Презентация, доклад Звуковые карты. Звуковые карты и мультимедиа. Виды звуковых плат

1 слайд

2 слайд

Термин "мультимедиа" образован из слов "мульти" - много, и "медиа" - среда, носитель, средства сообщения, и в первом приближении его можно перевести как "многосредность"

3 слайд

Несколько определений понятия мультимедиа Мультимедиа – это технология, описывающая порядок разработки, функционирования и применения средств обработки информации разных типов; информационный ресурс, созданный на основе технологий обработки и представления информации разных типов; компьютерное программное обеспечение, функционирование которого связано с обработкой и представлением информации разных типов; компьютерное аппаратное обеспечение, с помощью которого становится возможной работа с информацией разных типов; особый обобщающий вид информации, которая объединяет в себе как традиционную статическую визуальную (текст, графику), так и динамическую информацию разных типов (речь, музыку, видео фрагменты, анимацию и т.п.).

4 слайд

В широком смысле термин «мультимедиа» означает спектр информационных технологий, использующих различные программные и технические средства с целью наиболее эффективного воздействия на пользователя (ставшего одновременно и читателем, и слушателем, и зрителем)

5 слайд

Благодаря применению мультимедиа в средствах информатизации за счет одновременного воздействия графической, звуковой, фото и видео информации такие средства обладают большим эмоциональным зарядом и активно включаются в индустрию развлечений, практику работы различных учреждений, домашний досуг, образование.

6 слайд

Технологии мультимедиа позволяют объединять многие виды информации Это позволяет с помощью компьютера представлять информацию в различных формах, таких как: изображения, включая отсканированные фотографии, чертежи, карты и слайды; звукозаписи голоса, звуковые эффекты и музыка; видео, сложные видеоэффекты; анимации и анимационное имитирование.

7 слайд

Мультимедиа-компьютер Мультимедиа-компьютер - это компьютер, снабженный аппаратными и программными средствами, реализующими технологию мультимедиа.

9 слайд

Компоненты мультимедиа Технологию мультимедиа составляют две основные компоненты - аппаратная и программная.

10 слайд

Аппаратные средства мультимедиа Основные компьютер с высокопроизводительным процессором, оперативной памятью 64 - 512 Мбайт, винчестерским накопителем ёмкостью 40 - 100 Гбайт и выше, накопителем на гибких магнитных дисках, манипуляторами, мультимедиа-монитором со встроенными стереодинамиками и видеоадаптером SVGA.

11 слайд

Аппаратные средства мультимедиа Специальные приводы CD-ROM и DVD-ROM TV-тюнеры графические акселераторы (ускорители), в том числе, для поддержки трёхмерной графики платы видеовоспроизведения устройства для ввода видеопоследовательностей звуковые платы с установленными микшерами и музыкальными синтезаторами, воспроизводящими звучание реальных музыкальных инструментов акустические системы с наушниками или динамиками и др.

12 слайд

Система ввода/вывода звука АЦП – аналого-цифровой преобразователь, ЦАП – цифро-аналоговый преобразователь

13 слайд

Технические средства для ввода/вывода звука Акустические устройства: микрофон, звуковые колонки, наушники Звуковая карта: преобразование сигнала АЦП, ЦАП

14 слайд

15 слайд

17 слайд

Программные средства мультимедиа 2. Cредства создания мультимедийных приложений: редакторы видеоизображений; профессиональные графические редакторы; средства для записи, создания и редактирования звуковой информации, позволяющие подготавливать звуковые файлы для включения в программы, изменять амплитуду сигнала, наложить или убрать фон, вырезать или вставить блоки данных на каком-то временном отрезке; программы для манипуляции с сегментами изображений, изменения цвета, палитры; программы для реализации гипертекстов и др.

18 слайд

Технологии мультимедиа Компьютерная графика Анимация - воспроизведение последовательности картинок, создающее впечатление движущегося изображения. Трёхмерная (3D) графика - графика, создаваемая с помощью изображений, имеющих не только длину и ширину, но и глубину. Музыка MIDI (Musical Instrument Digital Interface, цифровой интерфейс музыкальных инструментов) - стандарт, позволяющий подсоединять к компьютеру цифровые музыкальные инструменты, используемые при сочинении и записи музыки. Звуковые эффекты - сохранение в цифровом виде звучания музыкальных инструментов, звуков природы или музыкальных фрагментов, созданных на компьютере, либо записаных и оцифрованых. Видеозахват - "захват" и "заморозка" в цифровом виде отдельных видеокадров. Виртуальная реальность (Virtual Reality, VR). Слово "виртуальный" означает "действующий и проявляющий себя как настоящий".

19 слайд

Понятие "мультимедиа-компьютер" может означать следующее: ПК, позволяющий без проблем воспроизводить все основные форматы видео и аудио. Видео - с максимально возможным качеством и без пропуска кадров, аудио - с качеством Hi-Fi и, возможно, многоканальное; ПК, предназначенный для ввода и дальнейшего редактирования видео с профессиональным или полупрофессиональным качеством (видеостудия); ПК, имеющий все возможности для оцифровки звука, его создания средствами встроенного сэмплера или синтезатора и профессиональной/полупрофессиональной обработки звуковых потоков (аудиостудия на базе ПК); ПК, совмещающий все вышеперечисленные возможности.

20 слайд

Средства создания мультимедийного приложения Можно условно разделить на три группы: специализированные программы, предназначенные для быстрой подготовки определенных типов мультимедийных приложений (презентаций, публикаций в Internet) (экономия средств и времени, но мы проигрываем в эффективности работы программы); авторские средства разработки (специализированные инструментальные средства для создания мультимедийных приложений) (Некоторые авторские программы недешевы. Кроме того, вы сталкиваетесь с необходимостью овладения специальными приемами для работы с ними и целым рядом ограничений, хотя и тут можно найти выход из положения.); языки программирования (сложно и трудоемко).

21 слайд

Возможности мультимедиа возможность хранения большого объема самой разной информации на одном носителе (до 20 томов авторского текста, около 2000 и более высококачественных изображений, 30-45 минут видеозаписи, до 7 часов звука); возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим "лупа") при сохранении качества изображения. Это особенно важно для презентации произведений искусства и уникальных исторических документов;

22 слайд

Возможности мультимедиа 3. возможность сравнения изображения и обработки его разнообразными программными средствами с научно- исследовательскими или познавательными целями; 4. возможность выделения в сопровождающем изображение текстовом или другом визуальном материале "горячих слов (областей)", по которым осуществляется немедленное получение справочной или любой другой пояснительной (в том числе визуальной) информации (технологии гипертекста и гипермедиа);

23 слайд

Возможности мультимедиа 5. возможность осуществления непрерывного музыкального или любого другого аудиосопровождения, соответствующего статичному или динамичному визуальному ряду; 6. возможность использования видеофрагментов из фильмов, видеозаписей и т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи;

24 слайд

Возможности мультимедиа 7. возможность включения в содержание диска баз данных, методик обработки образов, анимации (к примеру, сопровождение рассказа о композиции картины графической анимационной демонстрацией геометрических построений ее композиции) и т.д.; 8. возможность подключения к глобальной сети Internet; 9. возможность работы с различными приложениями (текстовыми, графическими и звуковыми редакторами, картографической информацией);

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены новыми возможностями объемного звучания.

Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции:

Во-первых, для воспроизведения звука вместо частотной модуляции (FM) теперь все больше используют табличный (wavetable) или WTсинтез, сигнал полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальное, то есть восстановить его полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты.

В более дешевых платах чаще реализован частотно модулированный синтез с использованием синусоидальным колебаний, что в результате приводит к не совсем точному звучанию инструментов, отражение звука и рева, характерных для последнего поколения игр в игровых залах. Расположенная на плате микросхема для волнового синтеза хранит записанные заранее оцифрованные образцы (Samples) звучания музыкальных инструментов и звуковых эффектов. Достигаемые результаты очевидны: музыкальные записи получаются более убедительными, а азартные игроки более впечатлительны.

Пионером в реализации WT синтеза стала в 1984 году фирма Ensoning. Вскоре WT синтезаторы стали производить такие известные фирмы, как Emu, Korg, Roland и Yamaha. Фирмы производители звуковых карт добавляют WTсинтез двумя способами либо встраивают на звуковую карту в виде микросхем, либо реализуя в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.

Во-вторых, это совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначенные для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес- приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft.

В третьих , одним из компонентов современных звуковых карт стал сигнальный процессор DSP(Digital Signal Processor) к возможности функциональным обязанностям этого устройства можно отнести: распознание речи, трехмерное звучание, WTсинтез, сжатие и декомпресия аудиосигналов. Количество звуковых карт, оснащенных DSP, не так велико. Причина этого то, что такое достаточно мощное устройство помогает только при решении строго определенных задач.

Как правило, DSP устройство достаточно дорогое, поэтому сразу устанавливается только на профессиональных музыкальных картах. Одним из мощных DSP производителей сейчас является фирма Texas Instruments.

В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых карт на системной плате. Несмотря на то, что ряд производителей материнских плат уже включают в свои изделия микросхемы для воспроизводства звука, обеспокоенности в рядах поставщиков звуковых карт незаметно. Потенциальная проблема при использовании встроенных средств обработки звука состоит в ограниченности системных ресурсов IBM PC совместимых компьютеров, а именно в возможности конфликтов по каналам прямого доступа к памяти (DMA). Пример такой платы это системная плата OPTi495 SLC, в которой используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES.

В пятых, стремление к более естественному воспроизведению звука заставляет фирмы производителей использовать технологии объемного или трехмерного (3D) звучания.

Самое модное направление в области воспроизведения звука в наши дни предоставляет так называемые объемность звучания. Применение этих эффектов объемного звучания позволяет расширить стерео пространство что в свою очередь придает большую глубину ограниченного поля воспроиз-ведения присущем не большим близко расположенным друг к другу колонок.

В шестых, это подключение приводов CD-ROM. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу всех трех фирм Sony, Panasonic/Matsushita и Mitsumi. Тем не менее, большинство звуковых карт рассчитано на подключе-ние приводов Sony.

Появились карты и приводы, поддерживающие стандартный интерфейс ATA(IDE), используемый для компьютеров с винчестером.

В седьмых, на картах используется режим DualDMA, то есть двойной прямой доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно запись и воспроизведение.

И последнее , это устойчивое внедрение звуковых технологий в телекоммуникации.

Звуковые карты приобретаются в 90% случаев для игр, из оставшихся 10% для речевого сопровождения мультимедиа программ. В таком случае потребительские качества зависят только от ЦАП (цифро-аналогового преобразователя) и от усилителя звуковой частоты.

Еще более важным является совместимость со стандартом Sound Blaster, так как далеко не все программы будут поддерживать менее распространенные стандарты. В набор Звуковых карт входят драйвера, утилиты, программмы записи и воспроизведения звука, средства для подготовления и произведения презентаций, энциклопедий, игр.

Слайд 2

В наши дни практически любой домашний компьютер комплектуется звуковой картой. Это почти стандарт. Звуковые карты позволяют прослушивать записи с компакт-дисков, файлы MPEG-3 и RealAudio, наслаждаться компьютерными играми, работать с Интернет - телефоном, Интернет - радиостанциями или серверами новостей. Если вы собираетесь использовать компьютер для звукозаписи, без звуковой карты никак не обойтись.

Слайд 3

Звуковая карта может комплектоваться динамиками и джойстиком для игр, и тогда мы называем ее звуковой приставкой. Если же динамиков нет, то для воспроизведения сгодится любой внешний усилитель, наушники или кассетный магнитофон. Сегодня на рынке можно встретить звуковые карты стоимостью от 12 до 1000 долларов и даже выше. В прайс-листах компьютерных фирм представлен широкий ассортимент звуковых карт. Именно эта карта в свое время была первой звуковой картой, стоившей дешевле 100

Слайд 4

Классификация звуковых карт.

С самого появления звуковых карт (80-е гг.) их классифицировали по возможности воспроизводить звук, записанный в цифровом виде и по возможности синтезировать его. В соответствии с этим различают как минимум три класса аудиокарт: Звуковые – содержат только тракт цифровой записи/воспроизведения, соответственно, такие устройства позволяют только записывать (оцифровывать) или воспроизводить непрерывный звуковой поток. Работа по запоминанию записываемого и подготовке воспроизводимого потока возлагается либо на программное обеспечение, либо на встроенный в звуковую карту сигнальный процессор. Первые звуковые карты «Компьютер» с первой звуковой картой

Слайд 5

Музыкальные – содержат только музыкальный синтезатор. Такие устройства ориентированы, прежде всего, на генерацию музыкальных звуков, которые создаются параметрически (генераторами гармонических сигналов), либо путем воспроизведения заранее записанного набора эталонных звуков. Очевидно, что ни тот, ни другой класс звуковых карт в полной мере не соответствует современным требованиям, к ним предъявляемым: последние в большинстве случаев относятся к классу комбинированных (звуко-музыкальных) устройств, которые сочетают в себе функции первых двух классов звуковых карт. Синтезатор (synthesio - делаю) – это устройство, которое создает звук. В терминологии компьютерных звуковых карт синтезатором является та часть звуковой карты, которая ответственна за генерирование звуков и музыки.

Слайд 6

Основные характеристики звуковых карт:

Частота дискретизации (оцифровки) сигнала должна быть, как минимум, в два раза больше максимальной частоты входного сигнала (согласно теореме Котельникова). Если человеческая речь занимает полосу частот до 3–4 кГц, то для ее оцифровки потребуется частота 8 кГц. Современные звуковые платы поддерживают частоты дискретизации 8.0–192 кГц, что соответствует сигналам с частотами до 96 кГц.

Слайд 7

Разрядность и динамический диапазон. Современные звуковые карты позволяют записывать звук с разрешением 8, 16 и 24 разряда, что соответствует 256, 65536 и 16.7 млн. различных уровней сигнала. Этот параметр, прежде всего, определяет динамический диапазон воспроизводимого звука, то есть во сколько раз интенсивность самого громкого звука может быть больше, чем интенсивность самого тихого. Эта величина обычно выражается в логарифмическом масштабе и измеряется в децибелах. Для 8-разрядного звука динамический диапазон составляет всего 48 дБ, для 16-разрядного он равен 96 дБ, а для 24-разрядного – 144 дБ. ASUS Xonar: 1987-появилась первая звуковая карта для PC - AdLib Пожалуй, первая звуковая карта "заточенная"под домашний кинотеатр

Слайд 8

Отношение сигнал/шум (S/N или SNR – Signal to Noise Ratio) показывает, во сколько раз громкость сигнала больше громкости шума, возникающего в звуковой плате по различным причинам, прежде всего, в результате ошибки дискретизации. Шум дискретизации присутствует всегда и составляет не менее половины младшего разряда, поэтому, например, отношение сигнал/шум для 16-разрядной платы не может быть лучше, чем 93 дБ (т. е. 96–6:2). Различные звуковые карты: Xonar (01.jpg, 448×310, 12 КБ) Auzen_X-FI.jpg, 380×252, 30 КБ

Слайд 9

Коэффициент нелинейных искажений (Total Harmonic Distortion, THD). Нелинейные искажения – результат неточности в восстановлении сигнала из цифрового вида в аналоговый. Коэффициент нелинейных искажений измеряется в процентах:1% – "грязное" звучание; 0.1% – нормальное звучание; 0.01% – чистое звучание класса Hi-Fi; 0.002% – звучание класса Hi-Fi – Hi End. Это первая звуковая карта от Icemat jpg, 130×127, 2 КБ Компания ASUS на выставке Computex 2007 анонсировала свою первую звуковую карту. 387422_01_thumb.jpg, 133×100, 15 КБ На CeBIT 2007 компания Creative продемонстрировала свою первую звуковую карту. hifi.gif, 250×250, 22 КБ

Слайд 10

Поддерживаемые спецэффекты. К спецэффектам, поддерживаемым звуковыми картами, относятся реверберация, хорус и различные 3D-расширения. Все спецэффекты являются результатом обработки звука, под которым понимается преобразование звуковых данных с целью изменения характеристик звучания. Основными способами преобразований звуковых данных являются амплитудные, частотные, фазовые и временные преобразования. E-Mu 18204696_big.jpg, 360×260, 37 КБ E-MU 011_1.jpg, 200×200, 14 КБ

Слайд 11

Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное "сворачивание" сигнала из спектра в волну. Фазовые преобразования – сдвиг фазы сигнала тем или иным способом; например, преобразования стерео сигнала позволяет реализовать эффект вращения или "объёмности" звука. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов, что позволяет управлять пространственными характеристиками звука.

Слайд 12

Эффект эхо (Echo). Реализуется с помощью временных преобразований. Фактически, для получения эха необходимо на оригинальный входной сигнал наложить его задержанную во времени копию. Эффект повторение (Reverberation). Эффект заключается в придании звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук. Audigy4,bulk Creative Системные требования:Intel® Pentium® III или Celeron 800МГц,или AMD® 1ГГц или быстрее,Intel®,AMD®,Microsoft® Windows® XP (SP2),Windows 2000(SP4) или Windows Professionalx64,128 Мбайт RAM,600Мбайт HD

Слайд 13

Эффект хор (Chorus). В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции перед смешиванием с входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки. Для улучшения качества воспроизведения звука звуковые устройства реализуют различные схемы кодирования многоканального звука, наиболее распространенными из которых являются следующие: DSS, DPL, ТНХ, AC3, Dolby Digital EX, DTS и др.

Слайд 14

Одна из самых новых звуковых карт. Terratec Producer Phase 88 Средняя цена: 11 561 р. (от 8 093 до 15 029 р.) Общие характеристики: Тип -внутренняя с дополнительным блоком.; Тип подключения - PCI; Звуковая схема -7.1; Звуковые характеристики: Разрядность ЦАП/АЦП - 24 бит/24 бит Максимальная частота ЦАП(стерео) -96 кГц Максимальная частота ЦАП (многоканальный) -96 кГц Отношение сигнал/шумЦАП/АЦП -110 дБ/100 дБ

Слайд 15

Поддержка стандартов: Версия EAX - нет; Поддержка ASIO - 2.0. Подключение: Цифровые интерфейсы S/PDIF -коаксиальный вход, коаксиальный выход; Поддержка внешней синхронизации – есть. Количество внешних линейных входов – 8; Количество микрофонных входов - 1; Наличие предусилителей - есть; MIDI-интерфейсы - входы/выходы - 1/1 Количество независимых выходов на наушники – 1.

Слайд 16

Авторы презентации «Звуковые карты» Ученицы 10-б класса, МОУ «СОШ №4» КОВИНА ДАРЬЯ и СЕРЕБРЯКОВА АННА. Используемые материалы взяты из Интернета, а также использованы картинки из архива школы и личные рисунки, картинки и музыка, предоставленные создателями презентации. Благодарим за помощь в создании презентации Фазылова Диниса и Хасанова Руслана. 26.09.2007.

Посмотреть все слайды

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Коэффициент нелинейных искажений (Total Harmonic Distortion, THD). Нелинейные искажения – результат неточности в восстановлении сигнала из цифрового вида в аналоговый. Коэффициент нелинейных искажений измеряется в процентах:1% – "грязное" звучание; 0.1% – нормальное звучание; 0.01% – чистое звучание класса Hi-Fi; 0.002% – звучание класса Hi-Fi – Hi End. Коэффициент нелинейных искажений (Total Harmonic Distortion, THD). Нелинейные искажения – результат неточности в восстановлении сигнала из цифрового вида в аналоговый. Коэффициент нелинейных искажений измеряется в процентах:1% – "грязное" звучание; 0.1% – нормальное звучание; 0.01% – чистое звучание класса Hi-Fi; 0.002% – звучание класса Hi-Fi – Hi End.

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное "сворачивание" сигнала из спектра в волну. Фазовые преобразования – сдвиг фазы сигнала тем или иным способом; например, преобразования стерео сигнала позволяет реализовать эффект вращения или "объёмности" звука. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов, что позволяет управлять пространственными характеристиками звука.

Слайд 12

Описание слайда:

Эффект хор (Chorus). В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции перед смешиванием с входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки. Эффект хор (Chorus). В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции перед смешиванием с входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки. Для улучшения качества воспроизведения звука звуковые устройства реализуют различные схемы кодирования многоканального звука, наиболее распространенными из которых являются следующие: DSS, DPL, ТНХ, AC3, Dolby Digital EX, DTS и др.

Слайд 16

Описание слайда:



Отчетность