Производство каких металлов является основой цветной металлургии. Черная и цветная металлургия. Состав раствора и режим работы

Цветная металлургия – это не только комплекс мероприятий по получению цветных металлов (добыча, обогащение, металлургический передел, получение отливок чистых металов и сплавов на их основе), но и переработка лома цветных металлов.

Научно-технический прогресс не стоит на месте, и цветные металлы на сегодняшний день широко используются для разработки инновационных конструкционных материалов. Только отечественная металлургическая промышленность выпускает порядка 70 видов сплавов, используя разнообразное сырье.

В связи с низким содержанием необходимого компонента в руде и примесей других элементов, цветная металлургия является энергозатратным производством и имеет сложную структуру. Так, меди в руде содержится не более 5%, а цинка и свинца не более 5,5%. Колчеданы, добываемые на Урале, многокомпонентные, и в их составе находится порядка 30 химических элементов.

Цветные металлы подразделяются на шесть категорий, согласно своим физическим свойствам и предназначению:

  1. Тяжелые. Имеют высокую плотность, соответственно, и вес. К ним относятся Cu, Ni, Pb, Zn, Sn.
  2. Легкие. Имеют малый вес из-за незначительной удельной плотности. К ним относятся: Al, Mg, Ti, Na, Ka, Li.
  3. Малые: Hg, Co, Bi, Cd, As, Sb.
  4. Легирующие. В основном используются для получения сталей и сплавов с необходимыми качествами. Это W, Mo, Ta, Nb, V.
  5. Благородные. Широко известны и используются для изготовления ювелирных украшений. Среди них Au, Ag, Pt.
  6. Редкоземельные, рассеянные: Se, Zr, Ga, In, Tl, Ge.

Специфика отрасли

Руды цветных металлов, как было выше сказано, содержат малое количество добываемого элемента. Поэтому на тонну той же меди необходимо до 100 т руды. Из-за большой потребности в сырье цветная металлургия, по большей части, располагается вблизи своей сырьевой базы.

Цветные руды для своей переработки требуют большого количества топлива или электроэнергии. Энергетические затраты достигают половины общих затрат, связанных с выплавкой 1 т металла. В связи с этим металлургические предприятия располагаются в непосредственной близости от производителей электроэнергии.

Производство редких металлов в основном основано на восстановлении из соединений. Сырье поступает с промежуточных этапов обогащения руд. Из-за небольших объемов и трудности производства получением редких металлов занимаются лаборатории.

Состав отрасли

Виды цветной металлургии включают в себя отрасли, связанные с получением определенных видов металлов. Так, укрупнено можно выделить следующие отрасли:

  • производство меди;
  • производство алюминия;
  • производство никеля и кобальта;
  • производство олова;
  • производство свинца и цинка;
  • добыча золота.

Получение никеля тесно связано с местом добычи никелевых руд, которые расположены на Кольском полуострове и в Норильском районе Сибири. Многие отрасли цветной металлургии отличаются многоступенчатым металлургическим переделом промежуточных продуктов.

На этом основании эффективен комплексный подход. Это сырье для получения других сопутствующих металлов. Утилизация отходов сопровождается получением материалов, использующихся не только в других отраслях тяжелого машиностроения, но и в химической и строительной отраслях.

Металлургия тяжелых металлов

Получение меди

Основными этапами получения чистой меди являются выплавка черновой меди и ее дальнейшее рафинирование. Черновая медь добывается из руд, а низкая концентрация меди в уральских медных колчеданах и большие ее объемы не позволяют перенести производственные мощности с Урала. В качестве резерва выступают: медистые песчаники, медь-молибденовые, медь-никелевые руды.

Рафинирование меди и переплавка вторичного сырья производится на предприятиях, которые удалены от источников добычи и первичной плавки. Благоприятствует им низкая стоимость электричества, так как для получения тонны меди расходуется до 5 кВт энергии в час.

Утилизация сернистых газов с последующей переработкой послужила стартом для получения серной кислоты в химической промышленности. Из остатков апатитов производит фосфатные минеральные удобрения.

Получение свинца и цинка

Металлургия цветных металлов, таких как свинец и цинк, имеет сложную территориальную разобщенность. Добычу руды ведут на Северном Кавказе, в Забайкалье, Кузбассе и на Дальнем Востоке. А обогащение и металлургический передел проводится не только возле мест выемки руды, но и на других территориях с развитой металлургией.

Свинцовые и цинковые концентраты богаты на химическую элементную базу. Однако сырье имеет разное процентное содержание элементов, из-за чего не всегда цинк и свинец можно получить в чистом виде. Поэтому технологические процессы в районах различны:

  1. В Забайкалье получают только концентраты.
  2. На Дальнем Востоке получают свинец и цинковый концентрат.
  3. На Кузбассе получают цинк и свинцовый концентрат.
  4. На Северном Кавказе ведут передел.
  5. На Урале производят цинк.

Металлургия легких металлов

Наиболее распространенным легким металлом является алюминий. Сплавы на его основе обладают свойствами, присущими конструкционным и специальным сталям.

Для получения алюминия сырьем являются бокситы, алуниты, нефелины. Производство разделено на две стадии:

  1. На первой стадии получают глинозем и необходим большой объем сырья.
  2. На второй стадии электролитическим методом производят алюминий, на что требуется недорогая энергия. Поэтому этапы производства находятся на разных территориях.

Получение алюминия и сплавов сосредоточено в промышленных центрах. Сюда же поставляется лом на вторичную переработку, что в итоге снижает себестоимость готовой продукции.

К металлургии относятся:
производство металлов из природного сырья и других металлсодержащих продуктов;
получение сплавов;
обработка металлов в горячем и холодном состоянии;
сварка;
нанесение покрытий из металлов.
К металлургии примыкает и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности.
С металлургией тесно связаны коксохимия, производство огнеупорных материалов.

Металлургия подразделяется на чёрную и цветную.

Чёрная металлургия включает добычу и обогащение руд чёрных металлов (к чёрным металлам относят железо, все остальные - цветные), производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов.

К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов.

По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах). Разновидностью пирометаллургии является плазменная металлургия.

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.

Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор.

Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.


Чёрная металлургия

Чёрная металлургия служит основой развития машиностроения (одна треть отлитого металла из доменной печи идёт в машиностроение) и строительства (1/4 металла идёт в строительство). Основным исходным сырьем для получения черных металлов являются железная руда, марганец, коксующиеся угли и руды легирующих металлов.

В состав чёрной металлургии входят следующие основные подотрасли:

Добыча и обогащение руд чёрных металлов (железная, хромовая и марганцевая руда);
добыча и обогащение нерудного сырья для чёрной металлургии (флюсовых известняков, огнеупорных глин и т. п.);
производство чёрных металлов (чугуна, углеродистой стали, проката, металлических порошков чёрных металлов);
производство стальных и чугунных труб;
коксохимическая промышленность (производство кокса, коксового газа и пр.);
вторичная обработка чёрных металлов (разделка лома и отходов чёрных металлов).

Металлургический цикл

Собственно металлургическим циклом является производство

1) чугунно-доменное производство,

2) стали (мартеновское, кислородноконвертерное и электросталеплавильное), (непрерывная разливка, МНЛЗ),

3) проката (прокатное производство).

Предприятия, выпускающие чугун, углеродистую сталь и прокат, относятся к металлургическим предприятиям полного цикла.

Предприятия без выплавки чугуна относят к так называемой передельной металлургии. «Малая металлургия» представляет собой выпуск стали и проката на машиностроительных заводах. Основным типом предприятий чёрной металлургии являются комбинаты.

В размещении чёрной металлургии полного цикла большую роль играет сырьё и топливо, особенно велика роль сочетаний железных руд и коксующихся углей.


Цветная металлургия

Цветная металлургия - отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов.

По физическим свойствам и назначению цветные металлы условно можно разделить на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний). На основании этого деления различают металлургию лёгких металлов и металлургию тяжёлых металлов.

Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии лёгких металлов (алюминиевая, титано-магниевая промышленность) и тяжёлых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

Тяжёлые металлы

Производство тяжёлых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья.

По запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировградский, Среднеуральский, Медногорский комбинаты.

Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относятся Садонское (Северный Кавказ), Салаирское (Западная Сибирь), Нерченское (Восточная Сибирь) и Дальнегорское (Дальний Восток).

Центром никель-кобальтовой промышленности являются города Норильск (Восточная Сибирь) и Мончегорск (Северный экономический район), а также поселок городского типа Никель (Мурманская область).

Лёгкие металлы

Для получения лёгких металлов требуется большое количество энергии. Поэтому сосредоточение предприятий, выплавляющих легкие металлы, у источников дешёвой энергии - важнейший принцип их размещения.

Сырьём для производства алюминия являются бокситы Северо-Западного района (Бокситогорск), Урала (город Североуральск), нефелины

Кольского полуострова (Кировск) и юга Сибири (Горячегорск). Из этого алюминиевого сырья в районах добычи выделяют окись алюминия - глинозём. Получение из него металлического алюминия требует больших затрат электроэнергии. Поэтому алюминиевые заводы строят вблизи крупных электростанций, преимущественно ГЭС (Братской, Красноярской и др.)

Титано-магниевая промышленность размещается преимущественно на Урале, как в районах добычи сырья (Березниковский титано-магниевый завод,), так и в районах дешёвой энергии (Усть-Каменогорский титано-магниевый завод). Заключительная стадия титано-магниевой металлургии - обработка металлов и их сплавов - чаще всего размещается в районах потребления готовой продукции.


Сплавы

Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Виды сплавов

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые - прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным - состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным). Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений(в том числе карбиды, нитриды, интерметаллиды …) и кристаллиты простых веществ.

Свойства сплавов

Свойства металлов и сплавов полностью определяются их структурой (кристаллической структурой фаз и микроструктурой). Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность (металлический блеск) и пластичность. Важнейшей характеристикой сплавов является свариваемость.

Сплавы, используемые в промышленности

Сплавы различают по назначению: конструкционные, инструментальные и специальные.

Конструкционные сплавы:

Стали
чугуны
дюралюминий

Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства):

Бронзы
латуни

Для заливки подшипников:

Баббит

Для измерительной и электронагревательной аппаратуры:

Манганин
нихром

Для изготовления режущих инструментов:

Победит

В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.

С электрохимической точки зрения металлами называются элементы, имеющие в процессе реакций преимущественную тенденцию к отдаче электронов, в отличие от металлоидов, стремящихся к их присоединению.

Многочисленность металлов, различия в их свойствах, методах получения и областей потребления определяет необходимость их классификации по отдельным группам.

В современных условиях используют промышленную классификацию металлов, которая отражает исторически сложившуюся структуру металлургической промышленности и, как следствие этого, структуру подготовки инженерно-технических кадров нашей страны.

Согласно промышленной классификации все металлы делятся на две группы: черные и цветные (в зарубежной практике металлы обычно делят на железные и нежелезные).

К черным металлам относятся железо и его сплавы, марганец, и хром, производство которых тесно связано с металлургией чугуна и стали. Все остальные металлы относятся к, цветным. Название «цветные металлы» довольно условно, так как фактически только золото и медь имеют ярко выраженную окраску. Все остальные металлы, включая черные, имеют серый цвет с различными оттенками - от светло-серого до темно-серого.

Цветные металлы условно делятся на пять групп:

1. Основные тяжелые металлы: медь, никель, свинец, цинк и олово. Своё название они получили из-за больших масштабов производства и потребления, большого («тяжелого») удельного веса в народном хозяйстве.

2. Малые тяжелые металлы: висмут, мышьяк, сурьма, кадмий, ртуть и кобальт. Они являются природными спутниками основных тяжелых металлов. Обычно их получают попутно, но производят в значительно меньших количествах.

3. Легкие металлы: алюминий, магний, титан, натрий, калий, барий, кальций, стронций. Металлы этой группы имеют самую низкую среди всех металлов плотность (удельную массу).

4. Благородные металлы: золото, серебро, платина и платиноиды (палладий, родий, рутений, осмий, иридий). Эта группа металлов обладает высокой стойкостью к воздействию окружающей среды и агрессивных сред.

5. Редкие металлы. В свою очередь подразделяются на подгруппы:

а) тугоплавкие металлы: вольфрам, молибден, тантал, ниобий, цирконий, ванадий;

б) легкие редкие металлы: литий, бериллий, рубидий, цезий;

в) рассеянные металлы: галлий, индий, таллий, германий, гафний, рений, селен, теллур;

г) редкоземельные металлы: скандий, иттрий, лантан и лантаноиды;

д) радиоактивные металлы: радий, уран, торий, актиний и трансурановые элементы.

В металлургической промышленности используют почти все виды полезных ископаемых.

Основным сырьем для получения металлов являются руды - горные породы, содержащие в своем составе металл или металлы в количествах, которые при современном уровне развития обогатительной и металлургической техники могут быть экономически выгодно извлечены в товарную продукцию.

Руды состоят из минералов - природных химических соединений, подразделяющихся на рудные (ценные) и пустую породу. К пустой породе относят минералы, не содержащие извлекаемых элементов; эти породы чаще всего представлены кварцем, карбонатами, силикатами, алюмосиликатами.

Хотя с металлургической точки зрения пустая порода не представляет ценности, безотходные технологии должны полностью использовать все сырьевые ресурсы. Пустая порода может с успехом применяться при получении ряда строительных материалов (цемент, шлаковата, шлаковая брусчатка и пр.)

Состав руды определяют химическим анализом. Кроме химического состава для практических целей необходимо знать и вид присутствующих в сырье минералов (минералогический состав), и распределение всех компонентов сырья между минералами (фазовый состав).

В зависимости от вида присутствующих металлсодержащих минералов руды цветных металлов делятся на группы:

1) сульфидные, в которых металлы находятся в форме сернистых соединений. Примером таких руд могут служить медные, медно-никелевые и свинцово-цинковые руды;

2) окисленные, в которых металлы присутствуют в форме различных кислородсодержащих соединений (оксидов, карбонатов, гидроксидов и т. д.). К этой группе относятся алюминиевые, окисленные никелевые, оловянные руды, руды ряда редких металлов;

3) смешанные, в которых металлы могут находитьсякаквсульфидной, так и в окисленной форме (медные руды);

4) самородные, содержащие металлы в свободном состоянии. В самородном состоянии в природе встречаются золото, серебро, медь и платина.

Сульфидные руды по форме размещения в земной коре делятся на сплошные, состоящие почти полностью из сульфидных минералов, и вкрапленные, когда сульфиды в виде мелких включений присутствуют в пустой породе. Вкрапленные руды, как правило, беднее сплошных.

По числу присутствующих металлов руды классифицируются на монометаллические и полиметаллические (комплексные). Большинство руд цветных металлов являются полиметаллическими и содержат минимум два ценных компонента. Наиболее сложными по составу являются медные, медно-никелевые и свинцово-медно-цинковые руды. Они содержат до 10-15 ценных металлов.

Руды цветных металлов, как правило, очень бедные и содержат всего несколько процентов, а часто и доли процента основного металла. Концентрация ценных элементов-спутников обычно во много раз меньше. Однако многие сопутствующие элементы по ценности значительно превосходят основные компоненты руды. Примерная стоимостная оценка двух видов руд приведена в таблице 1.

Таблица 1 - Ценностная структура медной и окисленной никелевой руд

При переработке сложных по составу руд необходимо добиваться полного комплексного использования всех ее ценных составляющих, т. е. безотходной технологии. Об уровне технического развития металлургического предприятия и его технологии в первую очередь судят по коэффициенту комплексности использования сырья, который определяется как отношение стоимости извлеченных в товарную продукцию компонентов к их стоимости в исходной руде.

Рентабельный минимум, т. е. то минимальное содержание основного металла, которое определяет возможность и целесообразность металлургической переработки данной руды, постоянно снижается. Так, если в конце XIX в. к категории медных руд относили горные породы с содержанием меди не менее 1,5%, то сейчас эта величина снизилась до 0,4-0,5%.

Снижению рентабельного минимума способствуют развитие и совершенствование обогатительной и металлургической техники и повышение коэффициента комплексности использования сырья, т. е. чем больше извлекается ценных компонентов, тем с меньшим содержанием основного компонента экономически и технически выгодно перерабатывать руду.

Руды, как и другие полезные ископаемые, образуют естественные скопления, которые называются месторождениями. Содержание ценных элементов в месторождениях значительно выше их среднего содержания в земной коре. Самый распространенный металл в природе - алюминий (7,5%), наиболее редкие - полоний и актиний (их кларк близок к 10 -15).

Распространенность в земной коре некоторых металлов характеризуется следующими величинами, %:

Ряд металлов, например рассеянных, собственных месторождений не образует. Обычно в очень небольших концентрациях они присутствуют в виде примесей в минералах основных цветных металлов.

Так как большинство руд цветных металлов бедны, руды обычно обогащают, т.е. повышают содержание металлов в сырье, поступающем на металлургическую переработку. Основной метод обогащения, применяемый в цветной металлургии - флотация. Перед обогащением сырье проходит механическую подготовку: дробление, измельчение, грохочение.

Все используемые при производстве цветных металлов процессы подразделяются на две группы: пирометаллургические и гидрометаллургические.

Пирометаллургические процессы проводятся при высоких температурах чаще всего с полным и реже с частичным расплавлением материалов, гидрометаллургические процессы - в водных средах при температурах максимально до 300 0 С.

Выделяемые иногда в отдельную группу электрометаллургические процессы могут быть как пиро-, так и гидрометаллургическими. Отличительной особенностью этих процессов является использование электроэнергии в качестве движущей энергетической силы для их протекания.

Пирометаллургические процессы

Пирометаллургические процессы по характеру поведения участвующих в процессе компонентов иих конечным результатам можно разделить на три группы: обжиг, плавка и дистилляция.

Обжиг - металлургический процесс, проводимый при высоких температурах (500-1200°С) с целью изменения химического состава перерабатываемого сырья. Обжиговые процессы, за исключением обжига со спеканием, являются твердофазными. В цветной металлургии применяют следующие виды обжига: кальцинирующий, окислительный, восстановительный, хлорирующий и фторирующий.

Плавка - пирометаллургический процесс, проводимый при температурах, обеспечивающих в большинстве случаев полное расплавление перерабатываемого материала.

Различают две разновидности плавок - рудные и рафинировочные. По характеру протекания химических реакций рудные плавки подразделяют на виды: восстановительная, плавка на штейн, электролиз расплавленных солей, металлотермическая, реакционная. Некоторые металлы получают проведением восстановительной или окислительной плавки. В случае переработки сульфидного сырья содержащуюся в рудах серу часто используют в качестве топлива и химического реагента.

Рафинировочные плавки проводят с целью очистки полученных металлов от примесей. В их основе лежат различия в физико-химических свойствах основного металла и металлов-примесей. Различают разновидности рафинировочных плавок: окислительное (огневое) рафинирование, ликвационное, сульфидирующее рафинирование, хлорное рафинирование. Могут использоваться дистилляционные процессы - процессы испарения вещества при температуре несколько выше точки его кипения. Дистилляция с целью рафинирования называется ректификацией.

При получении металлов высокой степени чистоты также используют различные специальные методы: зонная плавка (в металлургии алюминия, вольфрама), иодидное рафинирование титана и др.

Гидрометаллургические процессы

Эта группа процессов проводится при низких температурах на границе раздела чаще всего твердой и жидкой фаз. Любой гидрометаллургический процесс состоит из трех основных стадий: выщелачивания, очистки растворов от примесей и осаждения металла из раствора.

Применяющиеся на действующих предприятиях цветной металлургии технологические процессы в большинстве случаев далеко не полностью удовлетворяют современным требованиям. Ряд процессов и их аппаратурное оформление устарели и нуждаются в замене новыми, более совершенными.

9) обеспечение возможности создания непрерывных, поточных, полностью автоматизированных технологических линий получения металлов;

10) обеспечение безопасных и безвредных условий труда и охраны окружающей природы.

ПРОИЗВОДСТВО МЕТАЛЛОВ

Металлургией называют отрасль промышленности, производя­щую металлы из руд и другого сырья.

Все металлы делят на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе; к цвет­ным - все остальные. Цветные металлы делятся на четыре группы: 1) тяжелые: медь, свинец, олово, цинк и никель; 2) легкие: алю­миний, магний, кальций, щелочные и щелочноземельные; 3) дра­гоценные, или благородные: платина, иридий, осмий, палладий, рутений, родий, золото и серебро; 4) редкие (все остальные): а) тугоплавкие: вольфрам, молибден, ванадий, титан, кобальт, цирконий иниобий; б) рассеянные: германий, галлий, таллий, индий и рений; в) редкоземельные: лантаноиды; г) радиоактивные: торий, радий, актиний, протактиний и уран; д) искусственные полоний, астат, нептуний, плутоний и др.

Сырье цветной и черной металлургии . По извлекаемому металлу руды называют железными, медными, марганцовыми, свинцовыми, медноникелевыми, урановыми и т. п. По составу их делят насульфидные, окисленные и самородные. Сульфидными рудами называются породы, в которых получаемый металл находится ввиде сульфидов. Это медные, цинковые, свинцовые и полиметаллические руды (халькопирит CuFeS 2 , галенит PbS, сфалерит ZnS и др.) Если извлекаемый металл находится в виде оксидов или другихкислородсодержащих минералов (силикаты, карбонаты), то такие руды относят к окисленным. Железные, марганцовые, алюминиевые руды чаще бывают окисленными. Руды, содержащие природные сплавы металлов, называют самородными.

На современном уровне развития технологии считается рентабельной переработка железных руд с содержанием не менее 30 % Fe, цинковых - 3% Zn имедных - 0,5 % Си.

Для получения металла из руды, кроме отделения пустой поро­ды, необходимо отделить металл от химически связанных с ним элементов. Эта стадия называется металлургическим процессом. Металлургический процесс, осуществляемый с применением высо­ких температур, называется пирометаллургическим, с использо­ванием водных растворов - гидрометаллургическим. В отдельную группу выделяют электрометаллургические процессы.

Первая стадия производства - обогащение сырья. Следующая стадия заключается в разложении концентрата обжигом, в обра­ботке его хлором, а также оксидом серы (IV) или жидкими реа­гентами(кислотами, щелочами, комплексообразователями). По­следними двумя способами извлекаемый металл переводят в раст­вор, из которого выделяется оксид или соль редкого металла осаж­дением в виде малорастворимого соединения или кристаллизацией. Завершающая стадия - получение чистого металла или сплававосстановлением углеродом или водородом, термическим разложением, вытеснением (цементация), электролизом растворов или расплавов.

В производстве тугоплавких металлов (вольфрам, молибден – завод «Победит») применяется метод порошковой металлур­гии, заключающийся в восстановлении оксидов порошкообразных металлов. Затем металлический порошок прессуют под большим давлением испекают в электрических печах, получая металл безперевода его в жидкое состояние. Температура спекания металли­ческого порошка обычно на 1/3 ниже температуры плавления ме­талла.

ПРОИЗВОДСТВО ЖЕЛЕЗА И ЕГО СПЛАВОВ

Среди используемых человеком металлов железо и его сплавы по объему и сферам применения занимают первое место. В практике обычно используют не чистое железо, а его сплавы, и в первую очередь с углеродом. В технике железом называют черный металл с содержанием углерода менее 0,2%. По количеству углерода все сплавы делят на стали и чугуны. К сталям относятся железные сплавы с содержанием углерода от 0,2 до 2%, к чугунам - с содержанием углерода выше 2% (обычно от 3,5 до 4,5%).

На рисунке 1 приведена диаграмма фазового состояния системы железо - углерод.

Как следует из диаграммы, температура начала плавления сталей снижается с ростом содер­жания углерода до точки Е. Эта точка соответствует предельной растворимости углерода в твердом железе (2% С). Для чугуна не­зависимо от количества углерода температура плавления остается постоянной.

Если в чугуне значительная часть углерода находится в виде цементита Fe 3 C, то такой чугун называется белым. Из-за высокой твердости и хрупкости его трудно обрабатывать на станках, поэтому белый чугун перерабатывается в сталь. По этому признаку он получил еще название передельного чугуна. При медленном охлаждении расплавленного чугуна часть Fe 3 C распадается с выделением свободного углерода в виде графита. Такой чугун называется серым или литейным. Он более мягок, менее хрупок и хорошо обрабатывается на станках.

По составу стали могут быть углеродистыми и легированными. Углеродистыми называют стали, свойства которых определяются углеродом, а другие примеси существенного влияния не оказы­вают. По содержанию углерода эти стали делят на: малоуглеродистые (до 0,3% С), среднеуглеродистые (от 0,3 до 0,65%) и высоко­углеродистые (от 0,65 до 2% С). Из иизкоуглеродистой стали из­готовляют кровельное железо, стальной лист, черную и белую жесть (широко используемую для изготовления тары), мягкую проволоку и т. д.; среднеуглеродистые стали используют для про­изводства рельсов, труб, проволоки, деталей машин; высокоугле­родистая служит в основном для изготовления разнообразного ин­струмента.

Легированными называют стали, содержащие, кроме углерода, другие специально введенные для изменения свойств добавки (Cr, Mn, Ni, V, W, Мо и др.). Сталь, содержащую до 3-5% леги­рующих элементов, считают низколегированной, 5-10%-среднелегированной, 10% и более - высоколегированной. Никель придает стали повышенную пластичность и вязкость, марганец - прочность, хром - твердость и коррозионностойкость, молибден и ванадий - прочность при высоких температурах и т. д. Напри­мер, марганцовистые стали (8-14% Мп) обладают высокой ударо­стойкостью, их используют для изготовления дробилок, шаровых мельниц, рельсов и других ударонапряженных изделий. Хромомолибденовые и хромованадиевые стали идут на изготовление колонн синтеза, работающих под высоким давлением и при повышенной температуре. Из хромоникелевой или нержавеющей стали изго­тавливают химические реакторы, трубопроводы, кухонную посуду, вилки, ножи и т. д. Стали также классифицируют по назначению: строительная (конструкционная), машиностроительная, инстру­ментальная и стали с особыми (специальными) свойствами. Некоторые примеси заметно ухудшают свойства стали. Так, сера придает стали красноломкость - хрупкость при красном калении, фосфор - хладноломкость, т. е. хрупкость при обычной и низкой темпера­туре, азот и водород - газопористость, хрупкость.



ПРОИЗВОДСТВО ЧУГУНА

В настоящее время главный процесс металлургического про­изводства черных металлов осуществляется по двухступенчатой схеме: получение чугуна в доменной печи и его передел в сталь. Чугун используют также для отливки станин, машин, тяжелых колес, труб и т. д. Основными исходными материалами для произ­водства чугуна являются железные руды, флюсы и топливо.

Промышленные типы железных руд классифицируюг по виду преобладающего рудного минерала: 1) магнитные железняки со­стоят в основном из минерала магнетита Fe 3 O 4 (с наиболее высоким содержанием железа - 50-70% и низким содержанием серы), который трудновосстановим; 2) красные железняки содержат 50-70% железа в виде минерала гематита - Fe 2 O 3 , небольшие примеси серы, фосфора и восстанавливаются легче, чем магнетит; 3) бурые железняки представляют собой гидроксиды железа со­става Fe 2 O 3 × пН 2 О с переменным количеством адсорбированной воды. Эти руды в основном бедные по содержанию железа (от 25 до 53%), часто загрязнены вредными примесями - серой, фосфо­ром, мышьяком. Встречаются хромоникелевые бурые железняки (2% Cr и 1% Ni), используемые для выплавки природнолегированных чугуна и стали; 4) шпатовые железняки содержат 30-37% Fe, а также FeCO 3 и незначительные примеси серы и фосфора. После обжига содержание железа возрастает до 50-60%. Для сидеритов часто характерна примесь марганца от 1 до 10%.

Сырьем служат также отходы производства черных и цветных металлов, но их доля в общем потреблении руд невелика. Для перевода тугоплавких оксидов в легкоплавкий шлак, не смешиваю­щийся с чугуном, в процессе доменной плавки используют флюсы - породы основного характера: известняк или доломит (СаСО 3 , MgCO 3). Обычно на выплавку 1 т чугуна расходуется 0,4-0,8 т флюсов.

В качестве топлива в производстве чугуна применяют кокс с содержанием 80-86% С, 2-7% Н 2 О, 1,2-1,7% S, до 15% золы и природный газ.

Подготовка железной руды к доменной плавке заключается в
дроблении, грохочении, усреднении и обогащении. Обо­гащение ведут в зависимости от типа руды восстановительным обжигом, электромагнитной сепарацией, флотацией. В нашей стране практически всю добываемую руду на последнем этапе подготовки подвергают агломерации. Это процесс спекания измельченной руды с коксовой мелочью (5-8%) и обожженным известняком (3-6%) в агломерационной машине транспортерного типа. Наряду с агломерацией применяют и окомковывание пылевидной руды со связующим веществом во вращающихся обжиговых печах с получением окатышей.

Процесс доменной плавки . Чугун выплавляют в металлур­гических реакторах шахтного типа, называемых до­менными печами или домнами. Описание доменной печи дано в лекции 4.

В зоне горна за счет интенсивной подачи воздуха поддерживается окислительная среда и углерод кокса сгорает:

С + О 2 = СО 2 + 401 кДж

Воздух, подаваемый в доменную печь, нагревается в регенерагивных воздухоподогревателях (кауперах) до 900-1200 °С (рис. 2).

Оксид углерода (IV) на поверхности раскаленного кокса восстанавливается до оксида углерода (II):

2С + СО 2 = 2СО - 166 кДж

Образовавшийся в горне восстановительный газ поднимается в верхнюю часть печи, нагревает и восстанавливает компоненты шихты. Наивысшая температура в горне доменной печи 1800 °С, низшая в колошнике 250 °С. Давление газа в горне 0,2-0,35 МПа.

По мере опускания шихты последовательно протекают следую­щие процессы: разложение нестойких компонентов шихты, вос­становление оксидов железа и других соединений, науглероживание железа (растворение углерода), шлакообразование и плавле­ние. Разложение компонентов шихты начинается в колошнике, одновременно (до 200 °С) удаляется влага. При нагревании шихты от 400 до 600 °С идет интенсивное разложение карбонатов железа, марганца, магния, а при 800-900 °С - известняка. Оксиды каль­ция и магния взаимодействуют с ингредиентами пустой породы, образуя силикаты и алюминаты. Из кокса удаляются остатки ле­тучих компонентов.

Восстановление железа представляет собой процесс последова­тельного перехода от высших оксидов к низшим до элементарного железа по схеме:

Fe 2 O 3 ® Fe 3 O 4 ® FeO ® Fe

В основу восстановительного процесса заложены реакции окси­да углерода с оксидами железа:

2Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 + 63 кДж

Fe 3 O 4 + CO = 3FeO + CO 2 - 22 кДж

FeO + CO = Fe + CO 2 + 13 кДж

Восстановление железа оксидом углерода (II) принято назы­вать косвенным (непрямым), а при помощи твердого углерода – прямым.

Прямое восстановление железа протекает не только за счет углерода кокса, но и углерода, образующегося при термической диссоциации оксида углерода (II) на поверхности руды:

2СО = СО 2 + С

Применение природного газа в качестве дополнительного топли­ва способствует повышению температуры процесса и косвенному восстановлению руды водородом:

СН 4 + 2О 2 = СО 2 + 2Н 2 + 803 кДж

Н 2 О + С = Н 2 + СО - 126 кДж

Кроме железа, в условиях доменного процесса восстанавлива­ются и другие элементы, входящие в состав шихты. Однако зна­чительная часть марганца не восстанавливается и переходит в шлак.

Гетерогенное восстановление руды заканчивается получением губчатого железа, в порах которого оксид углерода (II) разлагает­ся. Образовавшийся при этом сажистый углерод с железом дает цементит:

3Fе + С = Fe 3 C

Одновременно идет науглероживание железа и за счет растворе­ния углерода. Повышение содержания углерода в железе приводит к снижению температуры его плавления. Примерно при 1200 °С науглероженное железо плавится, стекает по кускам кокса и флюсов, дополнительно растворяя углерод, кремний, марганец, фосфор и другие элементы. Расплавленный чугун накапливается в горне. Шлакообразование начинается при температуре около 1000 °С за счет взаимодействия оксида кальция с оксидом кремния (IV), оксидом алюминия, марганца. При 1250-1350 °С шлаки плавятся и накапливаются в горне над расплавленным чугуном. Для преду­преждения перехода FeO в шлак и выведения серы необходимо повышать основность шлака (избыток СаО):

FeO × SiO 2 + СаО = CaSiO 3 + FeO

FeO + CO = Fe + CO 2

FeS + CaO = FeO + CaS

MnS + CaO = MnO + CaS

Образовавшийся сульфид кальция растворим в шлаке, но нерастворим в чугуне.

Для обеспечения непрерывности процесса доменную печь об­служивают несколько воздухонагревателей. Применение в домен­ном процессе нагретого воздуха в пределах 1000-1350 °С дает возможность на каждые 100° увеличивать производительность на 2% и на столько же снизить расход кокса.

В результате доменной плавки получают литейный чугун, на­правляемый на изготовление изделий методом литья; передельный и специальный чугуны (ферросилиций - 10-12% Si, зеркальный - 12 - 20% Мn и ферромарганец - 60-80% Мn), перерабатывае­мые в сталь; доменный шлак, из которого производят различные строительные материалы: шлакопортландцемент, шлакобетон, шла­ковату, ситаллы для дорожного строительства; доменный газ (до 30% СО) отделяют от колошниковой пыли и используют как топли­во в воздухонагревателях, коксовых печах, для нагрева металла перед прокатом.

ПРЯМОЕ ПРОИЗВОДСТВО ЖЕЛЕЗА ИЗ РУД

Это такой металлургический процесс, когда восстановление руды идет в твердом состоянии, минуя стадию получения чугуна. Полученное методом прямого восстановления губчатое железо перерабатывается в сталь в электродуговых печах. Прямое вос­становление железа осуществляется в шахтных и вращающихся печах, в реакторах с кипящим слоем. Сырьем служат окатыши с высоким содержанием железа, рудная мелочь, восстановителем - природный газ, жидкое и пылевидное твердое топливо. В России на базе Лебединского месторождения действует Оскольский электрометаллургический комбинат с прямым получением железа из руды по следующей схеме. Из рудника мелкораздроб­ленную и обогащенную руду по трубопроводу с водой подают на комбинат. Здесь руда отделяется от воды, смешивается со связую­щими веществами и небольшим количеством извести, во вращаю­щихся барабанах окусковывается в окатыши определенного раз­мера. Окатыши непрерывно загружают в верхнюю часть шахтного реактора (высота - 50 м, диаметр -8 м), в котором при 1000 - 1100 °С осуществляется противотоком восстановление предварительно нагретым и конвертированным природным газом (сме­сью водорода и оксида углерода). Из нижней части реактора не­прерывно отводятся восстановленные окатыши с 90-95% содер­жанием железа. Они поступают в дуговую электропечь для выплавки стали.

ПРОИЗВОДСТВО СТАЛИ

Передел чугуна в сталь заключается в уменьшении в нем угле­рода (окислением), в понижении в металле содержания крем­ния, марганца и других элементов, в возможно полном удалении серы и фосфора. В качестве окислителей используют кислород и оксиды железа. В настоящее время сталь выплавляют в марте­новских печах, кислородных конвертерах и электрических печах периодического действия.


Выплавка стали в мартеновских печах . Мартеновская печь (рис. 3) представляет собой ванную отражательную печь, в ко­торой используют регенерацию теплоты отходящих газов. Она состоит из свода 3, передних, задних и боковых стен, пода 4 и ре­генераторов 5 -8. В передней стенке расположены окна для за­грузки шихты, в задней - отверстие для выпуска стали и шла­ков, боковые отверстия служат для ввода газового топлива и воздуха и вывода продуктов горения с температурой 1600 °С. Для регенерации теплоты печь снабжена четырьмя камерами с насад­кой из огнеупорного кирпича. Через одну пару нагретых насадок 7, 8 в печь направляют газ и воздух, а через вторую проходят продукты горения, нагревающие насадку 5, 6. Затем потоки ме­няются. Исходными материалами для мартеновского процесса служат жидкий или твердый передельный чугун, металлолом (скрап), высококачественная железная руда и флюсы. Отапливается печь газообразным топливом. По окончании плавки в сильно разогретую печь загружают жидкий чугун, скрап, флюсы и руды. При высокой температуре металлолом плавится, кислород воздуха окисляет железо до оксида железа, одновременно высшие оксиды железа восстанавливаются железом:

2Fe + O 2 = 2FeO + 556 кДж

Fe 2 O 3 + Fe = 3FeO

Оксид железа (II), хорошо растворяясь в чугуне, окисляет растворенные в нем другие компоненты:

Si + 2FeO = SiO 2 + 2Fe + 264 кДж

Mn + FeO = MnO + Fe + 100 кДж

2P + 5FeO = P 2 O 5 + 5Fe + 199 кДж

Частично эти элементы окисляются и кислородом воздуха. Образующиеся оксиды SiO 2 , MnO, P 2 O 6 взаимодействуют с флюсами и превращаются в шлак. В шлак частично переходит сера, так как сульфид кальция нерастворим в металле:

СаО + FeS = FeO + CaS

С появлением над поверхностью металла шлака жидкий ме­талл изолируется от непосредственного действия кислорода, но процесс окисления не прекращается, а лишь замедляется. Со­держащийся в шлаке оксид FeO на поверхности окисляется в Fe 2 O 3 , который диффундирует через шлак к металлу, окисляя его. С рос­том температуры до 1600 °С и выше начинает интенсивно окислять­ся углерод:

FeO + С =± Fe + СО - 153 кДж

Процесс выделения из жидкого металла оксида углерода (II) называют «кипением» стали. После достижения в расплаве ус­тановленного содержания углерода шлак удаляют и вводят в сталь раскислители - ферросилиций или ферромарганец для восста­новления растворенной в стали FeO:

2FeO + Si = 2Fe + SiO 2

FeO + Mn = Fe + MnO

При необходимости в конце плавки вводят легирующие элементы. В связи с высокими технико-экономическими показателями переделки чугуна в сталь кислородно-конверторным способом, строительство новых мартеновских печей прекращено.

Выплавка стали в кислородных конвертерах . Применяемый ранее бессемеровский и томассовский конверторные способы пере­делки чугуна в сталь имели существенные недостатки - невоз­можность использования металлолома и низкое качество стали вследствие растворения в ней азота воздуха по сравнению с марте­новским методом. Замена воздуха на кислород дала возможность устранить эти недостатки, и в настоящее время прирост производ­ства стали происходит преимущественно за счет строительства высокопроизводительных и экономичных кислородных конвер­теров с основной футеровкой.

В России действуют глуходонные конвертеры с вве­дением технически чистого кислорода (99,5%) вертикально сверху через водоохлаждаемые фурмы. Кислородные струи под давлением 0,9-1,4 МПа пронизывают металл, вызывая его цир­куляцию и перемешивание со шлаком. При кислородно-конвер­торном способе передела чугуна в сталь протекают те же реакции, что и при мартеновском, но более интенсивно, что дает возможность вводить в конвертер металлолом, руду, флюсы. Плавка в конвер­тере длится 35-40 мин, а скоростная мартеновская плавка 6-8 ч. При равной производительности капитальные затраты на строи­тельство кислородно-конверторного цеха на 25-35% ниже, а себе­стоимость стали на 5-7% меньше, чем при мартеновском способе.

Выплавка стали в электропечах относится к электротермическим производствам. В электрических печах можно выплавлять стали практически любого состава, с добавлением легирующих элементов, с низким содержанием серы, в восстановительной, окислительной или нейтральной атмосфере, а также в вакууме. Электросталь от­личается низким содержанием газов и неметаллических примесей.

Качество стали, полученной любым из трех рассмотренных методов, может быть улучшено путем внепечного рафинирования. Наиболее широко распространены в производстве все три метода рафинирования: аргонно-кислородная продувка металла для вы­плавки нержавеющих сталей, вакуумная обработка жидкой стали для ее очистки от неметаллических включений и водорода, об­работка стали жидкими синтетическими шлаками (53% СаО, 40% А1 2 О 3 , до 3% SiO и до 1 % FeO).

Основная часть стали перерабатывается в изделия путем меха­нической обработки. Традиционная схема: разлив стали в чугун­ные формы - изложницы, кристаллизация в виде слитка, обрезка и зачистка слитка, превращение слитка в обжимных станах (блю­минг, слябинг) в заготовку, далее заготовка перерабатывается в изделия прокатом, штамповкой или ковкой. В настоящее время в металлургии все шире внедряется непрерывная разливка стали в специальных установках с превращением металла непосредственно в заготовку, а также точное (корковое) литье. Перспективным направлением развития металлургии стала порошковая металлургия, открывающая большие возможности для создания но­вых материалов, экономии металлов, энергии и повышения произ­водительности труда.

История человечества насчитывает не одну тысячу лет. На протяжении всего периода существования нашей расы отмечается стабильный технический прогресс, немаловажную роль в котором сыграло умение человека обращаться с металлом, создавать и добывать его. Поэтому вполне логично, что металлургия - это то, без чего невозможно представить наш быт, нормальное выполнение рабочих обязанностей и многое другое.

Определение

Прежде всего стоит разобраться с тем, как по-научному, с технической точки зрения, называют современную сферу производства.

Итак, металлургия - это раздел науки, техники, который охватывает процесс получения различных металлов из руды или иных материалов, а также все процессы, имеющие связь с трансформацией химического состава, свойств и структуры сплавов.

Структура

На сегодняшний день металлургия - это мощнейшая отрасль промышленности. Кроме того, она - обширное понятие, которое включает в себя:

  • Непосредственное производство металлов.
  • Обработку металлических изделий как в горячем, так и холодном виде.
  • Сварку.
  • Нанесение различных металлических покрытий.
  • Раздел науки - материаловедение. Данное направление в теоретическом изучении физико-химических процессов ориентируется на познание поведения металлов, сплавов и интерметаллидов.

Разновидности

Во всем мире существует две основные отрасли металлургии - черная и цветная. Такая градация сложилась исторически.

Черная металлургия заключается в обработке железа и всех сплавов, в котором оно присутствует. Также эта отрасль подразумевает извлечение из недр земли и последующее обогащение руд , сталелитейное и чугунолитейное производство, прокат заготовок, производство ферросплавов.

К цветной металлургии причисляют работу с рудой любого металла, кроме железа. Кстати, условно делят на две большие группы:

Тяжелые (никель, олово, свинец, медь).

Легкие (титан, магний, алюминий).

Научные решения

Несомненно, что металлургия - это деятельность, требующая внедрения инновационных технологий. В связи с этим многие страны нашей планеты активно ведут исследовательские работы, целью которых является изучение и применение на практике самых разнообразных микроорганизмов, которые помогли бы решить, например, такой злободневный вопрос, как очистка сточных вод, являющихся обязательной составляющей металлургического производства. Помимо этого, уже стали реальностью такие процессы, как биологическое окисление, осаждение, сорбция и прочие.

Разделение по технологическому процессу

Заводы металлургии можно условно причислить к двум основным группам:

Пирометаллургии, где процессы протекают при очень высоких температурах (плавка, обжиг);

Гидрометаллургии, которая заключается в извлечении металлов из руд при помощи воды и прочих водных растворов с использованием химических реактивов.

Принцип выбора места постройки металлургического завода

Для того чтобы понять, на основе каких выводов принимается решение о возведении предприятия в том или ином месте, стоит рассмотреть основные факторы размещения металлургии.

В частности, если вопрос касается дислокации завода цветной металлургии, то здесь на первый план выходят такие критерии, как:

  • Наличие энергоресурсов. Производство, связанное с обработкой легких цветных металлов, требует колоссального количества электрической энергии. Поэтому подобные предприятия возводят максимально близко к гидроэлектростанциям.
  • Требуемое количество сырья. Разумеется, что чем ближе находятся залежи руды, тем, соответственно, лучше.
  • Экологический фактор. К сожалению, страны постсоветского пространства не могут быть отнесены в категорию, где предприятия металлургии являются экологически безопасными.

Таким образом, размещение металлургии - сложнейший вопрос, решению которого следует уделять самое пристальное внимание с учетом всевозможных требований и нюансов.

Для формирования максимально подробной картины в описании обработки металлов важно указать на ключевые участки данного производства.

Предприятия черной металлургииимеют в своем составе несколько так называемых переделов. Среди них: аглодоменный, сталеплавильный, прокатный. Рассмотрим каждый из них детальнее.

Доменное производство

Именно на этом этапе осуществляют освобождение железа непосредственно из руды. Происходит это в доменной печи и при температуре свыше 1000 градусов Цельсия. Таким образом происходит выплавка чугуна. Свойства его будут напрямую зависеть от протекания процесса плавки. Регулируя плавление руды, можно в конечном счете получить один из двух передельный (используют в дальнейшем для производства стали) и литейный (из него отливают чугунные заготовки).

Производство стали

Соединяя железо с углеродом и, при необходимости, с различными легирующими элементами, в итоге получают сталь. Методов ее выплавки достаточно количество. Особо отметим кислородно-конверторный и электроплавильный, которые являются самыми современными и высокопродуктивными.

Конверторная плавка характеризуется своей скоротечностью и получением в итоге стали с требуемым химическим составом. Основу процесса составляет продувка кислородом через фурму, в результате чего чугун окисляется и трансформируется в сталь.

Электросталеплавильный способ - самый эффективный. Именно благодаря использованию дуговых печей можно выплавить самые качественные легированные марки стали. В подобных агрегатах нагрев загруженного в них металла происходит очень быстро, при этом есть возможность добавлять необходимое количество легирующих элементов. Кроме того, получаемая таким методом сталь имеет низкое содержание неметаллических включений, серы и фосфора.

Легирование

Этот процесс заключается в изменении состава стали посредством внедрения в нее рассчитанных концентраций вспомогательных элементов для последующего придания ей определенных свойств. В числе наиболее часто применяемых легирующих компонентов значатся: марганец, титан, кобальт, вольфрам, алюминий.

Прокат

Многие заводы металлургииимеют в своем составе прокатную группу цехов. В них производят как полуфабрикаты, так и уже полностью готовую продукцию. Сущность процесса заключается в пропуске металла в зазоре между вращающимися в противоположных направлениях стана. Причем ключевым моментом является то, что расстояние между валками должно быть меньше, чем толщина пропускаемой заготовки. За счет этого металл втягивается в просвет, перемещается и в итоге деформируется до заданных параметров.

После каждого пропуска зазор между валками делают меньше. Важный момент - зачастую металл недостаточно пластичен в холодном состоянии. И потому для обработки его заранее подогревают до требуемой температуры.

Потребление вторичного сырья

В современных условиях рынок потребления вторсырья как черных, так и цветных металлов неуклонно развивается. Во многом это обусловлено тем, что ресурсы руды, к огромному сожалению, не являются возобновляемыми. Каждый год их добычи существенно снижает запасы. Учитывая тот факт, что потребности в металлопродукции в машиностроении, строительстве, авиастроении, судостроении и прочих отраслях народного хозяйства неуклонно растут, вполне разумным выглядит решение развивать переработку уже отработавших свой ресурс деталей и изделий.

Можно с уверенностью утверждать, что развитие металлургии в некоторой степени объясняется и позитивной динамикой сегмента отрасли - использованием вторичного сырья. При этом переработкой металлолома занимаются и крупные, и мелкие компании.

Мировые тенденции развития металлургии

В последние годы наблюдается чёткое повышение объемов выпуска металлопроката, стали и чугуна. Во многом это объясняется настоящей экспансией Китая, который стал одним из ведущих планетарных игроков на рынке металлургического производства.

При этом различные факторы металлургии позволили Поднебесной отвоевать себе практически 60% всего мирового рынка. Остальную десятку основных производителей составили: Япония (8%), Индия и Соединенные Штаты Америки (6%), Россия и Южная Корея (5%), Германия (3%), Турция, Тайвань, Бразилия (2%).

Если же рассматривать отдельно 2015 год, то наблюдается тенденция снижения активности производителей металлопродукции. Причем самый большой спад отмечен в Украине, где был зафиксирован результат, который на 29,8% ниже прошлогоднего.

Новые технологии в металлургии

Как и любая другая промышленность, металлургия просто немыслима без разработки и внедрения на практике инновационных разработок.

Так, сотрудники Нижегородского государственного университета разработали и начали внедрять в практику новые наноструктурированные износостойкие твердые сплавы, в основе которых лежит карбид вольфрама. Основное направление применения новшества - производство современного металлообрабатывающего инструмента.

Кроме того, в России был модернизирован колосниковый барабан со специальной шаровой насадкой с целью создания новой технологии переработки жидкого шлака. Это мероприятие было выполнено на основе государственного заказа Министерства образования и науки. Такой шаг полностью себя оправдал, поскольку его результаты в итоге превзошли все ожидания.

Крупнейшие предприятия металлургии в мире

  • Arcelor Mittal - компания с главным офисом в Люксембурге. Ее доля составляет 10% всего мирового производства стали. В России компании принадлежат шахты Березовская, Первомайская, Анжерская, а также "Северсталь-групп".
  • Hebei Iron & Steel - гигант из Китая. Он полностью принадлежит государству. Помимо производства, компания занимается добычей сырья, его транспортировкой и проведением научно-исследовательских работ. На заводах компании используются исключительно новые разработки, и самые современые технологические линии что позволило китайцам научиться производить ультратонкие стальные плиты и сверхтонкий холоднокатанный лист.
  • Nippon Steel - представитель Японии. Менеджмент компании, которая начала свою работу еще в 1957 году, стремится к объединению с другим предприятием, именуемым Sumitomo Metal Industries. По мнению экспертов, такое слияние позволит достаточно быстро выйти японцам на первое место в мире, обогнав всех своих конкурентов.


Закрытие ИП