся горючих газов, а при дожигании остатков имеют место повышенные потери теплоты с уходящими газами ввиду увеличения объема продуктов сгорания. Потери теплоты с химическим недожогом составляют 3-5%, а с уходящими газами - 20-35%. Однако отрицательное действие химического недожога проявляется не только в дополнительных потерях теплоты и снижении КПД. Опыт эксплуатации большого количества отопительных печей показывает; что в результате химического недожога интенсивно выделяющихся летучих веществ на внутренних стенках топки и дымоходов откладывается аморфный углерод в виде сажи.

    Рис. 2. Изменение коэффициента избытка воздуха в течение цикла горения твердого топлива

    Поскольку сажа имеет низкую теплопроводность, ее отложения увеличивают термическое сопротивление стен печи и тем самым снижают полезную теплоотдачу печей. Отложения сажи в дымоходах сужают сечение для прохода газов, ухудшают тягу и, наконец, создают повышенную пожароопасность, так как сажа горюча.

    Из сказанного ясно, что неудовлетворительные показатели слоевого процесса во многом объясняются неравномерностью выделения летучих веществ по времени.

    При слоевом сжигании высокоуглеродистых топлив процесс горения сосредоточен в пределах довольно тонкого топливного слоя, в котором развиваются высокие температуры. Процесс горения чистого углерода в слое имеет свойство саморегулирования. Это значит, что количество прореагировавшего (сожженного) углерода будет соответствовать количеству поданного окислителя (воздуха). Поэтому при постоянном расходе воздуха постоянным будет и количество сожженного топлива. Изменение же тепловой нагрузки должно производиться за счет регулирования подачи воздуха VB. Например, при увеличении VB возрастает количество сожженного топлива, а снижение Ув вызовет уменьшение теплопроизводительности слоя, причем величина коэффициента избытка воздуха останется стабильной.

    Однако сжигание антрацита и кокса связано со следующими трудностями. Для возможности создания высоких температур толщина слоя при сжигании антрацита и кокса поддерживается достаточно большой. При этом рабочей зоной слоя является относительно тонкая нижняя его часть, в которой осуществляются экзотермические реакции оксидирования углерода кислородом воздуха, т. е. происходит собственно горение. Весь вышележащий слой служит как бы тепловым изолятором горящей части слоя, предохраняющим зону горения от охлаждения за счет излучения теплоты на стенки топливника.

    В результате окислительных реакций в зоне горения выделяется полезная теплота согласно реакции
    с+о2->со.

    Однако при высоких температурах слоя в верхней его зоне осуществляются обратные восстановительные эндотермические реакции, протекающие с поглощением теплоты, согласно уравнению
    С02+С2СО.

    В результате этих реакций образуется оксид углерода СО, который является горючим газом, обладающим довольно высокой удельной теплотой сгорания, поэтому присутствие его в дымовых газах свидетельствует о неполноте сгорания топлива и снижении экономичности печи. Таким образом, для обеспечения высоких температур в зоне горения топливный слой должен иметь достаточную толщину, но это приводит к вредным восстановительным реакциям в верхней части слоя, приводящим к химическому недожогу твердого топлива.

    Из приведенного ясно, что в любой печи периодического действия, работающей на твердом топливе, имеет место нестационарный процесс горения, неизбежно снижающий КПД эксплуатируемых печей.

    Большое значение для экономичной, работы печи имеет качество твердого топлива.

    Согласно стандартам для коммунально-бытовых нужд выделяют в основном каменные угли (марок Д, Г, Ж, К, Т и др.), а также бурые угли и антрациты. По размеру кусков угли должны поставляться следующих классов: 6-13, 13-25, 25-50 и 50-100 мм. Зольность угля на сухую массу колеблется в пределах 14-35% для каменных углей и до 20% -для антрацита, влажность- 6-15% для каменных и 20-45% для бурых углей.

    Топочные устройства бытовых печей не имеют средств механизации процесса горения (регулирования подачи дутьевого воздуха, шуровки слоя и др.), поэтому для эффективного сжигания в печах к качеству угля должны предъявляться достаточно высокие требования. Значительная часть угля поставляется, однако, несортированным, рядовым, с качественными характеристиками (по влажности, зольности, содержанию мелочи) существенно ниже предусмотренных стандартами.

    Сжигание некондиционного топлива происходит несовершенно, с повышенными потерями от химического и механического недожога. Академией коммунального хозяйства им. К. Д. Памфилова был определен годовой материальный ущерб, причиняемый в результате поставки углей низкого качества. Расчеты показали, что материальный ущерб, обусловленный неполным использованием топлива, составляет примерно 60% стоимости добычи угля. Экономически и технически целесообразно обогащать топливо в местах его добычи до кондиционного состояния, так как дополнительные расходы на обогащение составят примерно половину указанной величины материального ущерба.

    Важной качественной характеристикой угля, влияющей на эффективность его сжигания, является его фракционный состав.

    При повышенном содержании в топливе мелочи она, уплотняясь, закрывает прозоры в горящем топливном слое, что приводит к кратерному горению, имеющему неравномерный характер по площади слоя. По этой же причине хуже по сравнению с другими видами топлива сжигаются бурые угли, имеющие свойство растрескиваться при нагреве с образованием значительного количества мелочи.

    С другой стороны, использование чрезмерно крупных кусков угля (более 100 мм) также приводит к кратерному горению.

    Влажность угля, вообще говоря, не ухудшает топочного процесса; однако она снижает удельную теплоту сгорания, температуру горения, а также осложняет хранение угля, так как при минусовых температурах происходит его смерзание. Для предотвращения смерзания влажность каменных углей не должна превышать 8%.

    Вредным компонентом в твердом топливе является сера, так как продуктами ее сгорания являются диоксид серы S02 и сернистый ангидрид S03, обладающие сильными коррозионными свойствами, к тому же еще и весьма токсичные.

    Следует заметить, что в печах периодического действия рядовые угли хотя и менее эффективно, но все же могут удовлетворительно сжигаться; для печей длительного горения указанные требования должны категорически выполняться в полной мере.

    В печах непрерывного действия, в которых сжигается жидкое или газообразное топливо, процесс горения имеет не циклический, а непрерывный характер. Поступление топлива в печь происходит равномерно, благодаря чему соблюдается стационарный режим горения. Если при сжигании твердого топлива температура в топливнике печи колеблется в широких пределах, что неблагоприятно отражается на процессе горения, то при сжигании природного газа вскоре после включения горелки температура в топочном пространстве достигает 650-700 °С. Далее она постоянно увеличивается с течением времени и достигает в конце топки 850-1100 °С. Скорость повышения температуры при этом определяется тепловым напряжением топочного пространства и временем топки печи (рис. 25). Сжигание газа сравнительно легко поддерживать при постоянном коэффициенте избытка воздуха, что осуществляется с помощью воздушной заслонки. Благодаря этому при сжигании газа в печи создается стационарный режим горения, позволяющий свести к минимуму потери теплоты с уходящими газами и добиться работы печи с высоким КПД, достигающим 80-90%. КПД газовой печи стабилен по времени и существенно выше, чем печи на твердом топливе.

    Влияние режима горения топлива и величины площади теп-ловоспринимающей поверхности дымооборотов на КПД печи. Теоретические расчеты показывают, что тепловая экономичность отопительной печи, т. е. величина теплового КПД, зависит от так называемых внешних и внутренних факторов. К внешним факторам относятся величина площади теплоотдающей наружной поверхности S печи в зоне топливника и дымообо-ротов, толщина стенок 6, коэффициент теплопроводности К материала стенок печи и теплоемкость С. Чем больше величины. S, X и меньше 6, тем лучше теплоотдача от стен печи к окружающему воздуху, более полно охлаждаются газы и выше КПД печи.

    Рис. 3. Изменение температуры продуктов сгорания в топливнике газовой отопительной печи в зависимости от напряженности топочного пространства и времени топки

    К внутренним факторам относится в первую очередь величина КПД топливника, зависящая в основном от полноты сгорания топлива. В отопительных печах периодического действия практически всегда имеются потери теплоты от химической неполноты горения и механического недожога. Эти потери зависят от совершенства организации процесса горения, определяемого удельным тепловым напряжением топочного объема Q/V. Значение QIV для топливника заданной конструкции зависит от расхода сжигаемого топлива.

    Исследованиями и опытом эксплуатации установлено, что для каждого вида топлива и конструкции топливника существует оптимальная величина Q/V. При низких Q/V внутренние стенки топливника прогреваются слабо, температуры в зоне горения недостаточны для эффективного сжигания топлива. При повышении Q/V возрастают температуры в топочном объеме, и при достижении определенного значения Q/V достигаются оптимальные условия горения. При дальнейшем повышении расхода топлива уровень температур продолжает повышаться, но процесс горения не успевает завершиться в пределах топливника. Газообразные горючие компоненты увлекаются в газоходы, процесс их горения прекращается и появляется химический недожог топлива. Точно так же при чрезмерном расходе топлива часть его не успевает сгорать и остается на колосниковой решетке, что приводит к механическому недожогу. Таким образом, для того чтобы отопительная печь имела максимальный КПД, необходимо, чтобы ее топливник работал с оптимальным тепловым напряжением.

    Потери теплоты в окружающую среду от стен топливника не снижают КПД печи, так как теплота расходуется на полезный обогрев помещения.

    Вторым важным внутренним фактором является расход дымовых газов Vr. Даже если печь работает при оптимальной величине теплового напряжения топливника, объем газов, проходящих через дымоходы, может существенно меняться за счет изменения коэффициента избытка воздуха ат, представляющего собой отношение действительного расхода воздуха, поступившего в топку, к теоретически неоходимому его количеству. При данной величине QIV значение ат может изменяться в весьма широких пределах. В обычных отопительных печах периодического действия величина ат в период максимального горения может быть близкой к 1, т. е. соответствовать минимально возможному теоретическому пределу. Однако в период подготовки топлива и на стадии догорания остатков величина ат в печах периодического действия обычно резко возрастает, нередко достигая предельно высоких значений - порядка 8-10. С увеличением ат возрастает объем газов, сокращается время их пребывания в системе дымооборотов и, как следствие, увеличиваются потери теплоты с уходящими газами.

    На рис. 4 показаны графики зависимости КПД отопительной печи от различных параметров. На рис. 4, а показаны величины КПД отопительной печи в зависимости от значений ат> из которых видно, что при увеличении ат от 1,5 до 4,5 КПД уменьшается с 80 до 48%. На рис. 4, б показана зависимость КПД отопительной печи от величины площади внутренней поверхности дымооборотов S, из которой видно, что при увеличении S от 1 до 4 м2 КПД возрастает с 65 до 90%.

    Кроме перечисленных факторов величина КПД зависит от продолжительности топки печи т (рис. 4, в). По мере увеличения х внутренние стенки печи прогреваются до более высокой температуры и газы соответственно охлаждаются меньше. Поэтому с увеличением продолжительности топки экономичность любой отопительной печи снижается, приближаясь к определенной минимальной величине, характерной для печи данной конструкции.

    Рис. 4. Зависимость КПД газовой отопительной печи от различных параметров а - от коэффициента избытка воздуха при площади внутренней поверхности дымооборотов, м2; б - от площади внутренней поверхности дымооборотов при различных коэффициентах избытка воздуха; в - от длительности топки при различных площадях внутренней поверхности дымооборотов, м2

    Теплопередача отопительных печей и их аккумулирующая способность. В отопительных печах теплота, которая должна быть передана дымовыми газами отапливаемому помещению, должна пройти через толщу стен печи. С изменением толщины стен топливника и дымоходов соответственно меняются термическое сопротивление и массивность кладки (ее аккумулирующая способность). Например, при уменьшении толщины стен снижается их термическое сопротивление, возрастает тепловой поток и одновременно уменьшаются габариты печи. Однако уменьшение толщины стен печей периодического действия, работающих на твердом топливе, недопустимо по следующим причинам: при периодической кратковременной топке внутренние поверхности топливника и дымоходов нагреваются до высоких температур и температура наружной поверхности печи в периоды максимального горения будет выше допустимых пределов; после прекращения горения вследствие интенсивной теплоотдачи наружных стенок в окружающую среду печь будет быстро охлаждаться.

    При больших величинах М температура помещения будет в широких пределах изменяться во времени и выходить из допустимых норм. С другой стороны, если выкладывать печь слишком толстостенной, то за короткий период топки ее большой массив не успеет прогреться и, кроме того, с утолщением стен увеличивается разница между площадью внутренней поверхности дымоходов, воспринимающей теплоту от газов, и площадью наружной поверхности печи, передающей теплоту окружающему воздуху, вследствие чего температура наружной поверхности печи будет слишком низкой для эффективного обогрева помещения. Поэтому существует такая оптимальная толщина стен (1/2- 1 кирпич), при которой массив печи периодического действия накапливает достаточное количество теплоты за время топки и вместе с тем достигается достаточно высокая температура наружных поверхностей печи для нормального обогрева помещения.

    При использовании в отопительных печах жидкого или газообразного топлива вполне достижим непрерывный режим горения, поэтому при непрерывной топке нет необходимости в аккумуляции теплоты за счет увеличения массива кладки. Процесс теплопередачи от газов к отапливаемому помещению имеет стационарный характер по времени. В этих условиях толщина стенок и массивность печи может выбираться исходя не из обеспечения определенной аккумулирующей величины, а из соображений прочности кладки и обеспечения должной долговечности.

    Влияние перевода печи с периодической топки на непрерывную хорошо видно из рис. 5, на котором показано изменение температуры внутренней поверхности стенки топливника в случае периодической и непрерывной топки. При периодической топке уже через 0,5-1 ч внутренняя поверхность стенки топливника нагревается до 800-900 °С.

    Такой резкий нагрев уже после 1-2 лет эксплуатации печи часто вызывает растрескивание кирпичей и их разрушение. Такой режим, однако, является вынужденным, так как снижение тепловой нагрузки приводит к чрезмерному увеличению продолжительности топки.

    При непрерывной топке раход топлива резко сокращается и температура нагрева стенок топливника снижается. Как видно из рис. 27, при непрерывной топке для большинства марок каменных углей температура стенки повышается с 200 лишь до 450-500 °С, в то время как при периодической топке она значительно выше - 800-900 °С. Поэтому топливники печей периодического действия обычно футеруются огнеупорным кирпичом, в то время как топливники печей непрерывного действия не нуждаются в футеровке, так как температура на их поверхности не достигает предела огнеупорности обычного красного кирпича (700-750 °С).

    Следовательно, при непрерывной топке более эффективно используется кирпичная кладка, намного увеличивается срок службы печей и для большинства марок каменных углей (исключая антрациты и тощие угли) имеется возможность все части печи выкладывать из красного кирпича.

    Тяга в печах. Для того чтобы заставить дымовые газы пройти из топливника через дымообороты печи до дымовой трубы, преодолев все встречающиеся на их пути местные сопротивления, необходимо затратить определенное усилие, которое должно превышать эти сопротивления, иначе печь будет дымить. Это усилие принято называть силой тяги печи.

    Возникновение силы тяги поясняется на схеме (рис. 6). Дымовые газы, образующиеся в топливнике, как более легкие по сравнению с окружающим воздухом, поднимаются вверх и заполняют дымовую трубу. Столб наружного воздуха противостоит столбу газов в дымовой трубе, но, будучи холодным, он значительно тяжелее столба газов. Если провести через топочную дверку условную вертикальную плоскость, то с правой стороны на нее будет действовать (давить) столб горячих газов высотой от середины топочной дверки до верха дымовой трубы, а с левой - столб наружного холодного воздуха такой же высоты. Масса левого столба больше, чем правого, так как плотность холодного воздуха больше, чем горячего, поэтому левый столб будет вытеснять дымовые газы, заполняющие дымовую трубу, и в системе будет происходить движение газов по направлению от большего давления к меньшему, т. е. в сторону дымовой трубы.

    Рис. 5. Изменение температуры на внутренней поверхности стенки топливника а - терморегулятор настроен на нижний предел; б - терморегулятор настроен на верхний предел

    Рис. 6. Схема работы дымовой трубы 1-топочная дверка; 2- топливник; 3 - столб наружного воздуха; 4 - дымовая труба

    Действие силы тяги состоит, таким образом, в том, что она, с одной стороны, заставляет подниматься вверх горячие газы, а с другой стороны, вынуждает наружный воздух проходить в топливник для горения.

    Среднюю температуру газов в дымоходе можно принять равной средней арифметической между температурой газов на входе и выходе дымовой трубы.



    - Основные особенности процессов сгорания топлива

    Бизнес идеи