Что такое термопластичный полимер. Термопластичные полимеры. Состав. Строение. Применение. Тема урока: «Термопластичные полимеры»

Международная маркировка термопластов для вторичной переработки

Термопласты (термопластичные полимеры) – это , которые размягчаются при нагревании и затвердевают при охлаждении. При комнатных температурах термопластичные полимерные материалы находятся в твердом (стеклообразном или кристаллическом) состоянии . При повышении температуры они переходят сначала в высокоэластическое состояние , затем (при дальнейшем нагревании) – в вязкотекучее состояние , что обеспечивает возможность формования термопластов различными методами. Переходы термопластов из твердого в высокоэластичное и вязкотекучее состоянии обратимы и могут повторяться многократно, что делает возможной вторичную переработку термопластичных полимеров.

Термопласты – это полимеры, у которых при нагревании не образуется поперечных химических связей и которые при некоторой, характерной для каждого полимера, температуре, могут многократно (повторно) размягчаться и переходить из твердого в пластическое состояние.

Термопласты выпускают в марочном ассортименте двух типов. Первый или базовый , включает марки, различающиеся по вязкостным (или молекулярным) параметрам. Их улучшают для переработки смазками, стабилизаторами и другими добавками. На основе базового марочного ассортимента создают марочный ассортимент по преобладающим эксплуатационным свойствам .

Базовые марки полимера предназначены для переработки разными методами (марки литьевые, экструзионные, для прессования и др.). Каждым методом получают широкую номенклатуру изделий, различающихся размерами. Например, литьем под давлением получают тонкостенные изделия с большими отношениями длины к толщине, изделия средней толщины и толстостенные изделия с малыми отношениями длины к толщине. Поэтому марки полимера по методу переработки подразделяются на марки по ассортименту изделий, характерному для соответствующего способа формования.

Марочный ассортимент полимеров по вязкости обеспечивает возможность переработки полимеров разными методами в изделия при оптимальных режимах. Использование нужной марки сокращает время и потери материла на разработку технологии, стабилизирует процесс переработки и свойства изготавливаемых изделий, обеспечивает экономию сырья.

Марочный ассортимент по эксплуатационным свойствам включает марки полимера, улучшенные по отдельным показателям (антифрикционные, износостойкие, свето- и теплостабилизированные, антистатические, специализированные по наполнителям, негорючие, пищевого, медицинского назначения, оптические и др.

Введение……………………...……………………….. ………………………….3

  1. Полимеры ………....……………………………………………………... 4
  2. Свойства термопластичных полимеров …………..………………………8
  3. Полиэтилен……………………………………….…….… …………..….....9
  4. Полиизобутилен ………..…………………………………………………12
  5. Полистирол……………..………………………………… ……………….13
  6. Поливинилхлорид……..…………………………… ……………………..15
  7. Поливинилацетат……………………………………… …………………..17
  8. Поливиниловый спирт…………………………………………………….18
  9. Полиакрилаты и полиметилметакрилат…………………………… …….19
  10. Синтетические каучуки…………………………………………………... 20

Заключение…………………………………………………… …………….......22

Список используемых источников……………………………………………23

Введение

Термопластичные полимеры - полимеры с линейной структурой молекул. Материалы способны размягчаться при нагреве и восстанавливаться при охлаждении. К этой группе материалов относят: полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, поливинилацетат, а также полиамидные и инден-кумароновые полимеры.

Целью данной работы является изучение термопластичных полимеров, их строение, состав. И в каких областях они применяются.

  1. Полимеры

Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев - мономеров. По происхождению полимеры делятся на три группы.

Природные образуются в результате жизнедеятельности растений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выделения очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки являются искусственные полимеры. Примерами являются натуральный каучук, изготовляемый из латекса, целлулоид, представляющий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров – материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ - неотъемлемая и существенная часть современной НТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветвленные, сетчатые и пространственные.

Молекулы линейных полимеров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рис. 1).

Рис.1. Схематическая диаграмма вязкости термопластичных полимеров в зависимости от температуры: Т 1 – температура перехода из стеклообразного в высоко эластичное состояние, Т 2 – температура перехода из высокоэластичного в вязкотекучее состояние.

Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «линейные» обозначает прямолинейные, наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов.

Разветвленные (привитые) полимеры более прочны, чем линейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изменению как механических, так и химических свойств. Обычная резина мягка, но при вулканизации серой образуются ковалентные связи типа S-0, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и работоспособности. Наконец, если молекулы полимера содержат реакционно-способные группы, то при нагревании они соединяются множеством прочных поперечных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяющие свойства материала, который приобретает прочность и высокую вязкость, становится нерастворимым и неплавким. Вследствие большой реакционной способности молекул, проявляющейся при повышении температуры, такие полимеры называют термореактивными.

Рис.2.

Термопластичные полимеры получают по реакции полимеризации, протекающей по схеме пМ М п (рис.2), где М - молекула мономера, М п - макромолекула, состоящая из мономерных звеньев, п - степень полимеризации. При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естественных условиях невозможен, и все природные полимеры образовались иным путем. Современная химия создала новый инструмент - реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализуется лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционно-способные молекулы термореактивных полимеров могут образоваться более простым и естественным путем - постепенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют реакцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рис. 2). Именно эта реакция реализуется в природе; она может быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет широкие возможности изготовлять различные изделия на нехимических предприятиях, в том числе на радиозаводах.

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифицировать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи. Я не буду особо заострять внимание на всех этих продуктах, расскажу лишь о самых широко используемых. Необходимо показать, насколько велика потребность полимерных материалов в наше время, а, следовательно, и важность их переработки. Иначе проблема была бы просто необоснованна.

  1. Свойства термопластичных полимеров

Свойства термопластичных (полимеризационных) полимеров обусловлены линейным строением их молекул. Так, при нагревании ослабевает взаимодействие между молекулами и полимер размягчается, вплоть до состояния вязкой жидкости. На этом свойстве термопластов основано формование изделий из этих полимеров, а также их сварка. Однако не все термопласты могут быть переведены в вязкотекучее состояние нагреванием. Это связано с тем, что температура термического разложения некоторых полимеров ниже температуры их текучести. В этом случае используются технологические приемы по снижению температуры текучести (например, введение пластификатора) и по предотвращению разложения полимера (введение стабилизатора и др.).

Способность термопластичных полимеров набухать и растворяться в некоторых растворителях также объясняется линейным строением молекул. Тип растворителя определяется химической природой полимера. Растворы полимеров даже малой концентрации (2... 5%) отличаются высокой вязкостью, что связано с большими размерами макромолекул полимеров в сравнении с молекулами низкомолекулярных веществ. После испарения растворителя полимер вновь отвердевает. На этом основано применение растворов термопластов в качестве клеев и вяжущих в мастиках и строительных растворах.

  1. Полиэтилен

Полиэтилен - один из наиболее распространенных полимеров, представляющий собой прозрачное роговидное вещество, жирное на ощупь. Плотность его колеблется в пределах от 910 до 970 кг/м3 (в зависимости от метода получения): при нагревании до 85... 90°С он размягчается, а при 105... 130°С - плавится. При поджигании полиэтилен горит с характерным запахом парафина; практически нерастворим ни в одном из растворителей при комнатной температуре; стоек по отношению к кислотам, щелочам, солям; водостоек; прочность при растяжении 20 ...40 МПа; эластичность сохраняется до -70°С.

К недостаткам полиэтилена относятся низкие теплостойкость и твердость, горючесть, слабая адгезия к минеральным материалам, клеям, склонность к старению под действием солнечного света, поражаемость грызунами.

Полипропилен по свойствам близок к полиэтилену, но превосходит его по теплостойкости (температура перехода в жидкое состояние 170°С) и механическим свойствам.

Полиэтилен и полипропилен применяют для изготовления труб, пленок, листов, пенопластов, погонажных, санитарно-технических и других изделий. Изделия из этих полимеров хорошо свариваются и подвергаются механической обработке.

Существуют два принципиально различающихся способа получения полиэтилена из мономера - этилена. Полимеризацию этилена по первому способу проводят при высоком давлении (1500-3000 атм). В этом случае получают полиэтилен низкой плотности (порядка 500 мономерных звеньев). Молекулы полиэтилена низкой плотности имеют разветвленную структуру, что показано на (рис. 3, а):

Рис. 3. Структура полиэтилена: а- низкой плотности; б- высокой плотности

Рис. 3.а. Полиэтилен разветвленного строения

Другим, более современным способом получения полиэтилена является полимеризация этилена при небольшом давлении (1 -10 атм) в присутствии особых катализаторов.

Таким образом получают полимер высокой плотности (порядка 10 000 мономерных звеньев). Особенностью этого процесса является получение молекул полимера линейной структуры (рис. 3.б):

Рис. 3.б. Полиэтилен линейного строения

Полиэтилен высокой плотности обладает значительно лучшей механической прочностью по сравнению с полиэтиленом низкой плотности.

Полиэтилен низкой плотности применяют для изготовления упаковочных материалов, пакетов для хранения пищевых продуктов или одежды.

Полиэтилен высокой плотности используют для изготовления детских игрушек, а также пакетов для молока, соков и жидких моющих средств.

Применение полиэтилена показано на (рис. 4):

Рис. 4. Применение полиэтилена: 1- трубы; 2-одноразовые шприцы; 3-детские игрушки; 4- детали механизмов; 5- пленка для парников;

6-предметы домашнего обихода; 7- клейкая лента; 8- пакеты

  1. Полиизобутилен

Полиизобутилен - мягкий, эластичный, каучукоподобный полимер, но в отличие от каучуков не способен вулканизироваться (превращаться в резину). По химической стойкости и прочности уступает полиэтилену и полипропилену, но превосходит их по эластичности и степени адгезии к бетону и другим материалам. Из полиизобутилена изготовляют герметизирующие мастики, клеи, пленки.

Полиизобутилен является продуктом полимеризации изобутилена молекулы которого, обладая двойной связью и асимметрией, легко полимеризуются. Длина цепей (молекулярная масса) полимера зависит в основном от условий полимеризации, чистоты и концентрации мономера и природы катализатора.

Полиизобутилен с молекулярной массой ниже 50 000 представляет собой жидкость, вязкость которой увеличивается с повышением степени полимеризации. В строительной технике применение находят в основном твердые полиизобутилсиы, обладающие средней молекулярной массой 100000-500000.

По отношению к нагреву полимеры подразделяются на термопластичные и термореактивные. Термопластичные полимеры при нагревании переходят из твердого агрегатного состояния в вязкотекучее, а при охлаждении вновь затвердевают. Это свойство термопластичные полимеры сохраняют при многократных нагревах. К термопластичным полимерам относятся полиолефины, полиамиды, поливинилхлорид, фторопласты, полиуретаны.

Термопласты имеют невысокую температуру перехода в вязкотекучее состояние, хорошо перерабатываются литьем под давлением, экструзией и прессованием. Применяются термопласты в качестве изоляторов, химически стойких конструкционных материалов, прозрачных оптических стекол, пленок, волокон, а также в качестве связующих для получения композиционных материалов, лаков, клеев и др.

Полиэтилен , молекула которого состоит из многократно повторяющегося звена [-CH 2 -CH 2 -] n , представляет собой продукт полимеризации этилена. Это относительно твердый и упругий материал, без запаха, белый в толстом слое и прозрачный в тонком (см. образец 1.1). Для получения окрашенных полимеров применяют органические красители. Различают полиэтилен низкого (ПЭНД), высокого (ПЭВД) и среднего (ПЭСД) давления. Чем выше давление, при котором получают полиэтилен, тем выше его плотность, степень кристалличности, прочность, твердость и теплостойкость материала. Полиэтилен легко перерабатывается различными методами, устойчив к ударным и вибрационным нагрузкам, агрессивным средам и воздействию радиации, обладает высокой морозостойкостью (до -70°С). Однако в присутствии сильных окислителей материалы на основе полиэтилена разрушаются. Полиэтилен также склонен к старению при воздействии на него света. Для подавления необратимых процессов старения полиэтилена в него (как и в другие термопласты) вводят специальные добавки - стабилизаторы: антиоксиданты, антиозонаты, светостабилизаторы, антипирены (для снижения горючести), антистатики и пластификаторы. Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей, пленок, изоляции проводов и кабелей, а также в качестве защитных покрытий металлов от коррозии.

Полипропилен – производная этилена, жесткий нетоксичный материал с более высокими физико-механическими свойствами. По сравнению с полиэтиленом более теплостоек, сохраняет форму до 150 о С, однако морозостойкость ниже, до 15 о С.

Применяется для изготовления труб, деталей автомобилей, мотоциклов, холодильников, корпусов насосов, емкостей, пленок (см. образец 1.2).

Поливинилхлорид – аморфный полимер белого или светло-желтого цвета, обладает высокими диэлектрическими свойствами, атмосферной и химической стойкостью, стоек к маслам и бензину, негорюч. Непластифицированный поливинилхлорид называется винипластом (см. образец 1.3). Винипласт имеет высокую механическую прочность и обладает хорошими электроизоляционными свойствами, легко формуется, хорошо поддается механической обработке, склеивается и сваривается, хрупок при отрицательных температурах (рабочий диапазон температур от 10 до + 70 °С). При нагревании разлагается с образованием особо ядовитых веществ и при пожаре представляет значительную опасность. Винипласт хорошо приклеивается к металлу, древесине, бетону. Из винипласта изготавливают различные изделия краны, клапаны, задвижки, детали насосов, вентиляторов, облицовочную плитку, трубы и др. При введении в поливинилхлорид пластификаторов получается пластикат, который обладает высокой морозостойкостью. Пластикат применяется для изготовления изоляции проводов, изоленты, а также для изготовления труб и различных покрытий.


Политетрафторэтилен – (фторопласт-4) является фторопроизводным продуктом этилена. В вязкотекучее состояние переходит при температуре 423 °С, а при 420 °С сильно окисляется, поэтому литьем под давлением и экструзией его не перерабатывают. Кроме того, при этих температурах выделяется токсичный фтор. Фторопласт-4 прессуют при температуре 380 °С. Материал обладает высокой термостойкостью, стоек к действию кислот, щелочей, окислителей, растворителей, негигроскопичен. Фторопласт-4 имеет очень низкий коэффициент трения, сохраняет упругие свойства до 269 °С.

Фторопласт-4 применяется для изготовления уплотнительных элементов, мембран, фурнитуры, деталей антифрикционного назначения, а также, благодаря высоким диэлектрическим свойствам, для изготовления высокочастотной аппаратуры, кабелей, конденсаторов и др. Из фторопласта-4 изготавливают очень тонкие изоляционные пленки толщиной до 0,005 мм (см. образец 1.4).

Политрифторхлорэтилен – (фторопласт-3) полимер стойкий к действию кислот, щелочей, окислителей, растворителей, диапазон рабочих температур от -195 до +125 °С. Перерабатывается литьем под давлением, экструзией и прессованием. Применяют для изготовления труб, шлангов, фурнитуры, защитных покрытий, низкочастотных диэлектриков, пленок, а также для термо- и влагостойких покрытий (см. образец 1.5).

Полистирол – твердый, жесткий, прозрачный полимер, обладает хорошими диэлектрическими свойствами, химически стоек к кислотам и щелочам, масло- и бензостоек, хорошо склеивается и окрашивается. Имеет низкую теплостойкость и ударную вязкость. Для повышения теплостойкости и механических свойств производят сополимеризацию стирола с другими мономерами или каучуками. Применяется для изготовления химически стойких сосудов, деталей электротехнического назначения (корпуса телевизоров, радиоприемников, телефонных аппаратов, магнитофонов), для получения электроизоляционных пленок для радиодеталей, нитей, а также упаковочной пленки.

Из него изготовляют (см. образцы 1.6) предметы домашнего обихода, детские игрушки, школьно-канцелярские принадлежности (авторучки и пр.), тару для упаковки, трубы, внутреннюю отделку холодильников (морозоустойчивость до -70 °С), катушки для фото-, кино- и магнитофонной пленки, облицовочные материалы для внутренней отделки помещений, салонов автомобилей и т. д. Образцы изделий из полистирола приведены на рисунках 18.1 18.2.

Рисунок 18.1 – Посуда из полистирола, имитирующая хрусталь (блюда, вазочки)

Рисунок 18.2 – Технические изделия из полистирола

Полистирол, полученный эмульсионным методом, используется для производства пенопластов, применяемых в качестве термоизоляционного материала в строительстве, при изготовлении холодильников, а также для упаковки.

Полиметилметакрилат – (органическое стекло) - прозрачный полимер, стойкий к действию разбавленных кислот и щелочей, бензо- и маслостоек, обладает оптической прозрачностью, морозостоек (до -60 °С), растворяется в эфирах и кетонах, в органических растворителях, ароматических и хлорированных углеводородах. При температуре +105...+150 °С пластичен. Перерабатывается литьем под давлением, экструзией, прессованием. Имеет невысокую твердость. Применяется для изготовления светотехнических изделий, оптических линз, радиодеталей (см. образец 1.8).

Полиамиды – (капрон, нейлон и др.) – полимер, обладающий хорошими механическими свойствами, высокой износостойкостью. Полиамиды не набухают в масле и бензине, не растворяются во многих растворителях, стойки к ударным нагрузкам и вибрациям. Используются с наполнителями, в качестве которых применяется стекловолокно до 30 % или графит до 10 %. Применяются для изготовления зубчатых колес (рисунок 18.3), звездочек цепных передач, колес центробежных насосов, подшипников скольжения, а также нанесения защитных покрытий (см. образец 1.9).

Полиуретаны – полимеры, обладающие высокой эластичностью, морозостойкостью (до -70 °С), износостойкостью, устойчивы к действию разбавленных органических и минеральных кислот и масел. Применяются для изготовления труб, шлангов, уплотнителей, приготовления клеев для склеивания металлов, стекла, керамики (см. образец 1.10).

Полиэтилентерефталат (лавсан) – полимер, обладающий высокими прочностными свойствами, устойчивый к действию ультрафиолетовых и рентгеновских излучений, негорюч, диапазон рабочих температур от – 70 °С до +255 °С, легко металлизируется алюминием, цинком, оловом и другими металлами, в 10 раз прочнее полиэтилена, гигроскопичен, хорошо сваривается ультразвуком и склеивается полиэфирным лаком. Лавсан применяется для тепло-

Рисунок 18.3 – Детали антифрикционного назначения из полиамидов

стойкой изоляции обмоток трансформаторов, электродвигателей, кабелей, деталей радиоаппаратуры, а также в качестве корда в ременных передачах, различных транспортерных лентах, основы магнитофонных лент, в качестве материала (ПЭТФ) бутылок для напитков (см. образцы 1.12).

Термореактивные полимеры - полимеры с пространственной структурой, которые при нагревании разлагаются, не переходя в вязкотекучее состояние.
Термопластичные полимеры - это полимеры, которые могут подвергаться вторичной термической обработке. пластмасса например
Стеклонаполненные термопластичные и термореактивные полимеры успешно применяют для изготовления деталей машин оргтехники, компьютеров и электронного оборудования, таких, как корпуса, кожухи, основания, и других деталей, где необходимы точные допуска на размеры.

Степенью полимеризации называется:

среднее число структурных звеньев в макромолекуле

число химических связей в структурном звене

средняя относительная молекулярная масса полимера

число атомов в структурном звене полимера

Фенолформальдегидные смолы - продукты поликонденсации фенола с формальдегидом. Реакция проводится в присутствии кислых (соляная, серная, щавелевая и другие кислоты) или щелочных катализаторов (аммиак, гидроксид натрия, гидроксид бария) . При избытке фенола и кислом катализаторе образуется линейный полимер - новолак, цепь которого содержит приблизительно 10 фенольных остатков, соединенных между собой метиленовыми мостиками:

Новолаки - термопластичные полимеры, которые сами по себе не способны переходить в неплавкое и нерастворимое состояние. Но они могут превращаться в трехмерный полимер при нагревании их с дополнительной порцией формальдегида в щелочной среде.
При использовании щелочных катализаторов и избытка альдегида в начальной стадии поликонденсации получаются линейные цепи резола, которые при дополнительном нагревании "сшиваются" между собой за счет групп CH2OH, находящихся в пара-положении фенольного кольца, с образованием трехмерного полимера - резита:

Таким образом, резолы являются термореактивными полимерами.

Фенолоформальдегидные полимеры применяются в виде прессовочных композиций с различными наполнителями, а также в производстве лаков и клея.

Свойства

Отвержденные смолы характеризуются высокими тепло-, водо- и кислостойкостью, а в сочетании с наполнителями и высокой механической прочностью.

Применение

Из фенолформальдегидного полимера, добавляя различные наполнители, получают фенолформальдегидные пластмассы, т. н. фенопласты. Их применение очень широко. Это: шарикоподшипники, шестерни и тормозные накладки для машин; хороший электроизоляционный материал в радио- и электротехнике. Изготовляют детали больших размеров, телефонные аппараты, электрические контактные платы. Для склеивания пенополистирольных плит, применяемых для изготовления моделей в литейном производстве.

Получение фенолформальдегидной смолы

1. В пробирку помещают 10 капель жидкого фенола и 8 капель 40% формальдегида. Смесь нагревают на водяной бане до растворения фенола. Через 3 минуты в пробирку добавляют 5 капель концентрированной соляной кислоты и помещают ее в стакан с холодной водой. После образования в сосуде двух четких фаз следует слить воду и вылить полимер из пробирки. В течение нескольких минут образовавшаяся новолачная смола затвердевает.

2. В небольшую колбочку помещают 15 г фенола и 25 мл концентрированного раствора формалина и нагревают (под тягой) на горелке, периодически встряхивая содержимое колбы. Добавляют 1-2 мл соляной кислоты и продолжают нагревание. Вначале реакция идет бурно и смесь в колбе становится однородной. Через некоторое время (около 10 минут) на дне колбы образуется смолистый осадок. Верхний слой жидкости сливают и быстро извлекают смолу, которая на воздухе густеет и постепенно затвердевает.

Фенолформальдегидные смолы [-C6H3(OH)-CH2-]n - продукты поликонденсации фенола C6H5OH с формальдегидом CH2=O.

КЛАССИФИКАЦИЯ ВМС

1. Органические и неорганические

Органические ВМС являются основой живой природы входящие в состав растений, - полисахариды, белки, пектиновые вещества, крахмал. Торф, бурый уголь, каменные угли представляют собой продукты геологического превращения растительных тканей, главным образом целлюлозы и лигнина также должны быть отнесены к высокомолекулярным соединениям.
В основе живого мира также лежат ВМС - белки, являющиеся главной составной частью почти всех веществ животного происхождения.
Неорганические высокомолекулярные соединения играют большую роль в минеральном мире. Основная часть земной коры состоит из окислов кремния, алюминия и других многовалентных элементов, соединенных, по-видимому, в макромолекулы. Наиболее распространен среди этих окислов кремниевый ангидрид n , являющийся высокомолекулярным соединением. Более 50% всей массы земного шара состоит из кремниевого ангидрида, а в наружной части земной коры содержание его достигает 60%. Наиболее распространенной модификацией кремниевого ангидрида является кварц - важнейшая составная часть большинства горных пород и песка.

2. По происхождению высокомолекулярные соединения делят на природные , или биополимеры (белки, нуклеиновые кислоты, полисахариды), искусственные и синтетические (полиэтилен , полистирол , фенолформальдегидные смолы ).

3. В зависимости от расположения в макромолекуле атомов и атомных групп (по структуре) различают:

Макромолекулы высокомолекулярных соединений имеют линейное или разветвленное строение; при соединении их поперечными связями возникают трехмерные пространственные полимеры.

1) линейные высокомолекулярные соединения, макромолекулы которых представляют собой открытую, линейную, цепь (каучук натуральный) или вытянутую в линию последовательность циклов (целлюлоза);

2) разветвленные высокомолекулярные соединения, макромолекулы которых имеют форму линейной цепи с ответвлениями (амилопектин);

3) пространственные или сетчатые высокомолекулярные соединения - трехмерные сетки, образованные отрезками высокомолекулярных соединений цепного строения (пластмассы, дубленый коллаген, вулканизованный каучук).

Структура

Линейная

Разветвлённая

Пространственная

Примеры

натуральный каучук, целлюлоза, полиэтилен низкого давления, капрон

крахмал, полипропилен, полиэтилен высокого давления

фенолформальдегидные полимеры, шерсть, резина

Свойства

Обладают гибкостью. Чем длиннее цепь полимера, тем больше гибкость. В результате гибкости макромолекулы полимеров постоянно меняют свою форму. Линейные полимеры имеют наибольшую плотность, их макромолекулы способны к ориентации вдоль оси направленного механического поля (это используется, например, при формовании волокон и пленок). Линейные полимеры термопластичны, растворимы

Гибкость разветвлённых макромолекул зависит от степени разветвления. Чем больше разветвлённость, тем меньше гибкость. Разветвленные полимеры термопластичны, растворимы

Полимеры сетчатого (пространственного) строения, не плавятся, не растворяются, а только набухают в растворителях; определение молекулярной массы для таких полимеров утрачивает смысл (нет отдельных макромолекул, все цепи сшиты в единую сетку). Сетчатые структуры могут быть получены из термореактивных полимеров.

Гибкость макромолекул - это их способность обратимо (без разрыва химических связей) изменять свою форму. Степень гибкости макромолекул полимеров определяет область их применения.

4. По строению

Химическое строение макромолекул - это порядок соединения структурных звеньев в цепи.

Структурные звeнья несимметричного строения, например,

могут соединяться между собой двумя способами:

Полимеры, макромолекулы которых построены одним из этих способов, называют регулярными .

Полимеры нерегулярного строения образованы произвольным сочетанием обоих способов соединения звeньев.

Полимер называется стереорегулярным , если заместители R в основной цепи макромолекул расположены упорядоченно:

  • или все они находятся по одну сторону от плоскости цепи (такие полимеры называют изотактическими )
  • или строго очередно по одну и другую стороны от этой плоскости (синдиотактические полимеры )

Стереорегулярные полимеры способны кристаллизоваться, они обладают большей прочностью и теплостойкостью.

  • Если боковые заместители в макромолекулах располагаются в беспорядке относительно плоскости основной цепи, то такой полимер является стереонерегулярным или атактическим .

Атактические полимеры не способны кристаллизоваться и уступают по большинству эксплуатационных свойств стереорегулярным полимерам такого же химического состава.

5. По отношению к нагреванию различают:

Термопластичность – свойство тел изменять форму в нагретом состоянии и сохранять её после охлаждения.

ТЕРМОПЛАСТЫ п ластмассы, которые после формования изделия сохраняют способность к повторной переработке. Наиболее распространены термопласты на основе полиэтилена, поливинилхлорида, полистирола.

РЕАКТОПЛАСТЫ т ермореактивные пластмассы, пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала (происходит отверждение). Наиболее распространены реактопласты на основе феноло-формальдегидных, полиэфирных, эпоксидных и карбамидных смол. Содержат обычно большие количества наполнителя - стекловолокна, сажи, мела и др.

6. По способам образования полимеры делятся на получаемые в результате реакции полимеризации или реакции поликонденсации.

1). Пoлимеризация – реакция образования высокомолекулярных соединений путем последовательного присоединения молекул мономера к растущей цепи.

Например, полимеризация этилена записывается следующим образом:

n CH 2 =CH 2 → (–CH 2 –CH 2 –) n


или С H 2 =CH 2 + CH 2 =CH 2 + CH 2 =CH 2 + ... →

→ -CH 2 –CH 2 - + -CH 2 –CH 2 - + -CH 2 –CH 2 - + ... → (– СН 2 С H 2 –) n

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией .

Пример. Схема сополимеризации этилена с пропиленом:

2). Пoликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов.

Видео-опыт «Получение пластмасс на примере резорцинформальдегидной смолы»

Видео-опыт «Получение пенопласта»

Например, получение капрона из ε-аминокапроновой кислоты:

n H 2 N-(CH 2) 5 -COOH → H-[-NH-(CH 2) 5 -CO-] n -OH + (n-1) H 2 O

или лавсана из терефталевой кислоты и этиленгликоля:

n HOOC-C 6 H 4 -COOH + n HO-CH 2 CH 2 -OH →

→ HO-(-CO-C 6 H 4 -CO-O-CH 2 CH 2 -O-) n -H + (n-1) H 2 O

Поликонденсация является основным способом образования природных полимеров в естественных условиях.

Пластмассы – материалы, основой которых являются синтетические или природные высокомолекулярные органические вещества – полимеры.



В зависимости от условий полимеризации различают три вида полиэтилена.

1. Полиэтилен высокого давления (ВД) или низкой плотности (НП), получаемый при давлении 1000-3000 атм и температуре около 180°С; инициатором служит кислород (радикальная полимеризация). Макромолекулы полиэтилена, полученного этим способом имеют разветвленное строение, этим объясняется его невысокая плотность (менее плотная упаковка макромолекул).

2. Полиэтилен среднего давления (полиэтилен СД) получают в среде разбавителя при 35-40 атм и 125-150°С на металлоксидных катализаторах.

3. Полиэтилен низкого давления (НД) или высокой плотности (ВП). Полимеризацию проводят в среде органического растворителя при давлении около 5 атм и температуре ниже 80°С. Катализаторами являются металлорганические комплексы (катализаторы Циглера-Натта). Процесс идет по ионному механизму.

Несмотря на то, что различные виды полиэтилена получают из одного и того же мономера, они представляют собой совершенно различные материалы, отличаясь друг от друга не меньше, чем от других полимеров. Это объясняется различными геометрическими формами макромолекул и разной способностью к кристаллизации.

Полиэтилен высокого давления состоит из разветвленных макромолекул и представляет собой мягкий и эластичный материал. Полиэтилены среднего и низкого давления, имеющие линейное строение и довольно высокую степень кристалличности (85-90%), – жесткие продукты. Все полиэтилены обладают высокой морозостойкостью (низкой температурой хрупкости) и могут эксплуатироваться при температурах до -70°С, некоторые марки сохраняют свои ценные свойства при температурах ниже -120°С. Полиэтилены, являясь предельными углеводородами, стойки по отношению ко многим агрессивным средам (кислотам, щелочам и т.д.) и органическим жидкостям.

В промышленности полиэтилен разных марок выпускается в виде блоков, листов и гранул. Перерабатываются они в изделия главным образом методом литья под давлением, экструзии (выдавливание размягченного полимера через сопло шприц-машины) и выдувания. Из полиэтилена производят бесшовные коррозионно-стойкие трубки, изоляционные оболочки электропроводов и пленки, широко применяемые в качестве упаковочного материала, для изготовления покрытий, перегородок, в сельском хозяйстве и т.д. При помощи литья под давлением или выдувания получают различную тару (бутылки, ведра и т.п.). Благодаря прекрасным диэлектрическим свойствам полиэтилен применяется для изоляции электрических кабелей в телевидении, радиолокации и многопроводной телефонной связи.

Полиэтилен хорошо сваривается. Пропуская струю сжатого воздуха со взвешенными в ней частицами полимера через воздушно-ацетиленовое пламя и направляя эту струю на металлические изделия, можно покрыть их сплошным защитным слоем (метод газопламенного напыления).

Существенным недостатком полиэтилена является его быстрое старение, которое, однако, можно резко замедлить при введении в полимер противостарителей (фенолы, амины, газовая сажа).

Изделия из полиэтилена

Полипропилен



Полимеризация пропилена осуществляется в условиях, близких к тем, которые применяются при получении полиэтилена низкого давления. При этом образуется стереорегулярный (изотактический) полипропилен. Этот полимер легко кристаллизуется и обладает высокой температурой плавления (175° С). Кристаллический полипропилен – наиболее легкий из всех известных жестких полимеров (относительная плотность 0,9); он отличается высокой прочностью на разрыв и твердостью. Благодаря кристаллической структуре стереорегулярный полипропилен сохраняет форму и хорошие механические свойства вплоть до температуры плавления и может поэтому подвергаться обычной стерилизации. По прочности полипропилен превосходит полиэтилен, но уступает ему по морозостойкости (температура хрупкости от -5 до-15° С). Однако этот недостаток устраняется путем введения в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом).

Стереорегулярный полипропилен обладает такими же диэлектическими свойствами, как и полиэтилен, но более химически устойчив при повышенных температурах. При помощи тех же методов, которые используются при переработке полиэтилена, из полипропилена изготовляют трубы для горячих жидкостей, прозрачные пленки с низкой проницаемостью для жидкостей и газов, бутылки и различные сосуды для химической промышленности.

Полипропилен является экологически чистым материалом. За столь ценные свойства он получил титул "короля пластмасс".

При сополимеризации пропилена с этиленом получают некристаллизующиеся сополимеры, которые проявляют свойства каучука, отличающегося повышенной химической стойкостью и сопротивлением старению.

Политетрафторэтилен (тефлон)

Полимеризация тетрафторэтилена проводится обычно водно-эмульсионным способом при 70-80° С и давлении 40-100 атм в присутствии инициаторов.

Вследствие симметричного линейного строения политетрафторэтилен

CF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 -..., или (-CF 2 -CF 2 -) n , или (-CF 2 -) 2n

имеет кристаллическую структуру и высокую температуру плавления (320-327°С). Суммарный дипольный момент полимера равен 0, поэтому тефлон является прекрасным диэлектриком. Температурный интервал эксплуатации очень велик: от -190° С до +300° С. При этом полимер отличается высокой химической стойкостью.

Для переработки тефлона в изделия применяется метод холодного прессования порошкообразного полимера в цилиндрические заготовки, которые затем подвергаются механической обработке на токарных станках.

Тефлон используется в химическом машиностроении для изготовления пластин, кранов, вентилей, клапанов и т.д., применяемых при высокой температуре в среде концентрированных минеральных кислот. Высокое сопротивление износу и низкий коэффициент трения сделали тефлон незаменимым материалом для производства подшипников, работающих в агрессивных средах или в контакте со сжиженными газами (кислород, водород и т.п.) и не требующих смазки.

Фенопласты – пластмассы полученные из (текстолит, волокнит, гетинакс, стеклопласт, карболит) .



Доверенности