Как найти максимальный поток в сети пример. Алгоритм нахождения максимального потока

Сумма потоков через дуги, инцидентные v , равна сумме потоков через дуги, инцидентные w ; эта сумма называется величиной потока. Будем в первую очередь интересоваться потоками, имеющими наибольшую возможную величину, - так называемыми максимальными потоками. В общем случае сеть может иметь несколько различных максимальных потоков, однако их величины должны совпадать. (4)

Изучение максимальных потоков через сеть N = (V,D,a) тесно связано с понятием разреза, т.е. такого множества A дуг орграфа D, которое обладает тем свойством, что любая простая цепь из v в проходит через дугу, принадлежащую A. Пропускной способностью разреза называется сумма пропускных способностей принадлежащих ему дуг. Разрезы, обладающие наименьшей возможной пропускной способностью, называются минимальными разрезами.

Величина любого потока не превышает пропускной способности любого разреза, и, следовательно, величина любого максимального потока не превышает пропускной способности любого минимального разреза. Однако сразу не ясно, что два последних числа всегда равны между собой; Этот результат был получен американскими математиками Фордом и Фалкерсоном в 1955 году и назван теоремой о максимальном потоке и минимальном разрезе.

Теорема (о максимальном потоке и минимальном разрезе) . Во всякой сети величина любого максимального потока равна пропускной способности любого минимального разреза.

Теорема о максимальном потоке и минимальном разрезе позволяет проверять, максимален данный поток или нет, но только для достаточно простых сетей. Разумеется, на практике приходится иметь дело с большими и сложными сетями, и в общем случае трудно найти максимальный поток простым подбором. Опишем один алгоритм нахождения максимального потока в любой сети с целочисленными пропускными способностями.

Шаг 1 . Сначала подберем поток, обладающий ненулевой величиной (если такой поток существует). Например, если N – сеть, представленная на рис. 29.3, то подходящим будет поток, изображенный на рис. 29.4. Стоит отметить, что чем больше величина выбранного нами начального потока , тем проще будут последующие шаги.

Шаг 2 . Исходя из N, строим новую сеть N’ путем изменения направления потока на противоположное. Более точно, любая дуга a, для которой(a) = 0, остается в N’ со своей первоначальной пропускной способностью, а любая дуга a, для которой , заменяется дугой a с пропускной способностью и противоположно направленной дугой с пропускной способностью (a). Сеть N’ в нашем примере показана на рис. 29.5. Вершина v уже не является источником,а – стоком.

Шаг 3 . Если в сети N’ мы сможем найти ненулевой поток из v в, то его можно добавить к первоначальному потокуи получить в N новый поток’большей величины. Теперь можно повторить шаг 2, используя при построении сети N’ новый поток’ вместо. Повторяя эту процедуру, мы в конце концов придем к сети N’ , не содержащей ненулевых потоков; тогда соответствующий потокбудет максимальным потоком. Например, на рис. 29.5 существует ненулевой поток, в котором потоки через дуги (v,u ), (u,z ), (z,x ), (x,y ) и (y, ) равны единице, а потоки через остальные дуги равны нулю. Добавляя этот поток к потоку на рис. 29.4, получим поток, изображенный на рис. 29.6; повторяя шаг 2, легко показать, что это и есть максимальный поток.


Используемая литература:

(1) http://pgap.chat.ru/zap/zap264.htm#0

(2) Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы

(3) Басакер Р., Саати Т. Конечные графы и сети.

(4) Уилсон Р. Введение в теорию графов

Потоки в сетях

Задача о максимальном потоке

Пусть задана сеть, состоящая из множества вершин Е и множества дуг, соединяющих некоторые упорядоченные пары вершин, взятых из Е. Будем предполагать, что она является симметрическим графом, т. е. если дуга () входит в сеть, то в нее входит и симметричная дуга (), хотя реально такой дуги может и не быть. Для определенности присвоим вершинам сети следующие номера: . Каждая вершина характеризуется интенсивностью . Вершины, для которых , назовем источниками, вершины, для которых , - стоками, а остальные - промежуточными. По путям сети направляются некоторые потоки - однородное вещество (газ, жидкость) или транспорт - из источников в стоки. Каждой дуге () сети поставлено в соответствие число , называемое пропускной способностью дуги. Под пропускной способностью дуги понимается максимальный поток, который она может пропустить за единицу времени. Пусть , и для остальных вершин, тогда - единственный источник, - единственный сток, а - промежуточные вершины сети.

Ставится задача определить для заданной сети максимальную величину потока из источника в сток . Под потоком в сети из источника в сток будем понимать совокупность потоков {} по всем дугам сети, где - поток по дуге (), , равный количеству перемещаемой по ней субстанции в единицу времени. Математически задача о максимальном потоке формулируется следующим образом: найти неотрицательные значения для всех , максимизирующие

(3.9)

при ограничениях:

(3.11)

Условие (3.9) отражает величину максимального потока, который равен количеству вещества, вытекающего из источника, или притекающего в сток. Условия (3.10) означают, что поток по каждой дуге должен быть неотрицательным и не превышать ее пропускной способности; из условия (3.11) следует, что количество вещества, притекающего в любую промежуточную вершину, равно количеству вещества, вытекающего из нее.

До сих пор мы рассматривали сети с единственным источником и стоком. На практике, однако, число источников и стоков может быть произвольным. Покажем, что с помощью незначительных изменений топологии задачи такого типа могут быть сведены к уже рассмотренным.

Проиллюстрируем это на примере.

Рассмотрим сеть, состоящую из трех источников и двух стоков (Рис. 3.10). Пусть, для определенности, данная сеть описывает следующую задачу.

Места добычи нефти расположены в географических пунктах . Из мест добычи нефть транспортируется на нефтеперерабатывающие заводы через некоторые промежуточные пункты . Совокупность пунктов с соединяющими их транспортными магистралями изобразим в виде сети на Рис. 3.10, дуги соответствуют транспортным магистралям, а вершины - отдельным пунктам (местам добычи, заводам, станциям перекачки или железнодорожным станциям). Пропускные способности транспортных магистралей приписаны дугам сети. Чтобы определить, какое максимальное количество нефти можно транспортировать из мест добычи на нефтеперерабатывающие заводы, необходимо расширить сеть, добавив один фиктивный источник и один фиктивный сток (фиктивные дуги на рисунке нанесены штриховыми линиями).

Очевидно, что величину потока как в исходной сети, так и в расширенной сети определяют пропускные способности дуг исходной сети. Таким образом, задача о максимальном потоке из множества источников во множество стоков равносильна задаче о максимальном потоке из единственного источника в единственный сток.


Рис. 3.10. Введение фиктивного источника и стока

Пример 3.

Приведем пример решения задачи о максимальном потоке в Excel. Рассмотрим некоторую транспортную сеть (Рис. 3.11.). Предположим также, что транспортные потоки могут идти в обоих направлениях некоторых дуг (очевидно, данный случай является более общим и сложным для решения, чем случай односторонних транспортных потоков). На рисунке обозначены максимальные пропускные способности в обоих направлениях: например из пункта 3 в пункт 6 может быть транспортирован поток интенсивностью 4 единицы, и такой же поток – из пункта 6 в пункт 3 (нули у окончаний некоторых дуг означают невозможность транспортировки в соответствующем направлении). Требуется определить максимальную пропускную способность сети в целом, т.е. максимальное значение потока .

Рис. 3.11. Сетевой график примера 3.

Решение.

Так как предполагается, что для каждого промежуточного узла сети полный входящий поток должен быть равен полному выходящему потоку, то задача может быть сформулирована следующим образом:

Максимизировать при ограничениях:

Введем данные на рабочий лист в соответствии с Рис. 3.12.

Рис. 3.12. Данные для решения задачи о максимальном потоке

Диапазон ячеек A6:Q6 отведем под расчетные значения переменных. В ячейки A8:A14, а также в целевую ячейку F13 введем следующие формулы

C6+D6+I6-E6-H6-J6

G6+N6+H6+K6-L6-I6-M6-P6

F13 (целевая)

После запуска Поиска решения введем следующие ограничения:

В окне диалога Поиска решения в для диапазона изменяемых ячеек укажем A6:Q6.

В результате решения получим ответ: ; потоки в дугах представлены ниже

Пункты (узлы)

Пункты (узлы)

Следует отметить, что данная задача имеет неединственное оптимальное решение, то есть при максимальном потоке в 17 единиц может иметь место различное распределение потоков по дугам.


Пусть задан ориентированный граф G=, в котором направление каждой дуги vÎV означает направление движения потока (например поток автомобилей), пропускная способность каждой дуги равна d(v). На множестве вершин E выделены две вершины t и s . Вершина t является источником потока, s - стоком. Требуется определить максимальный поток, который может быть пропущен из вершины t в s .

Обозначим через x(v) величину потока, движущегося по дуге v . Очевидно, что

0£ x(v) £ d(v) , vÎV . (6. 1)

В каждой вершине iÎE\{t,s} объем потока входящего равен объему потока выходящего, т.е. справедливо равенство

{x(v )|i Î V + (i)}= {x(v)| iÎ V - (i)}

{x(v)| iÎV + (i)} - {x(v)| iÎV - (i)}=0. (6.2)

Для вершины t

{x(v)| iÎV + (i)} -{x(v)¦ iÎV - (i)}=-Q, (6.3)

для вершины s

{x(v)| iÎ V + (i)} -{x(v)¦ i Î V - (i)}= Q. (6.4)

Величина Q является величиной потока, который выходит из вершины t и входит в вершину s .

Требуется определить

Q ® max (6.5)

при ограничениях (6.1-6.4).

Величины Q, x(v) , vÎV, удовлетворяющие ограничениям (6.1-6.4) будем называть потоком в сети, и если они максимизируют величину Q , то максимальным потоком. Нетрудно видеть, что значения Q=0, x(v)=0, vÎV , являются потоком в сети.

Задача (6.1-6.5) является задачей линейного программирования и ее можно решить алгоритмами симплекс-метода.

Разобьем множество вершины Е на две непересекающиеся части Е1 и Е2 таким образом, чтобы tÎE1, sÎE2 . Разрезом V(E1,E2) , разделяющим t и s будем называть множество V(E1,E2)ÌV такое, что для каждой дуги v Î V(E1,E2) либо h1(v)ÎE1 и h2(v)ÎE2 , либо h1(v)ÎE2 и h2(v)ÎE1 .

Разобьем множество V(E1,E2) на две части V(E1,E2,+),V(E1,E2,-) следующим образом:

V(E1,E2,+)={vÎV(E1,E2)| h1(v)ÎE1 и h2(v)ÎE2}

V(E1,E2,-)= { vÎV(E1,E2)| h2(v)ÎE1 и h1(v)ÎE2}

Пропускной способностью разреза будем называть

Q(E1,E2) = {x(v)| vÎV(E1,E2,+)}-{x(v)| vÎV(E1,E2,-)}

Справедлива следующая

Теорема 1 . (О максимальном потоке и минимальном разрезе).

В любой сети величина максимального потока из источника t в сток s равна минимальной пропускной способности Q(E1,E2) среди всех разрезов V(E1,E2) , разделяющих вершины t и s .

Заметим, что в максимальном потоке

x(v)=d(v) , vÎV(E1,E2,+),

x(v)=0 , vÎV(E1,E2,-).

Пусть Q, x(v), vÎV, - некоторый поток в сети, последовательность

t=i(0),v(1),i(1),v(2),i(2),...,v(k),i(k)=s,

является цепью, соединяющих вершины t и s . Зададим на этой цепи направление движения от вершины t к s . Дуга v(j) из этой цепи называется прямой, если ее направление совпадает с направлением движения от t к s , и обратной в противном случае. Эту цепь будем называть путем увеличения потока , если для прямых дуг v цепи x(v) < d(v) и для обратных x(v) > 0 . По этой цепи можно пропустить дополнительный поток q из t к s величиной q = min (q1,q2), где q1=min (d(v) -x(v)) , минимум берется по всем прямым дугам цепи, q1=min (x(v)) , минимум берется по всем обратным дугам цепи.

Теорема 2 .

Поток Q, x(v) , vÎV , максимальный тогда и только тогда, когда не существует пути увеличения потока.

Предлагаемый алгоритм решения задачи о максимальном потоке в сети, основан на поиске пути увеличения потока из t в s , который в свою очередь основан на процессе расстановки пометок вершин. Будем говорить, что

вершина i помечена пометкой q(i)>0 , а также известна дуга прямая дуга v(i) , через которую поступил этот поток, либо помечена пометкой , если до нее дошел некоторый дополнительный поток величиной q(i)>0 , а также известна обратная дуга v(i) , через которую поступил этот поток;

вершина i просмотрена, если помечены все соседние с ней вершины.

Если помечена вершина s, то найден путь увеличения потока величиной q , который пропускается по этому пути. Для описания алгоритма нам понадобится также массив SPW , в который помещаются номера помеченных вершин в порядке их пометки. С1 - номер в массиве SPW просматриваемой вершины, С2 - номер последней помеченной вершины в этом массиве.

Решить задачу нахождения максимального потока в транспортной сети с помощью алгоритма Форда-Фалкерсона, и построить разрез сети S.
Исходные данные:
Дана сеть S(X,U)
- исток сети; - сток сети, где ∈X; ∈X.
Значения пропускных способностей дуг заданы по направлению ориентации дуг: от индекса i к индексу j.

r = 39; r = 44; r = 33; r = 53; r = 10;
r = 18; r = 95; r = 16; r = 23; r = 61;
r = 81; r = 71; r = 25; r = 15; r = 20

1. Зададим на сети нулевой поток (на всех дугах величина потока равна 0). Нулевой поток - это начальный допустимый поток на сети. Значение потока на каждой дуге будем указывать за скобками пропускной способности дуги.). Значение потока, равное «0», не указываем.
2. Выбираем на сети (произвольно) путь, ведущий из вершины x0 в вершину x7:
X0-X1-X4-X6-X7
3. Находим и увеличиваем поток на эту величину. Ребро Х1-Х4 помечаем как рассмотренное.


4. Выбираем еще один путь, например: Х0-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х0-Х2 помечаем как рассмотренное.


5. Выбираем еще один путь, например: Х0-Х3-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х3-Х2 помечаем как рассмотренное.


6. Более путей от Х0 до Х7 нет, суммируем увеличения потока: 25+10+20=55.
Вывод: максимальный поток равен 55.

2) Построить разрез сети S.
Процедура «пометок вершин».
Начальное состояние: все вершины не имеют пометок.
Вершине Х0 приписывается пометка. Всем вершинам , для которых дуга не насыщена присваиваются пометки (красные круги)


Определяем дуги минимального разреза: это дуги, начала которых находятся в помеченных вершинах, а концы - в непомеченных вершинах.
Это дуги:
Таким образом, минимальный разрез данной сети
Вычисление величины максимального потока

Крайний случай: если матрица вся одного цвета - ответ 0.
Добавим фиктивные исток и сток. От истока ко всем белым вершинам проведем ребра, весом в B (цена перекраски в черный). От черных вершин ко стоку проведем ребра, весом в W (цена перекраски в белый). И между всеми соседними вершинами (будь они одного или разных цветов) - ставим ребро весом в G (серая линия). Величина максимального потока будет ответом на задачу.
Источник: Всеукраинская школьная олимпиада по информатике, 2007, День 1
  • Задача с ограничением на вершины. Пусть надо найти величину максимального потока и на вершины наложено ограничение, сколько они могут пропустить.
    Решение
    Все, что нам надо - это разделить каждую вершину на две, и между ними поставить ребро, весом в ограничение пропускной способности данной вершины
  • Минимальный разрез. Дан граф. Сколько вершин надо удалить, что бы не существовало пути из A в B?
    Решение
    В классической задаче о минимальном разрезе удалять нужно ребра. Не проблема! Разобьем вершины на 2, и поставим между ними ребро, весом в 1. Тогда ответ к задаче - нахождение минимального разреза в графе (что и есть максимальным потоком).
    Источник: Харьковская зимняя школа по программированию, 2009, День 3
  • Сочинитель стихов. Имеется детерминированный конечный автомат с одним начальным состоянием A и одним конечным B. Каждый переход задается тройкой чисел (i, j, k), переход из состояния i в состояние j по ребру k.
    После перехода по автомату из i в j по ребру k, стираются все переходы из i по ребру k, а также все переходы в j по ребру k. Требуется вывести количество путей из A в B по такому автомату.
    Решение
    Задача сводится к нахождению максимального количества путей, причем из одной вершины не выходят более одного ребра одного цвета. Сведем задачу к нахождения максимального потока. Для каждой вершин создадим k+1 вершину в перестроенной сети. Первая вершина будет входом, остальные вершины будут представлять цвета. Из вершины входа проведем по ребру пропускной способностью 1 в каждую из k вершин, соответствующих цвету. Из вершины соответствующих цвету i проведем все ребра цвета i во входы концов ребер. Найдя максимальный поток в такой сети, получим максимальное количество путей удовлетворяющих требуемому свойству.
  • Коллекционирование монет. Есть n коллекционеров и m видов монет. Для вступления в клуб, необходимо иметь не меньше одной монеты каждого типа. Вы (у Вас номер 1) можете меняться с коллекционерами имеющимися монетами. Любой коллекционер обменяет монету свою монету a на Вашу монету b , если у него больше одной монеты типа a и нету ни одной монеты типа b . Вы, в свою очередь, можете нарушать это правило. Нужно набрать как можно больше типов монет по известной ситуации у всех коллекционеров.
    Решение
    Построим сеть. Создадим для каждого типа монет по одной вершине. Эти вершины будут соответствовать Вашим монетам. Нужно собрать как можно больше уникальных монет, поэтому проведем ребро пропускной способности 1 в сток из каждой такой вершины. В вершины, соответствующие монетам, которые у Вас есть изначально, проведем ребро, пропускная способность которого равна количеству таких монет у Вас.
    Для каждого члена клуба (кроме 1, тоесть Вас) заведем по одной вершине. Эта вершина может принимать не более одной монеты, которой у него нет и отдавать
    не более k-1 монеты, которых у него k (k > 1). Естественно, член клуба отдает одну монету взамен одной полученной.
    Таким образом, в каждую такую вершину нужно провести ребро пропускной способности 1 из вершин соответствующих монетам, которых нет у этого члена клуба. А из этих вершин нужно провести ребра пропускной способностью k i - 1 в вершину i, соответствующую монетам, которых у члена клуба больше одной.
    Построенная сеть отражает процессы обмена в клубе. Максимальный поток в такой сети будет равен максимальному количеству монет, которые могуть быть собраны Вами.
    Источник: Харьковская зимняя школа по программированию, 2009, День 4
  • Циркуляция. Система охлаждения реактора представляет собой набор труб, соединяющих узлы. По трубам течет жидкость, причем для каждой трубы строго определено направление, в котором она должна по ней течь. Узлы системы охлаждения занумерованы от 1 до N. Система охлаждения должна быть спроектирована таким образом, чтобы для каждого узла за единицу времени количество жидкости, втекающей в узел, было равно количеству жидкости, вытекающей из узла. У каждой трубы имеется пропускная способность c ij . Кроме того, для обеспечения достаточного охлаждения требуется, чтобы по трубе протекало не менее l ij единиц жидкости за единицу времени. То есть для трубы, ведущей из i-го узла в j-ый должно выполняться l ij ≤ f ij ≤ c ij .
    Дано описание системы охлаждения. Нужно выяснить, каким образом можно пустить жидкость по трубам, чтобы выполнялись все указанные условия.
    Решение
    Это задача на нахождение циркуляции в сети с заданными нижними ограничениями на ребра. Если по ребру (u, v) должен проходить поток в отрезке , то в перестроенной сети будет три ребра (откуда, куда, вес): (u, v, r - l), (S, v, l), (u, T, l). S, T - дополнительно введенные сток и исток соответственно. Фактически мы пропускаем по ребру необходимый минимальный поток, после чего балансируем его так, чтобы получить циркуляцию.


  • Полезные инструменты