Управление продуктивностью скважин. основные принципы системного подхода к обработкам пзс. Гидравлический разрыв пласта

Поскольку нефть добывается в ЦДНГ то мероприятия в первую очередь касаются работы с добывающими скважинами. Оптимизация работы добывающих скважин при снижении забойного давления т. изменение варианта компоновки скважинного оборудования с целью обеспечения большего дебита.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1

Тема: интерпретация результатов гидродинамических исследований скважин для принятия решений по управлению.

Введение

Методы управления — это все виды технологического воздействия на объекты, не связанные с изменением системы разработки и направленные на повышение эффективности разработки месторождения.

Управление разработкой нефтегазовых месторождений необходимо для обеспечения соответствия плановых и фактических показателей разработки. Управление разработкой часто называют ”регулирование разработкой”, т.е. необходимо приблизить плановые объемы добычи к фактическим. На производстве существуют 2 основных цеха – цех по добыче нефти и газа (ЦДНГ) и поддержания пластового давления (ППД). Поскольку нефть добывается в ЦДНГ, то мероприятия в первую очередь касаются работы с добывающими скважинами.

  1. Оптимизация работы добывающих скважин при снижении забойного давления, т.е. изменение варианта компоновки скважинного оборудования с целью обеспечения большего дебита.
  2. Интенсификация – управление продуктивностью скважин (кислотные обработки ПЗС, ГРП, зарезка боковых стволов).

Классификация методов управления

1) Увеличение производительности скважин за счет снижения забойного давления.

2) Воздействие на призабойную зону скважин (управление продуктивностью) с целью интенсификации притока (приемистости) - гидравлический разрыв пласта, зарезка боковых стволов, кислотные обработки и т.д.

3) Отключение высокообводненных скважин.

  1. Повышение забойного давления нагнетательных скважин;
  2. бурение дополнительных добывающих скважин (в рамках резервного фонда) или возврат скважин с других горизонтов.
  3. Перенос фронта нагнетания.
  4. Использование очагового заводнения.
  5. Применение изоляционных работ.
  6. Выравнивание профиля притока или приемистости;
  7. Применение новых методов увеличения нефтеотдачи пластов.

ОПТИМИЗАЦИЯ РАБОТЫ СКВАЖИН – увеличение производительности за счет снижения забойного давления.

Выбор скважин для оптимизации их работы – низкая обводненность, высокий коэффициент продуктивности и резерв снижения забойного давления.

При оптимизации работы скважин необходимо оценивать прирост дебита при снижении забойного давления.

Если скважина до оптимизации работает с определенным дебитом по жидкости при соответствующем забойном давлении, т неправильно считать, что при снижении забойного давления ее продуктивность заведомо сохранится и прирост дебита можно определить по значению продуктивности в базовом варианте.

При снижении забойного давления следует учитывать физические процессы, протекающие в пласте (в первую очередь в околоскважинных зонах), такие как деформационные, рост газонасыщенности и др.

Поэтому необходимо обосновывать модели притока с учетом отклонений от линейного закона Дарси, параметры которых определяются при гидродинамических исследованиях скважин (ГДИС).

  1. Мищенко И.Т. Скважинная добыча нефти.
  2. Бравичев, Бравичева Палий. Глава 9.

Все аналитические модели притока (в виде конкретных формул) содержат параметры, характеризующие фильтрационно-емкостные и физические свойства системы. Эти свойства определяются в среднем по всему объему дренирования: эквивалентная в объеме дренирования проницаемость, пьезо и гидропроводность. Поэтому формулы притока могут быть использованы для оценки добывных возможностей скважин при обосновании способа эксплуатации с вариантом компоновки оборудования.

При управлении разработкой неоднородного пласта оценка эквивалентных параметров не отражает реальной картины фильтрационных потоков. Поэтому в случае неоднородных объемов дренирования интерпретация результатов ГДИС проводится при их воспроизведении с помощью программных продуктов по гидродинамическому моделированию.


Линейные модели притока, используемые для оценки добывных возможностей скважин в однородном пласте (при оптимизации).

1. Оценка добывных возможностей скважин при снижении забойного давления (в случае линейной индикаторной линии).

Для радиальной фильтрации по закону Дарси существует формула Дюпюи.

(1)

где коэффициент пропорциональности между дебитом и депрессией называют коэффициентом продуктивности скважины,

k – проницаемость системы “пласт-флюид”, определенная при геофизических исследованиях кернового материала при начальных пластовых условиях (начальное пластовое давление и водонасыщенность пласта, равная S св .). R к – радиус влияния скважины (при отсутствии данных – половина расстояния между скважинами).

2. Необходимо оценить фактический коэффициент продуктивности скважины. Обычно Это связано с тем, что при возбуждении пласта скважиной протекают первичные техногенные процессы (даже на малых депрессия), приводящие к возникновению дополнительных фильтрационных сопротивлений.

Первичные техногенные процессы, протекающие в околоскважинных зонах :

  1. проникновение жидкости глушения и промывочной жидкости в процессе подземного ремонта и освоения скважины;
  2. проникновение механических примесей и продуктов коррозии металлов при глушении или промывке скважины;
  3. деформация пород на забое скважины при бурении;

Кроме того, большинство скважин несовершенны по степени и характеру вскрытия продуктивного пласта, поэтому приток происходит через перфорационные отверстия, а не по всей боковой поверхности скважины.

При протекании первичных техногенных процессов возникают дополнительные фильтрационные сопротивления, приводящие к снижению дебита. Т.к. эти сопротивления зависят от очень большого числа факторов, аналитически их оценить невозможно. Их учитывают введением параметра S , который называют скин-фактор. S определяется по результатам гидродинамических исследований скважин методом последовательной смены установившихся отборов.

(2)

(3)

Если фактический коэффициент продуктивности достаточно высокий и небольшое снижение забойного давления может привести к существенному приросту дебита скважины, то снижение забойного давления как метод управления разработкой оправдано.

Например, если фактический коэффициент продуктивности равен 15 м 3 /(сут·МПа), то снижение забойного давления даже на 5 атм. приводит к увеличению дебита на целых 7.5 м 3 /сут.

Снизить забойное давление возможно при изменении режимов и типоразмеров скважинного оборудования в базовом варианте компоновки. Для этого необходимо знать методики подбора варианта компоновки по основным способам эксплуатации. Это одна из задач, которыми мы будем заниматься на семинарах.

Если фактический коэффициент продуктивности низкий, данный метод управления не является эффективным.

Например, если фактический коэффициент продуктивности равен 2 м 3 /(сут·МПа), то снижение забойного давления на 5 атм. приводит к увеличению дебита всего на 1 м 3 /сут.

В этом случае необходимо использовать второй метод управления – управление продуктивностью скважин.

1. Выбор метода управления продуктивностью скважин.

2. Оценка технологических критериев - прироста дебита и т.д.

Решение этой задачи осуществляется при гидродинамическом моделировании процесса разработки.

Например, если в качестве метода управления используется зарезка бокового ствола, гидродинамические расчеты должны быть направлены на обоснование параметров указанной технологии (длина ГС, профиль и т.д.).

По 1 позиции необходимо определиться с размером призабойной зоны скважины.

Например, если призабойная зона скважины составляет 10 и более м, то СКО может быть неэффективна. Так бывает в карбонатных коллекторах, поглощающих глинистый раствор, жидкости освоения, мех. примеси и др.

3. Дополнительные фильтрационные сопротивления возникают вследствие образования вблизи скважины, так называемой, призабойной зоны. Призабойная зона имеет расчетные параметры k пзс и R пзс (рис. 2)

(4)

Формула выводится исходя из неразрывности фильтрующегося потока: приток к призабойной зоне должен быть равен притку к забою.

Естественно между скин-фактором и расчетными параметрами призабойной зоны существует связь

(5)

На практике часто пренебрегают размером призабойной зоны скважины и рассчитывают дебит по формуле (6)

(6)

При этом получают завышенное значение проницаемости призабойной зоны скважины. При обработке результатов гидродинамических исследований по большому числу месторождений Урало-Поволжья и Западной Сибири получен адаптационный коэффициент, позволяющий более адекватно оценить указанный параметр. Адаптационный коэффициент, т.е существуют оптимистический и пессимистический прогнозы.

Методика оценки параметров призабойной зоны скважины по ГДИС.

1. Определяется фактический коэффициент продуктивности скважины с использованием методов математической теории эксперимента (метод наименьших квадратов).

2. Оценивается завышенное значение проницаемости призабойной зоны (ф-ла 6).

3. С помощью адаптационного коэффициента уточняется проницаемость призабойной зоны.

4. Рассчитывается радиус призабойной зоны скважины (ф-ла 4).

5. Рассчитываются скин-фактор и приведенный радиус скважины.

Пример. Пусть при исследовании скважины методом последовательной смены установившихся отборов получена величина коэффициента продуктивности скважины, равная 2 м 3 /(сут·МПа). Необходимые для расчетов исходные данные следующие: проницаемость удаленной зоны (за пределами ПЗС)- 100·10 -15 м 2 ; радиус контура питания скважины 150 м; радиус скважины 0.1 м; вскрытая продуктивная толщина 10 м; объемный коэффициент и динамическая вязкость жидкости соответственно равны 1 и 5·10 -3 Па·с.

Проницаемость пласта, определенная на основе коэффициента продуктивности, равна 13.47·10 -15 м 2 , с учетом необходимости занижения указанного значения для ПЗС - k ПЗС может находится в пределах от 9.62  10 -15 до 11.225  10 -15 . Радиус призабойной зоны, определенный по формуле (4) находится в пределах от 14.83 до 37.97 м.

Таким образом, в качестве метода управления может быть предложена зарезкам бокового ствола, а не СКО.

Следующим этапом является проведение многовариантных гидродинамических расчетов (семинары).

5. При низких депрессиях параметры призабойной зоны и скин-фактор являются параметрами ЛИНЕЙНОЙ модели притока. Эти параметры определяются методами математической теории эксперимента (в данном случае – метод наименьших квадратов).

Метод наименьших квадратов заключается в следующем.

1. Строится вариационный ряд значений исследуемого параметра на основании результатов геолого-геофизических исследований и промыслового опыта.

2. Рассчитывается критерий F для каждого значения исследуемого параметра:

Если предположительное число значений параметра m , то критерий рассчитывается m раз.

Искомый параметр соответствует наименьшему расчетному значению критерия F .

  • Расчетное значение дебита может быть получено по формуле притока при конкретном значении искомого параметра. Так, . На основе этих расчетных значений определяется F 1.
  • Расчетное значение дебита может быть получено с использование гидродинамической модели объема дренирования при использовании программных продуктов. В этом случае ГДИС воспроизводятся с использование указанных программных продуктов.

В настоящее время при интерпретации ГДИС оценивают эквивалентную проницаемость (гидропроводность, пьезопроводность).

Это оправдано при оценке дебитов скважин.

Для управления разработкой необходимо иметь информацию не об эквивалентной проницаемости, а о неоднородности объема дренирования. Например, знать послойную проницаемость. Поэтому и используются программные продукты по гидродинамическому моделированию.

Если требуется определить осредненные по объему дренирования параметры уравнения притока, в некоторых случаях строится, так называемая, система нормальных уравнений, которая получается при дифференцировании критерия наименьших квадратов по искомому параметру.

Пусть имеется активный эксперимент – Yi (Xi ), i =1,2… n . Требуется определить параметры линейного тренда Y = A + BX по методу наименьших квадратов.

Критерии метода.

Параметры А и В определяются при решении следующей системы уравнений:

или

6. Оценка фактической продуктивности скважины.

В общем случае линейное уравнение притока имеет вид:

Если параметр С значим, то существует начальный градиент давления (С – отрицательное).

Так, имеются результаты ГДИС, требуется определить параметры линейного тренда Y - Q , X -.

PAGE 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

10947. Задачи управления маркетинговыми исследованиями и пути их решения. Формирование программы исследований. Основные группы методов маркетинговых исследований. Использование результатов маркетингового исследования для принятия маркетинговых решений 16.2 KB
Задачи управления маркетинговыми исследованиями и пути их решения. Использование результатов маркетингового исследования для принятия маркетинговых решений Маркетинговые исследования – это изучение рынка от англ. Филип Котлер определяет маркетинговые исследования как систематическое определение круга данных необходимых в связи со стоящей перед фирмой маркетинговой ситуацией их сбор анализ и отчет о результатах Котлер Ф. маркетинговые исследования – это систематический и объективный поиск сбор анализ и распространение информации...
1828. Критерий принятия решений 116.95 KB
Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
10997. Психологические аспекты принятия решений 93.55 KB
МЕТОДИЧЕСКАЯ РАЗРАБОТКА для проведения лекции № 9 по дисциплине УПРАВЛЕНЧЕСКИЕ РЕШЕНИЯ Тема 9: Психологические аспекты принятия решений Для студентов специальности: 080507 Менеджмент организации Одобрена на заседании Методического совета института...
10567. Технология разработки и принятия управленческих решений 124.08 KB
Методы моделирования и оптимизации решений Методы моделирования называемые также методами исследования операций базируются на использовании математических моделей для решения наиболее часто встречающихся управленческих задач. Количество конкретных всевозможных моделей почти также велико как и число проблем для решения которых они разработаны. Очевидно что возможность прогнозировать действия конкурентов существенное преимущество для любой коммерческой организации. Первоначально разработанные для военностратегических целей модели...
7980. Процесс принятия и реализации управленческих решений 24.35 KB
При возникновении и определении проблемы необходимо ответить на следующие вопросы: В чем суть проблемы Где возникла проблема объект проблемы бригада оборудование коллектив С кем связана проблема субъект проблемы социальный или интеллектуальный ее элемент С чем связана проблема связи проблемы Для чего необходимо решать проблему цель решения проблемы Понятие решение в научной литературе трактуется поразному. Основные компоненты управленческого решения: множество возможных вариантов; нормативный документ...
11100. Анализ процесса принятия управленческих решений 15.26 KB
Принятие управленческих решений в условиях активизации управленческого мышления. Анализ процесса принятия управленческих решений. Деятельность руководителя в повышении эффективности принятия решений. Проанализировать процесс принятия управленческих решений.
10964. Анализ задач и методов принятия решений (ПР) 46.89 KB
Для других людей мотивы принятия решения могут быть и вовсе неясными. Поэтому с целью придания ясности следует найти численную меру для определения того насколько каждое из решений является подходящим. Руководителю фирмы требуется решить какую программу для управления предприятием следует приобрести. Главная цель – выбор наилучшей программы для управления предприятием.
12165. Интернет-экспозиция результатов научных археологических и этнографических исследований в формате 3D 17.85 KB
Впервые в России применены новые формы экспонирования результатов археологических и этнографических исследований с использованием современных информационных технологий посредством Интернетпрезентаций результатов НИР в формате 3D www. Расширяются возможности представления трехмерной модели предмета для специалистов не имеющих возможности увидеть предмет на месте через сеть интернет.ru размещены в формате 3D посредством использования технологии WebGL: Интернетэкспозиции Музея археологии и этнографии ФГБУН ИЭИ УНЦ РАН; Интернетвыставка...
1719. Особенности принятия управленческих решений в таможенных органах 40.07 KB
Организация процесса управления в таможенных органах. Процесс управления в системе таможенных органов. Принципы организации процессов управления в таможенных органах. Поскольку принятые решения касаются не только менеджера но и других людей и во многих случаях всей организации понимание природы и сути принятия решений чрезвычайно важно для каждого кто хочет добиться успеха в области управления.
17937. Информационная база принятия краткосрочных управленческих решений 54.22 KB
Исследования отечественных и зарубежных специалистов показывают что до 25 всех управленческих решений еще до их принятия можно было оценить как невыполнимые и тем самым избежать затрат управленческого труда на разработку и принятие решений. Такой высокий брак в управленческой деятельности свидетельствует о крайне неэффективной организации процесса проработки решений в практике хозяйствующих субъектов. Поэтому реализация на практике научно обоснованных подходов именно в подготовке управленческих решений и на современном этапе развития имеет...

Министерство образования и науки Российской Федерации
Филиал Федерального государственного бюджетного образовательного
учреждения высшего профессионального образования
«Удмуртский Государственный Университет» в городе Воткинске

Контрольная работа
По дисциплине «Управление продуктивностью скважин и
интенсификация добычи нефти»

Выполнил: студент группы З-Вт-131000-42(к)
Лоншаков ПавелСергеевич

Проверил: к.т.н., доцент Борхович С.Ю.

Воткинск 2016

Выбор скважин-кандидатов для обработки призабойных зон.

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией – снижение проницаемости призабойной зоны пласта.
Призабойной зоной пласта называется область пласта вокруг ствола скважины, подверженнаянаиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую среду и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта.
Само бурение вносит изменение в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения раствора или егофильтрата в призабойную зону пласта. При взаимодействии фильтрата с пластовой минерализованной водой может происходить образование нерастворимых солей и выпадение их в осадок, набухание глинистого цемента и закупоривание стойких эмульсий, и снижение фазовой проницаемости скважин. Может быть и не качественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважин, где эмульсиявзрыва зарядов поглощается энергией больших гидростатических давлений.
Снижение проницаемости призабойной зоны пласта происходит при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальто-смолистых веществ, закупоривающих паровое пространство коллектора.
Интенсивное загрязнение призабойной зоны пластаотмечается и в результате проникновения рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства нефтепродуктами, содержащимися в закачиваемой воде. В результате проникновения подобных процессов возрастают сопротивление фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость вискусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.
В скважинах с загрязненной призабойной зоной наблюдается падение добычи жидкости при сохранении тех же условий эксплуатации, более низкие значения дебита по сравнению с расположенными поблизости скважинами данного месторождения. Выявление таких скважиносуществляется на основе промысловых данных либо в результате расчета. Расчетный метод состоит в следующем: оценивается радиус области дренирования скважины и вычисляется дебит жидкости по формуле Дюпюи; если расчетный дебит значительно выше фактического, то можно предположить, что имеется загрязнение призабойной зоны. Кроме того, ухудшение коллекторских свойств в призабойной зоне может быть выявленопо результатам гидродинамических исследований.
Эффективность применения того или иного метода воздействия на объект разработки определяется геологической характеристикой коллектора, свойствами пластовых флюидов и параметрами, характеризующими состояние разработки. Выбор скважин для ОПЗ по средним характеристикам месторождения не всегда бывает удачным, особенно для продуктивных карбонатныхотложений, характеризующихся послойной и зональной неоднородностью коллекторов, как по строению, так и по свойствам.
К основным геологическим критериям, определяющим успешность применения ОПЗ можно отнести следующие:
a. тип коллектора (трещиноватый, трещиновато-поровый или поровый), определяющий компонентный состав для водоизолирующих композиций (так, например, для...

РГУ нефти и газа (НИУ) имени

Факультет разработки нефтяных и газовых месторождений

Кафедра разработки и эксплуатации нефтяных месторождений

УТВЕРЖДАЮ

Зав. кафедрой, профессор

«____»____________2016 г.

КАЛЕНДАРНЫЙ ПЛАН

курса «Управление продуктивностью скважин»

Направление 21.03.01 «Нефтегазовое дело»

Профиль «Эксплуатация и обслуживание объектов добычи нефти»

гр. РН-12-03-06

Весенний семестр 2015/16 уч. г.


Неделя, дата

Кол.-во часов

Гидравлический разрыв пласта (ГРП). Технологии ГРП. Жидкости разрыва, песконосители, проппанты. Давление гидроразрыва. Оборудование и агрегаты, применяемые при ГРП. Проблемы применения ГРП. Выбор технологии ГРП в зависимости от геолого-технологических условий. Применение высоких давлений нагнетания воды с целью интенсификации заводнения и повышения охвата пластов вытесняющим агентом.

Кислотные обработки скважин. Технологии СКО и ГКО. Применение органических кислот при интенсификации работы скважин. Выбор технологии кислотных обработок на различных стадиях заводнения пластов. Применение ПАВ и растворителей при интенсификации работы скважин. Поинтервальные кислотные обработки. Термокислотные обработки.

Горизонтальные скважины (ГС) как метод увеличения продуктивности и приемистости скважин. ГС как метод интенсификации закачки воды и повышения охвата пластов вытесняющим агентом. Эффективность ГС в различных геолого-промысловых условиях. Бурение боковых стволов. Использование многозабойных скважин, в том числе с интеллектуальным заканчиванием.


Волновое воздействие на пласт. Технологии виброволнового воздействия на пласт. Волновое воздействие на околоскважинную зону пласта. Сочетание волнового воздействия на пласт с другими методами интенсификации работы скважин.

Тепловые методы интенсификации добычи нефти. Паротепловые обработки скважин (ПТОС). Сочетание тепловых методов с использованием ГС. Шахтные методы разработки. Оборудование, применяемое при тепловом воздействии на пласт. Термодинамические свойства воды и водяного пара.

Оптимизация режимов работы добывающих скважин. Теоретический и реальный потенциальный дебит скважины. Форсированный режим работы добывающих скважин. Причины ограничения дебитов скважин: деформация коллектора, разгазирование нефти, разрушение продуктивного пласта, выпадение АСПО.

Новые технологии увеличения продуктивности и приемистости скважин. Отечественный и зарубежный опыт применения увеличения продуктивности и приемистости скважин.

Оценка эффективности методов интенсификации работы скважин. Способы построения характеристик вытеснения. Баланс отборов и закачки по продуктивным пластам

Заключительная лекция. Подведение итогов курса.


Отработка операции ГРП на тренажере кафедры РиЭНМ

Отработка операции СКО на тренажере кафедры РиЭНМ

Отработка операции ГПП на тренажере кафедры РиЭНМ

Понятие несовершенной скважины по степени и по характеру. Определение дебита несовершенной скважины, коэффициента

дополнительных сопротивлений.

Расчеты параметров СКО для добывающей скважины.

Расчет параметров ГКО для добывающей скважины.

Выбор оборудования для СКО.

Расчет основных параметров ГРП.


Обоснование технологий ГРП для скважин с различными

параметрами.

Расчеты параметров ГРП для добывающей скважины.

Технологическая оценка влияния зоны ОЗП на работу

нагнетательных и добывающих скважин.

Обоснование расположения боковых стволов различного профиля с учетом истории разработки объекта.

Обоснование расположения боковых радиальных отводов с учетом строения продуктивных отложений и истории разработки.

Расчет параметров виброволнового воздействия на

околоскважинную зону пласта.

Расчет потерь тепла в стволе скважины при закачке теплоносителя.

Расчеты параметров ПТОС для конкретных геолого-промысловых условий.

Расчет эффективности ГТМ по отдельным скважинам.

Расчет эффективности ГТМ по участку объекта разработки.

Научный семинар «Современные

продуктивностью скважин»

продуктивностью скважин»

Научный семинар «Современные технологии управления

продуктивностью скважин»

Научный семинар «Современные технологии управления

продуктивностью скважин»

Научный семинар «Современные технологии управления

продуктивностью скважин».


а) основная литература:

1. Мищенко добыча нефти: учеб. пособие. – М.: изд. Нефть и газ, 2007. - 816 с.

2. Муслимов методы повышения нефтеизвлечения, проектирование, оптимизация и оценка эффективности: учеб. пособие.- Казань: «Фэн» Академии наук РТ, 2005. – 688 с.

3. , Чоловская в пласт теплоносителей для интенсификации добычи нефти и увеличения нефтеотдачи: учеб. пособие. - Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика»: Институт компьютерных исследований, 2008. - 224 с.

4. Иванов притока нефти и газа к скважинам: учеб. пособие. - М.: Недра, 2006. – 595 с.

б) дополнительная литература:

1. нифицированный дизайн гидроразрыва пласта: от теории к практике/ пер. с англ. - Москва-Ижевск: Институт компьютерных исследований: НИЦ «Регулярная и хаотическая динамика», 2008. – 236 с.

2. Увеличение нефтеотдачи на поздней стадии разработки месторождений. Теория. Методы. Практика / , [и др.] – М.: - Бизнесцентр», 2004. – 292 с.

3. , Казакова сохранения продуктивности скважин и нефтенасыщенных коллекторов в заключительной стадии разработки. – СПб: , 2007. – 232 с.

в) и Интернет-ресурсы

Основные сайты отечественных журналов – источники информации по курсу:

Http://www. oil-industry. ru – журнал «Нефтяное хозяйство»; http://vniioeng. mcn. ru/inform/neftepromysel - журнал «Нефтепромысловое дело»; http://vniioeng. mcn. ru/inform/geolog - журнал «Геология, геофизика и разработка нефтяных и газовых месторождений»; http://www. ogbus. ru – журнал «Нефтегазовое дело»; http://www. - журнал «Нефтегазовые технологии»; http://www. - журнал «Rogtec - Российские нефтегазовые технологии»; http://www. burneft. ru - журнал «Бурение и нефть».

Основным зарубежным источником информации по курсу являются статьи библиотечной системы OnePetro, в том числе статьи общества инженеров-нефтяников (SPE) - http://www. spe. org

к. т.н, доцент

Среди многочисленных методов управления продуктивностью скважин путем воздействия на ПЗП не все обладают одинаковой результативностью, но каждый из них может дать максимальный положительный эффект только при условии обоснованного подбора конкретной скв. Поэтому при использовании того или иного способа искусственного воздействия на ПЗП вопрос подбора скв.является принципиальным. При этом обработки,даже эффективные, проводимые в отдельных скв.,могут не дать существенного положительного эф-та в целом по залежи или месторождению как с позиции интенсификации выработки запасов, так и с позиций повышения коэффициента конечной нефтеотдачи.

Методы интенсификации притока и приемистости

Гидрогазодинамические

2. Гидропескоструйная перфорация (ГПП)

3. Создание многократных депрессий спец.устройствами для очистки скв.

4. Волновое или вибрационное возд-е

5. Имплозионное возд.

7. Щелевая разгрузка

8. Кавитационно-волновое возд.

Физико-химические

    Кислотные обработки (соляной,серной,плавиковой кислотой)

    Возд. Растворителями(толуол,бензол,ацетонметиловый спирт)

    Обработка растворами ПАВ(сульфанол)

    Обработка ПЗС ингибиторами солеотложений

    Обр-ка ПЗС гидрофобизаторами

Термические

1. Электропрогрев (стационарный,циклический)

2. Паротепловые обработки скв.

3. Прокачки горяч. Нефти

4 .Импульсно-дозированное тепловое возд.

Комбинированные

    Термокислот. Обр-ка

    Термогазохимич. Возд.

    Гидрокислот.разрыв пласта

    Направленное кислот возд.в сочетании с ГПП

    Повтор. Перфорация в спец.растворах кислоты,ПАВ

    Термоакустич возд.

    Электрогидравлич.возд.

    Внутрипластовое окисление легких углеводородов

Гидравлический разрыв пласта

Гидравлический разрыв пласта (ГРП) предназначен для повышения проницаемости обрабатываемой области ПЗС и заключается в создании искусственных и расширении естественных трещин. Наличие микротрещин в ПЗС связано с процессом первичного вскрытия в фазе бурения вследствие взаимодействия долота с напряженными горными породами, а также с процессом вторичного вскрытия (перфорации). Сущность ГРП заключается в нагнетании под давлением в ПЗС жидкости, которая заполняет микротрещины и ≪расклинивает≫ их, атакжеформируетновыетрещины. Еслиприэтомввестивобразовавшиесяилирасширившиесятрещинызакрепляющийматериал (например, песок), топослеснятиядавлениятрещинынесмыкаются.

Технология проведения ГРП заключается в совокупности следующих операций:

    Подготовка скважины - исследование на приток или приемистость, что позволяет получить данные для оценки давлени разрыва, объема жидкости разрыва и других характеристик.

    Промывка скважины - скважина промывается промывочной жидкостью с добавкой в нее определенных химических реагентов. Принеобходимости осуществляют декомпрессионную обработку, торпедирование или кислотное воздействие. При этом рекомендуется использовать насосно-компрессорные трубы диаметром 3-4" (трубы меньшего диаметра нежелательны, т.к. велики потери на трение).

    Закачка жидкости разрыва. Жидкость разрыва - тот рабочий агент, закачкой которого создается необходимое для разрыва горной породы давление для образования новых и раскрытия существовавших в ПЗС трещин. В зависимости от свойств ПЗС и других параметров используют либо фильтрующиеся, либо слабофильтрующиеся жидкости.

    Закачка жидкости-песконосителя. Песок или любой другой материал, закачиваемой в трещину, служит наполнителем трещины, являясь, по существу, каркасом внутри нее и предотвращает смыкание трещины после снятия (снижения) давления. Жидкость-песконоситель выполняет транспортную по отношению к наполнителю функцию.Основными требованиями к жидкости-песконосителю являются высокая пескоудерживающая способностьи низкая фильтруемость.

    Закачка продавочной жидкости. Основной целью этой жидкости является продавка жидкости-песконосителя до забоя и задавка ее в трещины.

    После закачки наполнителя в трещины скважина оставляется под давлением. Время выстойки скважины под давлением должно быть достаточным, чтобы система (ПЗС) перешла из неустойчивого в устойчивое состояние, при котором наполнитель будет прочно за- фиксирован в трещине. В противном случае в процессе вызова притока, освоения и эксплуатации скважины наполнитель выносится изтрещин в скважину

    Вызов притока, освоение скважины и ее гидродинамическое исследование. Следует подчеркнуть, что проведение гидродинамического исследования является обязательным элементом технологии, т.к. его результаты служат критерием технологической эффективности процесса.

КИСЛОТНЫЕ ОБРАБОТКИ ПЗС

Известно много методов кислотноговоздействия, которые основаны на способности некоторых кислот

растворять горные породы или цементирующий материал. Применение таких кислот связано с:

1. Обработкой ПЗС в залежах с карбонатными коллекторами.

2. Обработкой ПЗС в залежах с терригенными коллекторами.

3. Растворением глинистых или цементных частиц, попавших в ПЗС в процессе бурения и цементирования скважины.

4. Растворением выпавших в призабойной зоне скважины солей.

Для обработки карбонатных коллекторов наибольшее распространение получила соляная кислота, а для обработки терригенных коллекторов - смесь соляной и плавиковой кислот (глиняная кислота).

Различают несколько видов солянокислотных обработок, среди которых:

Обычная СКО.

Кислотная ванна.

СКО под давлением.

Поинтервальная или ступенчатая СКО

ТЕРМОКИСЛОТНАЯ ОБРАБОТКА

Термокислотная обработка предназначена для повышения эффективности кислотных обработок карбонатных коллекторов, когда в процессе эксплуатации скважин в призабойной зоне отлагаются асфальто-смоло-парафиновые (АСП) вещества, блокирующие карбонатную породу для нормальной реакции ее с кислотным раствором. Эффективной кислотная обработка будет только в том случае, если

предварительно удалить с поверхности карбонатной породы асфальто-смоло-парафиновые отложения (АСПО). Удаление АСПО возможно в процессе промывки после их расплавления. РасплавлениеАСПО достигается за счет экзотермической реакции взаимодействиясоляно-кислотного раствора НС1 с магнием или его сплавами и др.

ГЛИНОКИСЛОТНАЯ ОБРАБОТКА

Глиняной кислотой называется смесь 3-5%-й фтористо-водородной (HF) и 8-10%-й соляной кислот. Терригенные коллекторы содержат, как правило, малое количество карбонатов, изменяющееся, в среднем, от 1 до 5% по массе. Основная масса таких коллекторов представлена силикатными веществами (кварц) и алюмосиликатами (каолин). Известно, что силикатные вещества практически не взаимодействуют с соляной кислотой, хотя хорошо растворяются в плавиковой (фтористо-водородной).Сущность глинокислотной обработки терригенных коллекторов и состоит в учете особенностей их строения. При контакте глиняной кислоты с терригенными породами небольшое количество карбонатного материала, реагируя с солянокислотной частью раствора, растворяется, а фтористо-водородная кислота, медленно реагирующая с кварцем и алюмосиликатами, достаточно глубоко проникает в ПЗС, повышая эффективность обработки.

ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПЗС

Основой термогазохимического воздействия (ТГХВ) послужили работы по разрыву пласта под давлением газов, образующихся при сгорании на забое скважины порохового заряда. При этом характеристики сгорающего пороха (температура, давление и объем газов горения) зависят от времени горения. В результате экспериментальных исследований было установлено, что сжигание медленногорящего пороха приводит к существенному повышению температуры на забое скважины, а большое количество газообразных продуктов горения и их химическая активность (особенно к карбонатам) оказывают благоприятное воздействие на ПЗС. При быстром сгорании порохового заряда давление на забое скважины может достигать 100 МПа, что влечет механическое воздействие на ПЗС и образование в ней новых трещин, а также расширение имеющихся. Такое воздействие, по сути, аналогично гидроразрыву, а точнее, первой его фазе, т.е. образованию трещин без их закрепления наполнителем.

При сгорании 1 кг медленногорящего пороха выделяется до 1м3 газов горения, состоящих в основном из углекислого газа и хлористого водорода. Диоксид углерода, растворяясь в нефти, снижает ее плотность и вязкость, увеличивает подвижность, а такжеснижает поверхностное натяжение на границе с водой и породой.Хлористый водород при наличии воды образует соляную кислоту, концентрация которой зависит от количества воды и газообразных продуктов горения и может достигать 5%. Соляная кислота, воздействуя на карбонатные коллекторы, увеличивает проницаемость ПЗС.

2 Классификация сепараторов.

Сепараторы можно подразделить на следующие категории:

    По назначению: а) Замерные; б) Сепарирующие;

    По геометрической форме: а) Цилиндрические; б) Сферические;

    По положению в пространстве: а) Вертикальные; б) Горизонтальные; в) Наклонные;

    По характеру основных действующих сил: а) Гравитационные; б) Инерционные; в) Центробежные; г) ультразвуковые;

    По технологическому назначению: а) Двухфазные; б) Трехфазные; в)Сепараторы первой ступени; г) Концевые сепараторы(при окончательной разгозир. Нефти перед сдачей в ТП); д) Сепараторы с предварительным отбором газа;

6.По рабочему давлению: а) Высокого больше 6 МПа; б) Среднего от 0,6 до 6 МПа; в) Низкого от 0,1 до 0,6 МПа; г) Вакуумные меньше 0,1мПА.

3. ТИПЫ ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ.

Залежь углеводородов - естественное скопление углеводородов (нефти и/или газа) в ловушке, целостная флюидодинамическая система. Воздействие на любую из ее участков (отбор нефти или газа, закачка законтурной воды или газа и т. д.) неизбежно отражается на всей залежи. В подавляющем большинстве случаев залежи контактируют с пластовой водой. Они либо подпираются водой (водонапорный режим), либо «плавают» на воде (водоупругий режим).

Залежь как целостная динамическая система - это важнейшее, ключевое понятие в геологии нефти и газа. Название типа залежи состоит из названия типа резервуара и ловушки. Например: пластово-сводовая залежь, пластово-стратиграфическая, массивно-стратиграфическая и т. д. Параметры залежи: высота, площадь, объем, ВНК, ГВК, внешний и внутренний контуры. Единый ВНК или ГВК - важнейший признак залежи. ГВК и ВНК могут быть горизонтальными, то есть находиться на одном гипсометрическом уровне, а могут быть и наклонными. Чаще всего, наклон обусловлен направлением движения законттурных вод. Залежи связанные территориально, а также общностью геологического строения и нефтегазоностности составляют единое месторождение.

Классификация залежей

По фазовому соотношению нефти и газа («Классификация запасов и прогнозных ресурсов нефти и горючих газов», 2005):

нефтяные, содержащие только нефть, насыщенную в различной степени газом;

газонефтяные, в которых основная часть залежи нефтяная, а газовая шапка не превышает по объему условного топлива нефтяную часть залежи;

нефтегазовые, к которым относятся газовые залежи с нефтяной оторочкой, в которой нефтяная часть составляет по объему условного топлива менее 50 %;

газоконденсатные, содержащие газ с конденсатом;

нефтегазоконденсатные, содержащие нефть, газ и конденсат.

По сложности геологического строения («Классификация запасов и прогнозных ресурсов нефти и горючих газов», 2005):

простого строения - однофазные залежи, связанные с ненарушенными или слабонарушенными структурами, продуктивные пласты характеризуются выдержанностью толщин и коллекторских свойств по площади и разрезу;

сложного строения - одно- и двухфазные залежи, характеризующиеся невыдержанностью толщин и коллекторских свойств продуктивных пластов по площади и разрезу или наличием литологических замещений коллекторов непроницаемыми породами либо тектонических нарушений;

очень сложного строения - одно- и двухфазные залежи, характеризующиеся как наличием литологических замещений или тектонических нарушений, так и невыдержанностью толщин и коллекторских свойств продуктивных пластов, а также залежи сложного строения с тяжелыми нефтями.

По значениям рабочих дебитов (Конторович А. Э. и др., 1975):

Класс Залежь.. Дебит..нефти, т/сут Дебиты газа, м³/сут

1к высокодебитная более 100 более 1 млн

2к среднедебитная 10 - 100 100 тыс. - 1 млн

3к низкокодебитная 2 - 10 20 тыс. - 100 тыс.

4к непромышленная менее 2 менее 20 тыс.



Открытие бизнеса