Плазменное напыление алюминия. Пульт управления установкой плазменного напыления. Установки плазменного напыления

Важно отметить, что резервы свойств исходных материалов и общеизвестных технологий, используемых при изготовлении изнашиваемых деталей, с точки зрения повышения износостойкости, практически полностью израсходованы.

Одним из перспективных направлений на пути создания высоконадежных, долговечных и конкурентоспособных изнашиваемых деталей является применение современных технологий нанесения функциональных покрытий. В мировой практике известны три основных наиболее часто применяемых метода нанесения покрытий – это технологии наплавки, напыления и осаждения. Трудности выбора оптимального метода, стоящие перед технологами машиностроительных производств, осложняются большим количеством подвидов вышеназванных технологий, многовариантностью режимов, а также многообразием применяемых присадочных и других вспомогательных материалов. Поэтому знание основных характеристик, достоинств и недостатков данных процессов позволит ориентироваться в выборе технологий для решения конкретных производственных задач.

Рис. 1 Напыление вала

Основным отличительным признаком метода нанесения является толщина покрытия: для процессов наплавки – это более 1 мм, для напыления – менее 1 мм, для осаждения – менее 10 мкм. В данной статье приведены сравнительные характеристики наиболее часто используемых газотермических методов, проводимых при атмосферном давлении, дано определение этих методов, рассмотрена их классификация, преимущества и недостатки.

Технологии наплавки

Наплавка – нанесение покрытий слоями толщиной в несколько миллимет­ров из расплавленного присадочного материала на оплавленную металлическую поверхность изделия. В зависимости от вида источника нагрева рассматриваемых газотермических процессов наплавка может производиться при помощи теплоты газового пламени (газопламенная наплавка), электрической дуги (электродуговая наплавка в среде защитного газа) или сжатой дуги (плазменная наплавка).

Рис. 2 ПНН клапана

Назначение наплавки – изготовление деталей с износо­ и коррозионностойкими свойствами поверхности, а также восстановление размеров изношенных и бракованных деталей за счет нанесения покрытий, обладающих высокой плотностью и прочностью сцепления с изделием, работающих в условиях высоких динамических, знакопеременных нагрузок или подверженных интенсивному абразивному изнашиванию.

Преимущества процессов наплавки:

  • отсутствие ограничений по размерам наплавляемых зон;
  • возможность нанесения покрытий различных толщин;
  • возможность получения требуемых размеров восстанавливаемых деталей путем нанесения материала того же состава, что и основной металл;
  • использование не только для восстановления размеров изношенных деталей, но и для ремонта изделий за счет ликвидации локальных трещин, пор и других дефектов;
  • возможность (применительно к плазменной наплавке) ведения процесса на постоянном токе обратной полярности, повышающим качество и стабильность свойств биметаллических соединений за счет эффекта катодной очистки, проявляющемся в удалении окисных и адсорбированных пленок и улучшении смачивания жидким металлом обрабатываемой поверхности; более низкого тепловложения по сравнению с наплавкой на токе прямой полярности и, как следствие, отсутствие или минимальное расплавление подложки;
  • возможность многократного проведения процесса и, следовательно, высокая ремонтоспособность наплавляемых деталей;
  • высокая производительность и легкость автоматизации процесса;
  • относительная простота и мобильность оборудования.

Недостатки технологий наплавки:

  • возможность изменения свойств наплавленного покрытия из­за перехода в него элементов основного металла;
  • изменение химического состава основного и наплавленного металла вследствие окисления легирующих элементов и основы металла;
  • возможность структурных превращений в основном металле, в частности, образование крупнозернистой структуры, новых хрупких фаз;
  • возникновение деформаций в наплавленных изделиях за счет значительного термического воздействия;
  • образование больших растягивающих напряжений в поверхностном слое детали, достигающих 500 МПа;
  • снижение характеристик сопротивления усталости наплавленных изделий;
  • возможность возникновения трещин в наплавленном металле и зоне термического влияния, и, как следствие, более ограниченный, чем, например, при напылении, выбор сочетаний основного и наплавленного металлов;
  • обязательное использование в отдельных случаях предварительного нагрева и медленного остывания наплавляемого изделия, что увеличивает длительность процесса;
  • наличие больших припусков на механическую обработку и, как следствие, существенные потери металла наплавки;
  • трудоемкость механической обработки наплавленного слоя большой толщины;
  • требования преимущественного расположения наплавляемой поверхности в горизонтальном положении (необходимость применения наплавки в нижнем положении при использовании порошковых металлов);
  • трудность наплавки мелких изделий сложной формы.

Таблица 1. Технико-экономические показатели методов наплавки

Метод
наплавки
Производи­тельность
метода
Толщина покры­тия Припуск на обработ­ку Доля основного металла в наплавлен­ном Проч­ность сцепле­ния Деформация детали после
наплавки
Снижение сопротивле­ния усталости Коэффициент производи­тельности,
К п
Коэффи­циент технико­экономической эффективности,
К э
кг/ч см 2 /мин мм мм % МПа %
Газопламенный 0,15 ­ 2,0 1 ­ 3 0,5­3,5 0,4­0,8 5­30 480 Значительная 25 0,7­0,6 0,14
В среде CO 2 1,5 ­ 4,5 18 ­ 36 0,5­3,5 0,7­1,3 12­45 550 Значи­тельная 15 1,8­1,7 0,40
В среде Ar 0,3 ­ 3,6 12 ­ 26 0,5­2,5 0,4­0,9 6­25 450 Пониженная 25 2,1­1,7 0,17
Плазменный 1 ­ 12 45 ­ 72 0,5­5,0 0,4­0,9 0­30 490 Пониженная 12 2,2­1,9 0,56

Технико­экономические показатели рассматриваемых способов наплавки представлены в табл. 1 , где даны показатели для покрытий толщиной 1 мм. Коэффициент производительности – К п рассчитан как отношение основного времени, затраченного на восстановление условной детали ручным дуговым способом t р.н., к основному времени восстановления условной детали сравниваемым способом t i: К п =t р.н. /t i . За основное время восстановления условной детали приняты затраты времени, включающие предварительную и последующую механические обработки и нанесение покрытия. Коэффициент технико­экономической эффективности – К э определялся с учетом производительности и экономичности способа восстановления условной детали: К э =К п ·Э а /100, где Э а – экономия при восстановлении условной детали, %.

Использование конкретного способа наплавки из рассмотренных обусловлено условиями производства, количеством, формой и размерами наплавляемых деталей, допустимой долей участия основного металла в наплавленном, технико­экономическими показателями, а для восстановительной наплавки – величиной износа.

Выбор типа наплавленного металла и, следовательно, марки присадочного материала производится в соответствии с видом рабочего нагружения наплавляемой детали. Основными видами нагружения деталей машин и инструмента являются: абразивное, ударно­абразивное, гидроабразивное, контактно­ударное, термомеханическое, трение металла о металл, кавитационное, коррозионное. Детали машин чаще всего испытывают одновременно несколько видов нагружения. Поэтому при выборе типа наплавленного металла ориентируются на преобладающий вид износа.


Рис. 3 Осаждение покрытия на фрезу

Из сравнительного анализа рассмотренных методов очевидно преимущество процесса плазменной наплавки, вследствие его высокой производительности, незначительного припуска на механическую обработку, минимальной доли основного металла в наплавленном, наименьшему снижению сопротивления усталости. Особенно эффективен процесс плазменно­порошковой наплавки, позволяющий обеспечить точно заданную глубину проплавления и толщину покрытия, высокую равномерность по толщине слоя, возможность обеспечения необходимых состава, структуры и свойств уже в первом слое металла наплавки, высокую степень автоматизации, малые остаточные напряжения и деформации, отсутствие разбавления наплавляемого покрытия основным металлом.

Технологии напыления

Напыление – процесс, заключающийся в нагреве распыляемого материала высокотемпературным источником, образовании двухфазного газопорошкового потока и формировании покрытия на поверхности изделия толщиной менее 1 мм.

В зависимости от вида используемого источника энергии процессы напыления подразделяются на:

  • газопламенные, в которых используется тепло при сгорании горючих газов (ацетилена, пропан­бутана, водорода, метана, природного газа и др.) в смеси с кислородом или сжатым воздухом;
  • электродуговые, где осуществляется плавление проволоки электрической дугой и распыление расплавленного металла сжатым воздухом;
  • детонационные, использующие энергию детонации газовых смесей (кислород + горючий газ), в которых перенос и нагрев частиц осуществляется ударной волной, образующейся в результате взрыва горючей смеси и выделении при этом теплоты;
  • плазменные, где плавление наносимого порошкового материала осуществляется в плазменной струе;
  • высокоскоростные, где порошок подается в камеру сгорания, в которой обеспечивается горение топлива содержащего кислород и горючие газы (керосин, водород, пропан, метан) с последующим прохождением порошка и газов через расширяющееся сопло.

Метод

напыления

Вид напыляемого материала

Оптимальная толщина покрытия

Температура пламени, дуги, детонации, струи

Скорость истечения пламени, дуги,

детонации, струи

Скорость частиц

Прочность сцепления покрытия с основой

Пористость покрытия

Производительность процесса

Коэф­фициент исполь­зования материала

Уровень

шума

металл

керамика

кг / ч

Газопламенный

порошок, проволока

3463 (С 2 Н 2 +О 2)

Электродуговой

проволока

Детонационный

Плазменный

в инертных средах

порошок, проволока

0,5­8 (20­60 кВт)

в активных средах

в разряженных средах

Высокоcкоростной

Назначение процессов напыления – нанесение защитных покрытий заданных свойств минимальной толщиной от 0,05 мм и восстановление размеров изношенных и бракованных поверхностей. Технико­экономические показатели процессов напыления представлены в табл. 2 .

Преимущества технологий напыления:

  • универсальность процессов, позволяющая наносить покрытия разного функционального назначения, а также для восстановления размеров изношенных деталей;
  • малое термическое воздействие на напыляемую основу (температура ее нагрева не превышает 100­150 °С), позволяющее исключить нежелательные для нее структурные превращения, избежать деформаций и изменения размеров изделий;
  • возможность нанесения покрытий на изделия, изготовленные практически из любого материала;
  • отсутствие ограничений по размерам напыляемых изделий;
  • возможность нанесения покрытий на локальные поверхности;
  • возможность нанесения многослойных покрытий разнородными материалами;
  • высокая технологичность процесса, в связи с гибкостью регулирования параметров режима;
  • возможность получения регламентируемой однородной пористости покрытия для использования в условиях работы со смазкой поверхностей скольжения;
  • положительное влияние на усталостную прочность основы, за счет получения при напылении слоистой структуры покрытия, в отличие от столбчатой, образующейся при осаждении из газовой или паровой фазы, диффузионном насыщении;
  • нанесение равномерного покрытия с минимальными припусками для последующей механической обработки;
  • возможность эксплуатации в отдельных случаях напыленных деталей без последующей механической обработки;
  • возможность использования напыления для формообразования деталей (напыление производят на поверхности формы­оправки, которую после окончания процесса удаляют; остается оболочка из напыленного материала);
  • высокая производительность процесса напыления;
  • возможность автоматизации процесса.

Недостатки процессов напыления:

  • нестойкость напыленных покрытий к ударным механическим нагрузкам;
  • анизотропия свойств напыленных покрытий;
  • низкий коэффициент использования напыленного материала при нанесении покрытий на мелкие детали;
  • обязательное использование перед процессом напыления активационной обработки (например, абразивно­струйной), что увеличивает длительность и трудоемкость процесса;
  • выделение аэрозолей напыляемого материала и побочных газов, требует использования мощной вытяжной вентиляции;
  • повышенный уровень шума, а в случаях, связанных с электрической дугой – ультрафиолетового излучения.

Технологии осаждения

Осаждение – это методы нанесения защитных покрытий микронной толщины (менее 10 мкм), характеризующиеся конденсацией на поверхности изделий компонентов паровой или газовой фазы в условиях обработки частицами высоких энергий в вакууме или плазменными струями при атмосферном давлении.

Отличительными свойствами методов является обеспечение высокой адгезионной прочности покрытия к основе за счет применения физических процессов подготовки и активации поверхности (нагрева и предварительной очистки поверхностей тлеющим разрядом, бомбардировкой ионами инертных газов).

Процесс формирования покрытий осуществляется за счет обработки ионами в процессе конденсации, осаждения высоко­энергетических ионов, а также атомов и молекул с участием плазмохимических процессов.

Процессы осаждения подразделяются на:

  • плазменные, заключающиеся в нанесении покрытий при атмосферном давлении и являющиеся продуктами плазмохимических реакций реагентов, прошедших через дуговой или высокочастотный плазмотрон;
  • ионно­плазменные, происходящие в вакууме: необходимый для получения покрытий материал переводится из твердой в газовую фазу распылением мишени энергетическими ионами или испарением катода, добавкой реакционных газов;
  • ионно­лучевые, аналогичные ионно­плазменным, в которых дополнительно используются электроннолучевые пушки.

Назначение процессов осаждения – изготовление деталей машин и механизмов, технологической оснастки и инструмента, предусматривающее финишный способ нанесения тонкопленочных покрытий различного применения.

Рассмотрим сравнительные характеристики двух основных процессов осаждения покрытий микронной толщины при помощи использования плазменных струй, истекающих при атмосферном давлении – высокочастотного плазменного нанесения износостойких покрытий и электродугового плазменного нанесения тонкопленочных покрытий (технология финишного плазменного упрочнения – ФПУ).

Процесс высокочастотного плазменного нанесения тонкопленочных покрытий осуществляется на установке «Плазма­401», предназначенной для упрочнения элементов штампов холодного деформирования из инструментальных сталей типа Х12М и У10 и различного режущего инструмента. Нанесение износостойких покрытий осуществляется при атмосферном давлении при помощи высокочастотного индукционного (ВЧИ) плазмотрона, позволяющего получать объемные потоки спектрально чистой плазмы благодаря отсутствию эрозирующих электродов. Элементы покрытия образуются за счет разогрева газоразрядной плазмой пучка кварцевых стержней. Одновременно в камеру ВЧИ­плазмотрона подается реакционный газ – аргон, барботируемый через этиловый спирт. В зоне высоких температур пары реакционных веществ разлагаются на исходные компоненты, а при снижении температуры происходит восстановление элементов с плазмохимическим синтезом кремнийуглеродистых соединений, которые уносятся плазмообразующим газом и осаждаются на напыляемой детали.

Сущность технологии электродугового плазменного нанесения тонкопленочных покрытий (процесс финишного плазменного упрочнения – ФПУ) состоит в нанесении износостойкого покрытия с возможностью или отсутствием одновременного осуществления процесса повторной плазменной закалки приповерхностного слоя (на глубину нескольких микрометров). Покрытие является продуктом плазмохимических реакций реагентов, прошедших через дуговой плазмотрон. Закалка происходит за счет локального воздействия высококонцентрированной плазменной струи.

Цель ФПУ– изготовление инструмента, штампов, пресс­форм, ножей, фильер, подшипников и др. деталей машин со специальными свойствами поверхности: износостойкостью, антифрикционностью, коррозионностойкостью, жаростойкостью, разгаростойкостью, антисхватыванием, стойкостью против фреттинг­коррозии.

Эффект от ФПУ достигается за счет изменения физико­механических свойств поверхностного слоя: увеличения микротвердости, уменьшения коэффициента трения, создания сжимающих напряжений, залечивания микродефектов, образования на поверхности диэлектрического и жаростойкого пленочного покрытия с низким коэффициентом теплопроводности, химической инертностью и специфической топографией поверхности.

Оборудование для ФПУ включает в себя источник тока, блок аппаратуры с жидкостным дозатором, плазмотроном и плазмохимическим генератором.

Технологический процесс ФПУ проводится при атмосферном давлении и состоит из операций предварительной очистки (любым известным методом) и непосредственно упрочнения обрабатываемой поверхности путем взаимного перемещения изделия и плазмотрона. Температура нагрева деталей при ФПУ не превышает 100­120 0 С. Параметры шероховатости поверхности после ФПУ не изменяются. В качестве плазмообразующего газа используется аргон, исходным материалом для прохождения плазмохимических реакций и образования покрытия является жидкий препарат СЕТОЛ. Его расход не превышает 0,5 г/ч (не более 0,5 литра в год).

По сравнению с аналогами – ионно­плазменным напылением, лазерным и электроискровым упрочнением, эпиламированием, нанесением кластерных покрытий процесс ФПУ имеет следующие преимущества:

  • высокая воспроизводимость и стабильность упрочнения за счет двойного эффекта – от износостойкого покрытия и структурных изменений в тонком приповерхностном слое;
  • проведение процесса упрочнения на воздухе при температуре окружающей среды не требует применения вакуумных или других камер и ванн;
  • вследствие нанесения тонкопленочного покрытия (толщиной не более 3 микрометров), укладывающегося в допуски на размеры деталей, процесс упрочнения используется в качестве окончательной финишной операции;
  • отсутствие изменений параметров шероховатости поверхности после процесса упрочнения;
  • минимальный нагрев в процессе обработки (не более 100­120 о С) не вызывает деформаций деталей, а также позволяет упрочнять инструментальные стали с низкой температурой отпуска;
  • возможность упрочнения локальных (по глубине и площади) объемов деталей в местах износа с сохранением исходных свойств материала в остальном объеме;
  • тонкопленочное покрытие по микротвердости наиболее близко к алмазоподобным покрытиям;
  • образующиеся на поверхности после ФПУ сжимающие остаточные напряжения при циклической нагрузке повышают усталостную прочность изделия (для сравнения: после операции шлифования возникают растягивающие напряжения, ведущие к снижению усталостной прочности);
  • высокая адгезионная прочность сцепления покрытия с основой обеспечивает максимальную сопротивляемость истиранию (в том числе – при взаимодействии инструмента с обрабатываемым материалом);
  • низкий коэффициент трения способствует подавлению процессов наростообразования при резании или налипания при штамповке и прессовании;
  • формирование специфического микрорельефа поверхности способствует эффективному его заполнению смазочно­охлаждающей жидкостью при эксплуатации инструмента и деталей машин;
  • образующееся на поверхности тонкопленочное аморфное (стеклообразное) покрытие защищает изделие от воздействия высокой температуры (испытания на высокотемпературную воздушную коррозию в течение 100 часов при температуре 800 о С);
  • высокая производительность упрочнения (время обработки, например, кромок вырубного штампа средних размеров может составлять несколько минут);
  • простота операций по очистке и обезжириванию перед упрочнением (отсутствие специальной предварительной подготовки);
  • возможность упрочнения поверхностей деталей любых габаритов в ручном или автоматическом режимах;
  • минимальное потребление и низкая стоимость расходных материалов;
  • низкая потребляемая мощность установки для упрочнения – менее 6 кВт;
  • незначительная площадь, занимаемая оборудованием – 1­3 м 2 ;
  • малогабаритный плазмотрон для упрочнения (массой около 1 кг) может быть легко закреплен на манипуляторе, в руке робота, а также позволяет вести обработку вручную;
  • транспортабельность и маневренность оборудования (масса порядка 100 кг);
  • экологическая чистота процесса в связи с отсутствием отходов при упрочнении;
  • минимальный уровень шума, не требующий специальных мер защиты;
  • в отличие от методов упрочнения с использованием поверхностно­активных веществ в данной технологии отсутствуют особые требования к помещению, нет контактирования с токсичными материалами, не требуется затрат времени на выдержку в растворах и сушку обработанных деталей;
  • возможность образования профилированных углублений путем обработки поверхности методом ФПУ и образования рабочих зазоров 2­3 мкм (например, для газодинамических подшипников);
  • в отличие от избирательного переноса в процессе трения при ФПУ происходит принудительное образование в зоне фрикционного контакта тонкой неокисляющейся аморфной пленки с низким сопротивлением сдвигу, неспособной накапливать дислокации (дефекты) при деформации.

Тополянский П.А.,
Тополянский А.П.

НПФ «Плазмацентр»
(Санкт­Петербург)

Несущая поверхность детали иногда требует доработки: изменения структуры или свойств механических и физических параметров. Провести такое преобразование можно, используя плазменное напыление. Процесс является одним из видов диффузии, при которой происходит металлизация внешнего слоя изделия. Для осуществления такой обработки применяют специальное оборудование, способное превращать металлические частички в плазму и с высокой точностью переносить ее на объект.

Свойство покрытий, полученных путем , отличается высоким качеством. Они имеют хорошую адгезию к основанию и практически составляют с последним единое целое. Универсальность метода заключается в том, что нанести можно абсолютно любые металлы, а также другие материалы, например полимеры.

Получить напыление способом плазменного переноса частиц можно только в условиях производственных цехов на заводах и фабриках.

Суть процесса плазменного напыления заключается в том, что в струю из плазмы, которая имеет сверхвысокие температуры и направлена на обрабатываемый объект, подают дозированное количество частиц металла. Последние расплавляются и, увлекаемые струей, оседают на поверхности детали. К плазменному напылению прибегают в следующих случаях:

  1. Создание защитного слоя на изделии. Это может быть механическое усиление, когда на менее прочное основание наносят более прочный металл. С помощью диффузионной металлизации также можно увеличить сопротивляемость детали коррозионному воздействию, если наносить пленку из оксидов или металлов, мало подверженных окислению.
  2. Восстановление изношенных деталей. В этом случае за счет нового слоя покрытия можно убрать дефекты разрушения поверхности, чтобы придать изделию первоначальное состояние. В качестве материала напыления здесь используют металл, идентичный материалу основания.

Плазменное напыление отличается от других видов напыления рядом особенностей:

  1. Благодаря тому что плазма воздействует на исходное основание при помощи сверхвысоких температур (5000–6000 градусов по Цельсию), процесс протекает в ускоренном режиме. Иногда достаточно долей секунд, чтобы получить заданную толщину напыления.
  2. Диффузионная металлизация позволяет наносить как монослой на поверхность, так и делать комбинированное напыление. При помощи плазменной струи можно дополнять диффундируемый металл элементами газа, необходимыми для насыщения слоя элементарными частицами нужных химических элементов.
  3. При плазменном напылении практически отсутствует эффект дополнительного окисления основного металла. Это связано с тем, что реакция протекает в среде инертных газов без привлечения кислорода.
  4. Финальное покрытие обладает высоким качеством за счет идеальной однородности и равномерности проникновения атомов напыляемого металла в слой основания.

Методом диффузионной металлизации плазменного типа можно получать слои толщиной от нескольких миллиметров до микрон.

Технология и процесс напыления

При газоплазменном напылении металлов основой рабочей газовой среды являются инертные газы азот или аргон. Дополнительно по необходимости технологического процесса к основным газам может быть добавлен водород. Между катодом, в качестве которого выступает электрод в виде остроконечного стержня внутри горелки, и анодом, коим является подвергаемое водяному охлаждению сопло из меди, в процессе работы возникает дуга. Она прогревает до необходимой температуры рабочий газ, который обретает состояние плазменной струи.

Одновременно в сопло подается металлический материал в виде порошка. Этот металл под воздействием плазмы превращается в субстанцию с высокой способностью к проникновению в поверхностный слой обрабатываемого изделия. Распыляемый под давлением расплавочный материал оседает на основании.

Современные плазменные горелки имеют КПД в пределах 50–70 %. Они позволяют работать с любыми металлами, в том числе и тугоплавкими сплавами. Плазменное напыление – полностью управляемый процесс, позволяющий регулировать скорость подачи плазмы, мощность и форму струи.

В случае восстановления формы детали путем плазменного напыления технологический процесс имеет следующие этапы:

  1. Подготовка напыляемого материала. Суть процесса заключается в сушке порошка в специальных шкафах при температуре 150–200 градусов по Цельсию. При необходимости порошок также просеивают через сито для получения однородных по размеру гранул.
  2. Подготовка подложки или основания. На этом этапе с поверхности детали удаляют все посторонние включения. Это могут быть окислы либо различные загрязнения масляными веществами. Для лучшего сцепления основание может быть подвергнуто дополнительному процессу образования шероховатости. Если на изделии имеются участки, которые не следует подвергать напылению, их закрывают специальными экранами.
  3. и операции по заключительной обработке полученной поверхности.

К подложке напыляемый материал может доходить в твердом состоянии, в пластичной форме либо в жидком виде. Это определяется режимом технологического процесса.

Применяемое оборудование

Стандартный комплект установки плазменного напыления включает в себя:

  1. Источник электрического питания. Его назначение – питать схему формирования высоковольтного разряда и всех систем.
  2. Блок формирования разряда. В зависимости от устройства схемы может генерировать искровые разряды, импульсные высокочастотные напряжения либо сплошную электрическую дугу.
  3. Резервуары хранения газа – это чаще всего обычные газовые баллоны.
  4. Камеру, где непосредственно происходит напыление. Внутрь такого герметичного резервуара помещают обрабатываемую заготовку и плазмотрон.
  5. Установку вакуумного типа с насосом. В задачи этого агрегата входит создание требуемого разряжения в камере и образование тягового потока для подачи рабочей среды.
  6. Плазмотрон – устройство, которое снабжено соплом для подачи рабочей среды и системой приводов для перемещения сопла в пространстве.
  7. Систему дозирования напыляемого порошка. Служит для точной подачи необходимого количества напыляемого материала в единицу времени.
  8. Охлаждающую систему. В задачу этого элемента входит отвод лишнего тепла от области сопла, через которое проходит раскаленная плазма.
  9. Аппаратную часть. Она включает в себя компьютер, который управляет всем процессом плазменного напыления.
  10. Систему вентиляции. Она служит для отвода отработанных газов из рабочей камеры.

Современные установки диффузионной металлизации имеют специальное программное обеспечение, позволяющее путем введения заданных параметров проводить полностью автономную операцию обработки изделия. В задачи оператора входит установка детали в камеру и задание точных условий проведения процесса.

Уважаемые посетители сайта: специалисты и технологи по плазменному напылению! Поддержите тему статьи в комментариях. Будем благодарны за конструктивные замечания и дополнения, которые расширят обсуждаемый вопрос.

Плазменное напыление основано на использовании энергии плазменной струи как для нагрева, так и для переноса частиц металла. Плазменную струю получают путем продувания плазмообразующего газа сквозь электрическую дугу и обжатия стенками медного водоохлаждаемого сопла.
Плазменные покрытия обладают такими свойствами: жаростойкостью, жаро- и эрозионной прочностью, тепло- и электроизоляцией, противосхватываемостью, коррозионной стойкостью, защитой от кавитации, полупроводниковыми, магнитными и др.

Области применения плазменных покрытий: ракетная, авиационная и космическая техника, машиностроение, энергетика (в том числе атомная), металлургия, химия, нефтяная и угольная промышленность, транспорт, электроника, радио- и приборостроение, материаловедение, строительство, ремонт машин и восстановление деталей.

Если себестоимость газопламенного напыления проволочными материалами принять за единицу, то себестоимость плазменного и газопламенного напыления порошков будут соответственно 1,9 и 1,6, а электродугового — 0,85.

Плазменную струю получают в плазменной горелке, основные части которой (рис. 3.34) — электрод-катод /, водоохлаждаемое медное сопло-анод 4, стальной корпус 2, устройства для подвода воды 3, порошка 5 и газа 6. Части корпуса, взаимодействующие с катодом или анодом, изолированы друг от друга.
Порошкообразный материал подают питателем с помощью транспортирующего газа. Возможен ввод порошка с плазмообразующим газом.
Напыляемый материал (порошок, проволока, шнур или их комбинация) вводят в сопло плазменной горелки ниже анодного пятна, в столб плазменной дуги или плазменную струю.

Высокие температура и скорость струи делают возможным напыление покрытий из любых материалов, не диссоциирующих при нагреве, без ограничений на температуру плавления. Плазменным напылением получают покрытия из металлов и сплавов, оксидов, карбидов, боридов, нитридов и композиционных материалов.

Необходимые физико-механические свойства покрытий объясняются высокими температурой плазмы и скоростью ее истечения, применением инертных плазмообразующих газов, возможностью регулирования аэродинамических условий формирования металлоплазменной струи.
В материале детали не происходит структурных преобразований, возможно нанесение тугоплавких материалов и многослойных покрытий из различных материалов в сочетании плотных и твердых нижних слоев с пористыми и мягкими верхними (для улучшения прирабатываемости покрытий), износостойкость покрытий высокая, достижима полная автоматизация процесса.

При легировании через проволоку наплавку ведут высокоуглеродистой или легированной проволокой под плавленым флюсом. При этом обеспечиваются высокая точность легирования и стабильность химического состава наплавленного металла по глубине покрытия.

Легирование наплавленного металла через флюс выполняют наплавкой малоуглеродистой проволокой под слоем керамического флюса. Высокая твердость покрытий исключает их последующую термическую обработку. Однако этот способ легирования не нашел широкого применения из-за большой неравномерности наплавленного металла по химическому составу и необходимости строго выдерживать режим наплавки.

Комбинированный способ легирования одновременно через проволоку и флюс получил наибольшее распространение.

В качестве источников питания применяют выпрямители ВС-300, ВДУ-504, ВС-600, ВДГ-301 и преобразователи ПСГ-500 с пологопадаю-щей или жесткой внешней характеристикой. В роли вращателей деталей используют специальные установки (УД-133, УД-140, УД-143, УД-144, УД-209, УД-233, УД-299, УД-302, УД-651, ОКС-11200, ОКС-11236, ОКС-11238, ОКС-14408, ОКС-27432, 011-1-00 РД) либо списанные токарные или фрезерные станки. Для подачи проволоки применяют головки А-580М, ОКС-1252М, А-765, А-1197.

Основные технологические параметры наплавки: состав электродного материала и флюса, напряжение дуги U, сила / и полярность тока, скорость наплавки vH и подачи vn электродного материала, шаг наплавки S, смещение электрода с зенита е, диаметр d3 и вылет электрода. Примерные режимы наплавки под слоем флюса цилиндрических деталей приведены в табл. 3.52.

Наплавка под слоем флюса имеет следующие разновидности.

Наплавка лежачий электродом (прутковым или пластинчатым) из низкоуглеродистой или легированной стали применяется для восстановления плоскостей. Часть флюса насыпают на восстанавливаемую поверхность (толщиной 3…5 мм), а часть — на электрод (толщина слоя флюса достигает 10… 15 мм). Применяют флюсы-смеси. В одном месте электрод замыкают с деталью для возбуждения дуги, которая при горении блуждает в поперечном направлении. Плотность тока составляет 6…9 А/мм напряжение 35…45 В. Для выполнения процесса имеется установка ОКС-11240 ГосНИТИ.

Повышение производительности и более высокое содержание легирующих элементов в покрытии обеспечиваются многоэлектродной наплавкой под флюсом на детали со значительным износом на большой площади (рис. 3.23). Блуждающая дуга горит между деталью и ближайшим к ней электродом.

Натавка по слою порошка (толщиной 6…9 мм) под флюсом повышает производительность процесса и обеспечивает получение толстых покрытий нужного состава.
Область применения механизированной наплавки пол слоем флюса распространяется на восстановление деталей (диаметром более 50 мм) из углеродистых и низколегированных сталей, требующих нанесения слоя толщиной > 2 мм с высокими требованиями к его физико-механическим свойствам. Наплавляют шейки валов, поверхности катков и роликов, направляющие станин и другие элементы.

Механизированная наплавка под слоем флюса обладает такими преимуществами:

— повышением производительности труда в 6…8 раз по сравнению с ручной электродуговой наплавкой с одновременным снижением расхода электроэнергии в 2 раза за счет более высокого термического КПД;

— высоким качеством наплавленного металла благодаря насыщению необходимыми легирующими элементами и рациональной организации тепловых процессов;

— возможностью получения покрытий толщиной > 2 мм/p.

В качестве плазмообразующих газов при напылении материалов используют аргон, гелий, азот, водород и их смеси (табл. 3.68). Плазмообразующие газы не содержат кислорода, поэтому не окисляют материал и напыляемую поверхность.

Гелий и водород в чистом виде практически не применяются по экономическим соображениям, а также вследствие разрушающего действия на электрод.

Азот и аргон используются чаще, однако наилучшими показателями обладают газовые смеси, например Ar + N, и Аг + Н2. Вид плазмообразующего газа выбирают исходя из требуемых температуры, теплосодержания и скорости потока, его степени инертности к распыляемому материалу и восстанавливаемой поверхности. Следует учитывать, что плазма двух- и многоатомарных газов по сравнению с одноатомарными содержит больше тепла при одинаковой температуре, потому что ее энтальпия определяется тепловым движением атомов, ионизацией и энергией диссоциации.

При напылении порошковых или шнуровых материалов электрическое напряжение прилагают к электродам плазменной горелки. При напылении проволочных материалов напряжение подводят к электродам горелки, дополнительно оно может быть приложено к напыляемому материалу, т.е. проволока может быть токоведушей или нет. Напыляемую деталь в цепь нагрузки не включают.

Порошки для плазменного напыления не должны создавать заторы в транспортных трубопроводах, а должны равномерно подаваться в плазменную струю и свободно перемещаться с газовым потоком. Этим требованиям удовлетворяют частицы порошка сферической формы диаметром 20… 100 мкм.

В Институте электросварки им. Е.О. Патона НАН Украины разработаны порошковые проволоки сер. АМОТЕК. состоящие из стальной оболочки и порошкового наполнителя. Эти материалы предназначены для нанесения износо- и коррозионностойких покрытий способами газопламенного, электродугового и плазменного напыления. Особенностью материалов является возможность аморфизации структуры напыляемых покрытий. Наличие аморфной составляющей в структуре покрытий обеспечивает комплекс повышенных служебных свойств (износо- и коррозие-стойкости, прочности соединения с основой).

Для защиты частиц напыляемого материала от окисления, обезуглероживания и азотирования применяют газовые линзы (кольцевой потокинертного газа), являющиеся как бы оболочкой плазменной струи, и специальные камеры с инертной средой, в которых происходит процесс напыления.

Приведем примеры применения плазменного напыления в процессах восстановления деталей.

Освоено несколько разновидностей процесса восстановления коренных опор блоков цилиндров. Первые исследователи способа рекомендовали в качестве наносимого материала малоуглеродистую стальную проволоку Св-08 для обеспечения однородной мелкодисперсной структуры покрытия и повышения прочности соединения его с основой. Позднее были рекомендованы порошкообразные материалы. Распространение получили композиционные порошки и порошки из бронзы. Порошки из бронзы наносят на поверхности как чугунных деталей, так и деталей из алюминиевого сплава. Предварительно должен быть нанесен термореагирующий подслой Al-Ni.

При восстановлении коренных опор в чугунных блоках цилиндров применяют более дешевый порошок грануляцией 160…200 мкм состава: Fe (основа). 5 % Си и 1 % AI. Режим нанесения покрытия: ток плазменной дуги 330 А, напряжение 70 В, расход плазмообразующего газа (азота) 25 л/мин, диаметр сопла плазмотрона 5,5 мм, частота качаний плазмотрона 83 мин’, подача детали 320 мм/мин, расход порошка 7 кг/ч.

Процесс нанесения плазменного покрытия на поверхности отверстий в деталях из алюминиевого сплава включает:

1) сушку порошков при температуре 150..20 °С в течение 3 ч;

2) предварительное растачивание отверстий до размера, превышающего на 1 мм номинальный размер отверстия;

3) установку защитных экранов;

4) обезжиривание напыляемых поверхностей ацетоном;

5) нанесение покрытия в две операции;

6) снятие защитных экранов;

7) предварительное и окончательное растачивание;

8) удаление облоя.

В первой операции наносят подслой ПН-85Ю15, во второй — основной слой из медного порошка ПМС-Н. Режимы нанесения покрытий: сила тока 220…280 А, расход азота 20…25 л/мин при давлении 0,35 МПа. расстояние от сопла до детали 100… 120 мм, время нанесения покрытия 15 мин. Покрытие наносят на стенде. Плазмообразующее оборудование состоит из источника питания ИПН 160/600 н установки УПУ-ЗД или УПУ-8.

Применяют плазменное напыление при нанесении покрытий на плоскости головок цилиндров из силумина. Технология включает предварительное фрезерование изношенной поверхности, нанесение покрытия и последующую обработку. В качестве материала покрытия используют порошок из алюминия и 40…48 % Fe. Режим нанесения покрытия: сила тока 280 А, расстояние от сопла до детали 90 мм. расход плазмообразующего газа (азота) 72 л/мин.

С целью удешевления процесса и повышения его производительности внедрен процесс электродугового напыления плоскостей из проволоки Св-АК5 диаметром 2 мм. Применяют источник тока ВГД-301 и металлизатор ЭМ-12. Режимы напыления: сила тока 300 А, напряжение 28… 32 В, давление распыливающего воздуха 0.4…0.6 МПа, расстояние от сопла до детали 80… 100 мм. Покрытие толщиной 5 мм наносят за 8… 10 мин.

При восстановлении поршней из алюминиевого сплава наносят плазменное покрытие из порошка бронзы ПР-Бр. АЖНМц 8,5-4-5-1,5 (8,5 % AI, 4 % Fe, 4.8 % Ni. 1,4 % Мп, остальное Си). Игпользуют установку УПУ-8. Режим нанесения: ток 380 А, расстояние от сопла до детали 120 мм. плазмообразуюший газ — смесь аргона с азотом.

При восстановлении коленчатых валов из высокопрочного чугуна наносят плазменное покрытие из композиции порошков на термореагирующий подстой из материала ПН-85Ю15. Состав композиции: 50 % ПГСР, 30 % ПЖ4 и 20 % ПН85Ю15.

Режимы процесса: I = 400 А, расстояние от сопла до детали 150 мм. расход азота 25 л/мин. Согласно авторскому свидетельству на изобретение СССР № 1737017. цель которого — повышение адгезионной и когезионной прочности покрытий, наносимый материал содержит (в мае. %): самофлюсующийся сплав системы Ni-Сг-В-Si 25…50, порошок железа 30…50 и никель-алюминиевый порошок 20…25.

Микроплазменное напыление применяют при восстановлении участков деталей с размерами 5… 10 мм с целью уменьшения потерь напыляемого материала. Используют плазмотроны малой мощности (до 2… 2,5 кВт), генерирующие квазиламинарную плазменную струю при силе тока 10…60 А. В качестве плазмообразующего и защитного газа применяют аргон. При микроплазменном напылении удается уменьшить диаметр металлоплазменной струи до 1…5 мм. Процесс характерен низким уровнем шума (30…50 дБ) и небольшим количеством отработавших газов, что позволяет вести напыление в помещении без применения рабочей камеры. Создана установка микроплазменного напыления МПН-001.

Технологические режимы плазменного напыления определяются: видом и дисперсностью материала, током плазменной струи и его напряжением, видом и расходом плазмообразующего газа, диаметром сопла плазменной горелки и расстоянием от сопла до напыляемой поверхности.

Дисперсность частиц материала, ток плазменной струи и расход плазмообразующего газа определяют температуру нагрева частиц и их скорость перемещения, а значит, — плотность и структуру покрытия.

Большая равномерность свойств покрытия обеспечивается при более высокой скорости перемещения плазмотрона относительно детали и меньшей толщине слоя. Эта скорость мало влияет на коэффициент использования материала и значительно сказывается на производительности процесса.

Расстояние от сопла до восстанавливаемой поверхности зависит от вида плазмообразующего газа, свойств напыляемого материала и изменяется в пределах 120…250 мм (чаще 120…150 мм). Угол между осью потока частиц и восстанавливаемой поверхностью должен приближаться к 90°.

Оптимальное сочетание теплосодержания потока плазмы, времени пребывания частиц в этом потоке и их скорости обеспечивает получение покрытий с высокими физико-механическими свойствами.

Свойства плазменных покрытий существенно улучшаются при их оплавлении. При этом плавится наиболее легкоплавкая часть материала, однако температура нагрева должна быть достаточной для плавления боросиликатов, которые восстанавливают металлы из оксидов и образуют шлаки.

Оплавляемые материалы должны удовлетворять таким требованиям: температура плавления легкоплавкой составляющей сплава не должна превышать 1000… 1100 °С. сплав в разогретом состоянии должен хорошо смачивать поверхность заготовки и обладать свойством самофлюсования. Такими свойствами обладают порошковые материалы на основе никеля, имеющие температуру плавления 980… 1050 °С и содержащие флюсующие элементы: бор и кремний. Недостаточная температура нагрева покрытия приводит к образованию на поверхности капель металла. Жидкое состояние части покрытия способствует интенсивному протеканию диффузионных процессов, при этом материал детали остается в твердом состоянии.

В результате оплавления значительно повышается прочность соединения покрытия с основой, увеличивается когезионная прочность, исчезает пористость и улучшается износостойкость.

Оплавленные покрытия имеют обрабатываемость, близкую к обрабатываемости монолитных жаропрочных сталей и сплавов аналогичного химического состава.
Покрытия оплавляют: газовой горелкой (ацетиленокислородным пламенем), в термической печи, индуктором (токами высокой частоты), электронным или лазерным лучом, плазменной горелкой (плазменной струей), пропусканием тока большой величины.

Оплавление газовой горелкой — наиболее простой способ, позволяющий визуально контролировать качество оплавления. Недостатки способа — односторонний нагрев детали, который может привести к ее короблению, и большая трудоемкость при обработке массивных деталей.

Печное оплавление обеспечивает прогрев всего объема детали, поэтому вероятность появления трещин уменьшается. Однако сопряженные с покрытием участки детали покрываются окалиной, их физико-механические свойства ухудшаются. Негативное влияние окислительной атмосферы на свойства покрытий при их нагреве исключается при наличии защитной среды.

Хорошие результаты дает индукционное оплавление, которое обеспечивает большую производительность без нарушения термообработки всей заготовки. Нагреву подвергают только покрытие и примыкающий к нему тонкий слой основного металла. Толщина прогреваемого металла зависит от частоты тока: с увеличением последней толщина уменьшается. Высокие скорости нагрева и охлаждения могут привести к трещинам в покрытии.

Оплавление покрытий электронным или лазерным лучом практически не изменяет свойств сопряженных с покрытием участков и сердцевину детали. Вследствие высокой стоимости эти способы следует применять при восстановлении ответственных дорогостоящих деталей, покрытия на которых трудно оплавить другими способами.

Оплавленные покрытия из сплавов на основе никеля ПГ-СР2. ПГ-СРЗ и ПГ-СР4 имеют такие свойства:

— твердость 35…60 HRC в зависимости от содержания в них бора;

— повышенную в 2…3 раза износостойкость по сравнению с закаленной сталью 45, что объясняется присутствием в структуре покрытия твердых кристаллов (боридов и карбидов);

— увеличенную в 8… 10 раз прочность соединения покрытия с основой по сравнению с прочностью соединения неоплавленных покрытий;

— повышенную на 20…25 % усталостную прочность.

Область применения плазменных покрытий с последующим оплавлением — это восстановление поверхностей деталей, работающих в условиях знакопеременных и контактных нагрузок.

Оплавленные покрытия имеют многофазную структуру, составляющие которой — бориды, избыточные карбиды и эвтектика. Вид микроструктуры (дисперсность, вид и количество составляющих) зависит от химического состава самофлюсующегося сплава, времени и температуры нагрева.

Наилучшую износостойкость деталям в нагруженных сопряжениях обеспечивают покрытия из самофлюсующихся сплавов. Структура покрытия — высоколегированный твердый раствор с включениями дисперсных металлоподобных фаз (прежде всего боридных или карбидных) с размером частиц 1…10 мкм, равномерно распределенных в основе.

Для плазменного напыления металлических и неметаллических покрытий (тугоплавких, износостойких, коррозионностойких) применяют установки: УН-115, УН-120, УПМ-6. УПУ-ЗД. УПС-301. АПР-403. УПРП-201.

Вам также могут быть интересны статьи:

Газопламенное напыление Процесс вакуумного конденсационного напыления Вибродуговая наплавка Нанесение износостойких коррозионно-стойких покрытий на литые детали машин, механизмов и технологической оснастки

Плазменное напыление (или, другими словами – диффузионная металлизация) эффективный способ изменения физико-механических свойств, а также структуры основной поверхности. Поэтому он часто используется с декоративными целями, и для увеличения стойкости конечного продукта.

Принцип плазменного напыления

Как и традиционные методы поверхностных покрытий, при диффузионной металлизации происходит осаждение на поверхности металла слоя другого металла или сплава, который обладает необходимыми для последующего применения детали свойствами – нужным цветом, антикоррозионной стойкостью, твёрдостью. Отличия заключаются в следующем:

  1. Высокотемпературная (5000 — 6000 °С) плазма значительно ускоряет процесс нанесения покрытий, который может составлять доли секунд.
  2. При диффузионной металлизации в струе плазмы в поверхностные слои металла могут диффундировать также химические элементы из газа, где проводится обработка. Таким образом, регулируя химический состав газа, можно добиваться комбинированного поверхностного насыщения металла атомами нужных элементов.
  3. Равномерность температуры и давления внутри плазменной струи обеспечивает высокое качество конечных покрытий, чего весьма трудно достичь при традиционных способах металлизации.
  4. Плазменное напыление отличается чрезвычайно малой длительностью процесса. В результате не только повышается производительность, но также исключается перегрев, окисление, прочие нежелательные поверхностные явления.

Рабочие установки для реализации процесса

Поскольку чаще всего для инициации высокотемпературной плазмы используется электрический разряд – дуговой, искровой или импульсный – то применяемое для такого способа напыления оборудование включает:

  • Источник создания разряда: высокочастотный генератор, либо сварочный преобразователь;
  • Рабочую герметизированную камеру, где размещается подвергаемая металлизации заготовка;
  • Резервуар для газа, в атмосфере которого будет производиться формирование высокотемпературной плазмы;
  • Насосной или вакуумной установки, обеспечивающей необходимое давление для прокачки рабочей среды или для создания требуемого разрежения;
  • Системы управления за ходом протекания процесса.

Работа плазмотрона, выполняющего плазменное напыление, происходит так. В герметизированной камере закрепляется напыляемая деталь, после чего между поверхностями рабочего электрода (в состав которого входят напыляемые элементы) и заготовкой возбуждается электрический разряд. Одновременно через рабочую зону с требуемым давлением прокачивается жидкая или газообразная среда. Её назначение – сжать зону разряда, повысив тем самым объёмную плотность его тепловой мощности. Высококонцентрированная плазма обеспечивает размерное испарение металла электрода и одновременно инициирует пиролиз окружающей заготовку среды. В результате на поверхности образуется слой нужного химического состава. Изменяя характеристики разряда – ток, напряжение, давление – можно управлять толщиной, а также структурой напыляемого покрытия.

Аналогично происходит и процесс диффузионной металлизации в вакууме, за исключением того, что сжатие плазмы происходит вследствие разницы давлений внутри и вне её столба.

Технологическая оснастка, расходные материалы

Выбор материала электродов зависит от назначения напыления и вида обрабатываемого металла. Например, для упрочнения штампов наиболее эффективны электроды из железо-никелевых сплавов, которые дополнительно легируются такими элементами, как хром, бор, кремний. Хром повышает износостойкость покрытия, бор – твёрдость, а кремний – плотность финишного покрытия.

При металлизации с декоративными целями, главным критерием выбора металла рабочего электрода является конфигурация напыляемой поверхности, а также её внешний вид. Напыление медью, например, производят электродами из электротехнической меди М1.

Важной структурной составляющей процесса является состав среды. Например, при необходимости получить в напыляемом слое высокостойкие нитриды и карбиды, в газе должны присутствовать органические среды, содержащие углерод или азот.

Последующая обработка готового покрытия

В силу особенностей процесса плотность напылённого слоя и прочность его сцепления с основным металлом не всегда бывают достаточными для обеспечения долговечности покрытия. Поэтому часто после обработки деталь подвергается последующему поверхностному оплавлению с использованием кислородно-ацетиленового пламени, либо в термических печах. Как следствие, плотность покрытия возрастает в несколько раз. После этого продукцию шлифуют и полируют, применяя твердосплавный инструмент.

С учётом последующей доводки изделия, толщину слоя металла после обработки принимают не менее 0,8 — 0,9 мм.

Для придания детали окончательных прочностных свойств её закаливают и отпускают, применяя технологические режимы, рекомендуемые для основного металла.

Плазменное напыление повышает теплостойкость, износостойкость и твёрдость изделий, увеличивает их способность противодействовать коррозионным процессам, а напыление с декоративными целями значительно улучшает внешний вид деталей.

Ограничениями технологии диффузионного плазменного напыления считаются чрезмерная сложность конфигурации заготовки, а также относительная сложность используемых установок.

При невысоких требованиях к равномерности образующегося слоя можно использовать и более простые установки, конструктивно напоминающие сварочные полуавтоматы. В этом случае плазменное напыление производится в воздушном пузыре, который образуется при обдуве зоны обработки компрессором. Электроды, в составе которых имеется напыляемый металл, последовательно перемещаются по контуру изделия. Для улучшения сцепления напыляемого металла с основой внутрь зоны напыления вводится также присадочный материал.



Доверенности