Что такое сотовая связь lte. Применение технологии LTE в смартфонах. Что такое lte в айфоне

Раньше вопросов про LTE задавали много. Сегодня остался самый главный: когда ? Когда это счастье придет к нам, в Россию? Еще месяц назад я не знал, что отвечать людям. Сильно комплексовал по этому поводу, ведь так близок к теме. Сомневался, то ли конец 2012-го, то ли начало 2013-го. Никакой определенности! Но сейчас, после исторического решения ГКРЧ от 8 сентября , всё, наконец, стало ясно.

Я слоупок, что такое LTE?

LTE - Long Term Evolution (англ., долгосрочная эволюция). Когда ученые доводили до ума 3G (он же UMTS, он же WCDMA) в рамках проекта 3GPP, они «рассчитались на первый-второй». Половина стала «докручивать» 3G до HSPA: это были минорные доработки радиоинтерфейса при сохранении основы - принципа кодового разделения каналов (CDMA). Планировали закончить быстро, поэтому называли между собой краткосрочной эволюцией. Другую половину озаботили вопросом: а что, если абоненты захотят мобильного интернета на скоростях на порядок выше, чем в 3G? Такие вопросы быстро не решаются. Тут думать нужно, крепко и долго. Отсюда и эволюция долгосрочная - LTE. Маркетологи, кстати, часто называют LTE 4G.

Про железо

Базовые станции LTE не содержат ничего сверхъестественного. Там есть радиомодули (они же приемопередатчики, TRXы), блок цифровой обработки сигнала (BBU), интерфейсные платы (FE/GE порты, электрические, оптические). Радиомодули бывают выносные - RRU. Монтируются вблизи антенны (для уменьшения потерь в ВЧ-фидере), к BBU подключаются по отпике (стандарт CPRI). Всё как в БС 3G, но называются красиво - evolved NodeB (дословно - продукт эволюции «узла Б», т.е. собственно БС 3G).


Базовая станция

Базовая станция

А поскольку БС разных стандартов больше похожи, чем отличаются, производители быстро догадались делать всё «в одном флаконе». Решение называется SingleRAN. Одна БС на 3 стандарта: GSM, 3G и LTE. Очень удобно оператору с точки зрения экономии места и питания на сайте, сокращения времени на монтаж и так далее. Мы такие уже начали закупать и устанавливать на сети. Так что, как только, так сразу…

Для LTE не нужны какие-то особенные антенны. Вполне подойдут обычные панельные антенны с кросс-поляризацией. Они, например, используются в сетях GSM и в 3G. Правда, если в GSM и 3G две поляризации обычно используются на прием, а на передачу только одна (схема 2Rx/1Tx), то в LTE обе поляризации задействованы по полной, и на прием, и на передачу (схема 2Rx/2Tx). Это необходимо для реализации технологии MIMO2х2. На первом этапе внедрения LTE этого будет достаточно. Дальше пропускную способность сектора можно будет увеличить, добавив еще по одной кросс-пол антенне. Получится схема 4Rx/4Tx и MIMO4х4. Главное разнести антенны в пространстве на достаточное расстояние (порядка 10 длин волн).

Что еще из «железа»? Контроллера сети доступа (как BSC в GSM, или RNC в 3G), как отдельного физического и логического узла в сети LTE, нет, БС подключаются напрямую к узлам Core, причем исключительно по IP. Core используется только пакетный. Называется EPC (evolved Packet Core). К нашему счастью, относительно новый обычный Packet Core превращается в EPC путем апгрейда софта. Функционал MME (узел управления мобильностью в LTE) можно накатить на используемый для GPRS/3G узел SGSN, а с функциями PGW/SGW должен уметь справляться GGSN. Не скажу, что все SGSN/GGSN-ы «Билайна» HW-ready к LTE, но мы уверенно движемся в этом направлении.

Плюс SAE-HSS (хранилище абонентских профайлов), который также поднимается на существующей HW-платформе ngHLR"a. Вот, собственно, и вся сеть LTE.


Архитектура LTE

Про транспорт

GE-порты на БС. Это, как любил говаривать Винни Пух, неспроста: вы же наверняка понимаете, какой должен быть backbone при таком backhaul"e! Если у кого-нибудь из уважаемых читателей есть несколько свободных миллиардов долларов, могу подсказать, как потратить их с пользой…

Про частоты

В отличие от других стандартов мобильной связи LTE не привязан к какому-то конкретному диапазону частот. В этом его сила. Разработчики (3GPP) определили более 30 диапазонов, для которых производители могут выпускать стандартное радиооборудование LTE. Сюда попали как частоты, используемые сейчас под другие стандарты (например, 900, 1800 (GSM), 2100 (UMTS), 2500 (WiMAX), так и “новые”, например 700-800 Мгц (так называемый “цифровой дивиденд”). Понятно, что далеко не все из возможных диапазонов найдут широкое распространение в мире. Скорее всего, в итоге “выживет” не больше 4-5 диапазонов. Большее количество очень трудно реализовать в одном абонентском девайсе, а это уже проблема для обеспечения глобального роуминга. Если спросите, на какие диапазоны сделать ставку, мои предпочтения следующие:
  • 800 Мгц (3GPP band 20) – выделен или планируется под LTE практически во всех европейских странах, включая Россию; выгоден с точки зрения затрат на обеспечение сплошного покрытия; оборудование выпускается всеми ведущими производителями;
  • 2,5 Ггц (3GPP band 7) – выделен или планируется под LTE практически во всех странах Европы и Азии, включая Россию; выгоден при обеспечении емкости в хот-спотах; оборудование выпускается всеми ведущими производителями.
  • 1800 Мгц (3GPP band 3) – будет освобождаться по мере уменьшения количества GSM-only телефонов и расширения покрытия 3G (чтобы было, куда переводить голос); хорош с точки зрения обеспечения в сети баланса между емкостью и покрытием; GSM-операторам даст возможность сэкономить за счет переиспользования инфраструктуры сети доступа (приемопередатчики, антенны); оборудование выпускается почти всеми ведущими производителями
Вообще, выбор правильного диапазона для развития LTE – задача не из простых. В нижних диапазонах, где всё отлично с покрытием, проблема найти полосу достаточной для полноценного LTE ширины. В верхних обычно хорошо с частотным ресурсом, но БС нужно ставить через каждые 400-500 метров, разоришься на сплошном покрытии! Вероятно, большинство сетей LTE, аналогично GSMу, будут двух-диапазонные.

Про скорости

Максимальные скорости передачи данных – ключевой показатель крутости стандарта для конечных пользователей. И LTE реально крут! Можно долго говорить о теоретических возможностях разных стандартов, перспективах их развития и так далее, но то, что абонентам в уже работающих сетях LTE доступны скорости более 100 Мбит/с – это факт. И это только начало светлого будущего: уверен, что достижение в сетях LTE скоростей до 1 Гбит/с – вопрос нескольких лет. Дальше посмотрим. Скорее всего, нужен будет очередной прорыв, как в теории радиосвязи, так и в технологии производства элементной базы.

Про покрытие

Зона покрытия одной БС в LTE может быть абсолютно разной. От чего это зависит прежде всего? Правильно! От используемого диапазона частот. Если сравнить крайние варианты, то площадь покрытия одной eNodeB, работающей в самом нижнем LTE-диапазоне (700 Мгц) оказывается, при прочих равных, в 5-6 раз больше, чем для базы, работающей в 2.5 ГГц. В условиях городской застройки радиус соты, таким образом, может быть от нескольких сот метров до нескольких километров. Что касается рекорда по дальности действия БС LTE, он был установлен в ходе трайла греческого оператора Cosmote на оборудовании Huawei в начале этого года – на расстоянии 102 км от БС была получена скорость передачи 135 Мбит/с. Конечно, это была прямая видимость и один абонент в соте. Но с точки зрения предельных возможностей стандарта – довольно убедительно.

Про гаджеты

Доступные сейчас на рынке абонентские устройства с поддержкой LTE включают (по типам):


USB-модемы (на картинке – Huawei E398)

Смартфоны (на фото – HTC Thunderbolt, OS Android)

Планшет (на фото – Samsung Galaxy Tab 10.1, OS Android)


Портативный LTE/Wi-Fi Hotspot (на фото – Samsung SCH-LC11)


Ноутбук (на картинке HP Pavilion DM1-3010NR)

На данный момент на рынке доступно уже более 100 абонентских устройств с поддержкой LTE и это количество растет с каждым днем. Основные игроки на этом рынке – наши старые знакомые: Samsung, LG, HTC, ZTE, Huawei.

Про опыты

Посмотреть, как работает LTE вживую, хотелось очень давно. Первый раз довелось в начале прошлого года в Стокгольме. Спасибо коллегам из Ericsson, позвали посмотреть на первую в мире коммерческую сеть LTE – Telia-Sonera. Честно признаться, был немного разочарован. Скорости, пока катались по городу на микроавтобусе, колебались в пределах от 0 до 8 Мбит/с. К тому же, соединение постоянно рвалось. Коллеги оправдывались тем, что сеть пока не оптимизирована, БС мало, диапазон высокий - 2.5 Ггц. Всё, конечно, понятно, но хотелось чуда.

По приезде из Швеции задумали построить пилотную сеть LTE в одной из наших стран. Проще всего договориться с Регулятором о выделении (на время пилота) частот под LTE оказалось в Казахстане. Диапазон частот выбрали самый низкий из доступных – 700 Мгц (точнее band 13, именно те номиналы, на которых строит сеть американский Verizon). К концу октября 2010 построили в сотрудничестве с Alcatel-Lucent сети в двух главных городах Казахстана (Астане и Алматы). То что получилось показали и чиновникам, и журналистам, и наиболее интересующимся из потенциальных клиентов. Подробнее можно почитать .

Про голос

Нужна ли передача голоса в LTE? С одной стороны, стандарту мобильной связи, претендующему на роль глобального, без базовой связной услуги оставаться, вроде как, неприлично. С другой – представить, что покрытие LTE появится там, где нет GSM или 3G, сложно. То есть без голоса абонент всяко не останется.
Рано или поздно придёт LTE-Advanced, потребуются дополнительные частоты. А где их взять, как не у сетей GSM и 3G? Тогда LTE останется один на один с абонентом, которому, как и раньше, нужно будет поговорить - а, значит, голос в LTE обязательно будет, вопрос времени. Сейчас в первых коммерческих сетях, для предоставления голосовых звонков реализована функция CS Fallback. Получив по служебному каналу в сети LTE сообщение о входящем вызове, абонентское устройство переключается в режим GSM или 3G и информирует сеть о готовности принять вызов. После этого звонок проключается через GSM/3G CS Core.


CS Fallback в действии

В будущем, при переходе к all-IP архитектуре, голос в мобильных сетях останется только в виде VoIP. Тогда вопрос выбора сети радиодоступа, через которую будут идти голосовые звонки, сведется к емкостным характеристикам – чем больше пропускная способность сектора, тем больше одновременных звонков он может обслужить.

В настоящее время LTE-сети относят к четвертому поколению беспроводной связи (4G). Основные преимущества в сравнении с предыдущим поколением – высокая скорость передачи данных. Это очевидный плюс для пользователей. В свою очередь, провайдеры могут использовать LTE-технологию для увеличения без установки нового оборудования.

Оптимальный радиус покрытия базовой станции LTE равняется 5 км. В случае необходимости указанный диапазон может быть расширен до 100 км. Естественно, такая большая зона покрытия обеспечивается установкой антенны на достаточной высоте и не подразумевает ее использование в городских условиях.

Первая в мире коммерческая LTE-сеть была запущена в Швеции в 2009 году. В России развитие данного стандарта до сих пор не получило активной поддержки. Это обусловлено тем, что для работы с LTE-сетями операторы должны получить в распоряжение частоты определенного диапазона.

В мае 2012 года оператор Yota активировал работы LTE-сети в Москве. До этого времени большинство услуг предоставлялось с использованием канала WiMax. Активные пользователи Yota заблаговременно получили возможность обменять «старые» модемы на аппаратуру, работающую с LTE-каналом. Стоит отметить, что до запуска сети LTE в столице подобные каналы уже работали в Новосибирске и Краснодаре.

Медленная интеграция технологий LTE негативно сказывается на развитии компьютерной техники. Это касается, в основном, всевозможных планшетных компьютеров и коммуникаторов. Определенная часть этих устройств поддерживает возможность подключения к сетям LTE.

Работа LTE-сетей в России обеспечена таким образом, что при выходе из зоны покрытия соответствующих антенн осуществляется мгновенное переключение на сравнительно старые каналы. Естественно, данная функция поддерживается только теми устройствами, которые могут работать с каналами LTE, WiMax и GPRS.

Источники:

  • как работает lte

Технологии мобильной связи постоянно развиваются. Чтобы иметь возможность предоставлять клиентам конкурентные услуги, сотовые операторы стремятся использовать последние достижения в данной области. Наиболее перспективным направлением сегодня является ввод в эксплуатацию сетей класса 4G.

К классу 4G сегодня относят сети мобильной связи, созданные на базе технологий четвертого поколения. Они характеризуются высокой скоростью обмена информацией, а также улучшенным качеством голосовой связи. В отличие от 3G, сети данного класса используют только пакетные протоколы передачи данных (IPv4, IPv6). Скорость обмена составляет более 100 Мбит/с для подвижных и более чем 1 Гбит/с для стационарных абонентов. Передача голоса в сетях 4G осуществляется посредством VoIP. В настоящее время существуют две технологии, признанные отвечающими всем требованиям сетей класса 4G. Это LTE-Advanced и WiMAX (WirelessMANAdvanced).

Разработка технологии LTE, являющейся прототипом LTE-Advanced, была начата в 2000 году компаниями Hewlett-Packard и NTT DoCoMo. Данное направление являлось перспективным, поскольку даже сети третьего поколения лишь начинали набирать популярность. Отвечать требованиям 4G технология стала только к десятому релизу. Однако, поскольку данный стандарт можно было применять в уже существующих мобильных сетях, он стал пользоваться поддержкой операторов сотовой связи. Первая сеть на базе LTE-Advanced была официально запущена в декабре 2009 года в городах Стокгольм и Осло.

Технология WiMAX является развитием стандарта беспроводной передачи данных Wi-Fi. Ее разработкой занимается организация WiMAX Forum, созданная в 2001 году. Особенностью WiMAX считается существование различных протоколов обмена информацией для статичных и подвижных абонентов. Первая сеть сотовой связи, использующая технологию WiMAX, была открыта в декабре 2005 года в Канаде.

Сегодня сети 4G начинают обретать все большую популярность во всем мире. Однако их внедрение сопряжено с определенными трудностями. Одна из них заключается в том, что радиоволны высоких частот, используемые в данных сетях, крайне плохо проникают сквозь городские строения. Поэтому (по сравнению с 3G) требуется гораздо больше базовых станций для обеспечения качественного покрытия.

На различных операционных системах стала появляться возможность работы с LTE.

Так как это относительно инновационная функция, далеко не все пользователи знают, для чего она нужна, какие функции выполняет и почему смартфоны, оснащенные таким новшеством, стоят немного дороже.

Как работают сети в телефоне и что это такое – об этом рассказано в данном материале.

Определение

LTE – это новый стандарт передачи данных для мобильных телефонов, который стал активно реализовываться в Российской Федерации примерно с 2014 года.

Он обладает рядом преимуществ по сравнению с такими традиционными форматами, как 3G и GPRS. Он имеет и иное название – 4G LTE , которым нередко обозначается в инструкциях.

Дословно данная аббревиатура переводится как Long-Term Evolution. Как же появился такой новый формат? Разработан он был на базе GSM и HSPA технологий, которые значительно усовершенствовали.

Он более эффективно передает данные за счет того, что в нем используется иной радиоинтерфейс. Кроме того, улучшено само ядро сети.

Этот стандарт достаточно легко вошел во всеобщее использование, в том числе в России, так как стал нормальным естественным обновлением как для операторов , так и CDMA2000 .

Покрытие

Особенности технологии таковы, что для передачи данных может использоваться множество различных полос и частот. Благодаря этому покрытие сетями обширно во всех странах.

Например, в Южной Корее пользоваться такой сетью получается на 97% территории страны, в Японии – на 90%, в Гонконге и Кувейте – на 86%.

Хотя в России процент охвата все еще не велик по сравнению даже с Казахстаном – 49% против 81% (по данным на 2015 год).

В настоящее время ситуация значительно улучшилась. По данным на 2016 год данные сети присутствуют в 83 регионах России, при этом в зону покрытия сетями попадает 70% населения (но не территории страны). Однако неприятной особенностью является специфика работы сотовых операторов – различные операторы предоставляют разную степень покрытия и качество сигнала.

Преимущества

Какие же преимущества имеет данный стандарт и стоит ли покупать устройство, оснащенное им, хотя оно стоит немного дороже (хотя в последнее время разница в цене почти полностью исчезла)?

  • Основное преимущество данной технологии – высокая скорость передачи данных. Фактически, она способна обеспечить очень высокоскоростной интернет, скорость которого бывает иногда ограничена техническими возможностями телефона. Скорость передачи данных по таким сетям куда выше, чем по традиционным сетям третьего поколения – 3G.
  • Для работы с LTE могут использоваться различные полосы и частоты , что позволило ей быстро интегрироваться во м6ножестве регионов. Кроме того, благодаря этому достигаются большие зоны охвата. Фактически, теперь LTE может ловить и там, где не ловит 3G;
  • Архитектура интернет-сетей по IP (то есть схема передачи данных от одного сервера другому и, наконец, пользователю, запросившему их) значительно упрощается при этом стандарте, что также позитивно сказывается не только на скорости, но и на качестве данных. На страницах реже возникают сбои и ошибки, явления, когда картинки, например, не прогружаются;
  • Увеличена не только скорость загрузки, но и скорость отдачи , а также уменьшено время ожидания.

Существует несколько значительных преимуществ у этого формата с точки зрения непосредственного технологического устройства сети (это увеличенный размер соты, большая гибкость диапазонов и т. д.). Для рядового пользователя же такие изменения выражаются в преимуществах, описанных выше.

Недостатки

До недавнего времени существенным недостатком данного формата считалась существенная ограниченность его действия, появившаяся потому, что не все вышки предоставляли возможность соединения в этом формате.

Существовало достаточно много «мертвых» зон, особенно в отдалении от крупных городов.

В начале реализации данной технологии покупать , оснащенные ею, часто оказывалось бессмысленно именно по этой причине – работала такая технология все равно не везде (в отличии от 3G, которая функционировала исправно, не так уж сильно теряя в скорости передачи).

Но в последние годы такая проблема почти полностью исчезло. Зона покрытия сетей очень велика. По сути, сейчас такие сети присутствуют во всех тех же зонах, что и 3G.

Потому с этой точки зрения недостатков у технологии нет.

Данные сети не могут работать с сетями второго и третьего поколения. Потому им требуется . Одно время это сказывалось на зоне покрытия, но в настоящий момент такая проблема почти полностью решена.

Считается, что такой стандарт оказывает чуть большую аппаратную нагрузку на устройство , вызывая более быструю разрядку батареи, а также существенные перегревания устройства.

Но в большей степени это касалось старых устройств, которые были немного менее оптимизированными под новый стандарт работы.

В настоящее же время большинство телефонов при такой работе греются не сильнее, чем при работе в сетях 3G.

Технические характеристики

Технические особенности данных сетей и их отличие от сетей третьего поколения приведены в таблице ниже.

В целом же, при внедрении таких сетей, была рекомендована частичная или полная

<Рис. 5 Топ лучших смартфонов>

27.10.2015

В предыдущей статье мы уже рассматривали стандарты третьего поколения под общим названием . Однако, быстрыми темпами распространяется связь уже четвёртого поколения - 4G. О основным стандартом в 4G на данный момент является LTE. Строго говоря, LTE не был первым стандартом четвёртого поколения, первым широкораспространённым был стандарт WiMAX. В нём работала первое время Yota, а некоторые операторы используют WiMAX до сих пор. Максимальная скорость WiMAX 40 Мбит/с, однако реальные показатели лежат в диапазоне от 10 до 20 Мбит/с.

Но вернёмся к LTE. Именно он сейчас наиболее распространён в мире в целом и в России в частности. Но что такое 4G LTE ? LTE (с англ. Long-Term Evolution ) - это стандарт беспроводной высокоскоростной передачи данных для мобильных устройств. Основан он на всё тех же GSM/UMTS протоколах, однако теоритические и реальные скорости передачи данных в сетях LTE значительно выше, порой даже превосходят проводные соединения!

LTE FDD и LTE TDD: в чём отличия?

Стандарт LTE бывает двух видов, различия между которыми довольно существенны. FDD - Frequency Division Duplex (частотный разнос входящего и исходящего канала)
TDD - Time Division Duplex (временной разнос входящего и исходящего канала). Грубо говоря, FDD - это параллельный LTE, а TDD - последовательный LTE. Например, при ширине канала в 20 МГц в FDD LTE часть диапазона (15 МГц) отдаётся для загрузки (download), а часть (5 МГц) для выгрузки (upload). Таким образом каналы не пересекаются по частотам, что позволяет работать одновременно и стабильно для загрузки и выгрузки данных. В TDD LTE всё тот же канал в 20 МГц полностью отдаётся и как для загрузки, так и для выгрузки, а данные передаются в ту и другую сторорону поочерёдно, при этом приоритет имеет всё таки загрузка. В целом FDD LTE предпочтительне, т.к. он работает быстрее и стабильнее.

Частоты LTE

Сети LTE (FDD и TDD) работают на разных частотах в разных странах. Во многих странах эксплуатируются сразу несколько частотных диапазонов. Стоит отметить, то не всё оборудование умеет работать на разных "бэндах", т.е. частотных диапазонах. FDD-диапазоны нумеруются с 1 по 31, TDD-диапазоноы с 33 по 44. Существуют дополнительно несколько стандартов, которым еще не присвоены номера. Спецификации на частотные полосы называются бэндами (BAND). В России и Европе в основном используются band 7, band 20, band 3 и band 38.

FDD LTE бэнды и частоты
Номер полосы LTE Частотный диапазон Upload (МГц) Частнотный диапазон Download (МГц) Ширина диапазона (МГц)
band 1 1920 - 1980 2110 - 2170 2x60
band 2 1850 - 1910 1930 - 1990 2x60
band 3 1710 - 1785 1805 -1880 2x75
band 4 1710 - 1755 2110 - 2155 2x45
band 5 824 - 849 869 - 894 2x25
band 6 830 - 840 875 - 885 2x10
band 7 2500 - 2570 2620 - 2690 2x70
band 8 880 - 915 925 - 960 2x35
band 9 1749.9 - 1784.9 1844.9 - 1879.9 2x35
band 10 1710 - 1770 2110 - 2170 2x60
band 11 1427.9 - 1452.9 1475.9 - 1500.9 2x20
band 12 698 - 716 728 - 746 2x18
band 13 777 - 787 746 - 756 2x10
band 14 788 - 798 758 - 768 2x10
band 15 1900 - 1920 2600 - 2620 2x20
band 16 2010 - 2025 2585 - 2600 2x15
band 17 704 - 716 734 - 746 2x12
band 18 815 - 830 860 - 875 2x15
band 19 830 - 845 875 - 890 2x15
band 20 832 - 862 791 - 821 2x30
band 21 1447.9 - 1462.9 1495.5 - 1510.9 2x15
band 22 3410 - 3500 3510 - 3600 2x90
band 23 2000 - 2020 2180 - 2200 2x20
band 24 1625.5 - 1660.5 1525 - 1559 2x34
band 25 1850 - 1915 1930 - 1995 2x65
band 26 814 - 849 859 - 894 2x35
band 27 807 - 824 852 - 869 2x17
band 28 703 - 748 758 - 803 2x45
band 29 н/д 717 - 728 11
band 30 2305 - 2315 2350 - 2360 2x10
band 31 452.5 - 457.5 462.5 - 467.5 2x5
TDD LTE бэнды и частоты
Номер полосы LTE Частотный диапазон (МГц) Ширина диапазона (МГц)
band 33 1900 - 1920 20
band 34 2010 - 2025 15
band 35 1850 - 1910 60
band 36 1930 - 1990 60
band 37 1910 - 1930 20
band 38 2570 - 2620 50
band 39 1880 - 1920 40
band 40 2300 - 2400 100
band 41 2496 - 2690 194
band 42 3400 - 3600 200
band 43 3600 - 3800 200
band 44 703 - 803 100

Приведём список частотных диапазонов сетей 4G LTE в России операторов "большой пятёрки". Существуют также региональные сети 4G LTE местных операторов, работающийх в других частотных диапазонах, однако в рамках данной статьи их рассмотрение не обязательно.

Сети 4G LTE в России
Оператор Частотный диапазон /↓ (МГц) Ширина канала (МГц) Тип дуплекса Номер полосы
Yota 2500-2530 / 2620-2650 2x30 FDD band 7
Мегафон 2530-2540 / 2650-2660 2x10 FDD band 7
Мегафон 2575-2595 20 TDD band 38
МТС 2540-2550 / 2660-2670 2x10 FDD band 7
МТС 2595-2615 20 TDD band 38
Билайн 2550-2560 / 2670-2680 2x10 FDD band 7
Теле2 2560-2570 / 2680-2690 2x10 FDD band 7
МТС 1710-1785 / 1805-1880 2x75 FDD band 3
Теле2 832-839.5 / 791-798.5 2x7.5 FDD band 20
МТС 839.5-847 / 798.5-806 2x7.5 FDD band 20
Мегафон 847-854.5 / 806-813.5 2x7.5 FDD band 20
Билайн 854.5-862 / 813.5-821 2x7.5 FDD band 20

Самым главным критерием, который особенно интересует абонентов, т.е. пользователей сетей 4G LTE, является скорость передачи данных. А скорость прежде всего зависит от ширины частотного диапазона того или иного оператора, а так же типа дуплекса, используемого в сети. Например, для канала в 10 МГц скорость 4G LTE будет равняться 75 Мбит/с. Именно с такой номинальной скоростью работают сети LTE FDD (band 7) операторов Теле2, МТС и . А что же Мегафон? А Мегафон может позволить себе больше. Т.к. несколько лет назад произошло слияние, а точнее поглощение Мегафоном Йоты, то сейчас Мегафон имеет лицензии и на частоты Yota, соответственно максимальная ширина канала может достигать 40 МГц в частотном диапазоне 2600 МГц (band 7), что в теории даёт целых 300 Мбит/с! Но в основном сеть Мегафон 4G работат в канале 15-20 МГц, что даёт скорость загрузки 100-150 Мбит/с. Ведь и для Йоты надо что-то оставить.

LTE-Advanced, или 4G+

Следующим этапом развития сетей 4G LTE является стандарт LTE-A (LTE-Advanced). Некоторые операторы в целях маркетинга называют эту технологию 4G+, но это в корне некорректно. Т.е. фактически именно LTE-Advanced является настоящим 4G. Скорости передачи данных в сети LTE-A в значительной степени превышают обычный LTE. Главной особенностью LTE-Advanced является агрегация частотных диапазонов. Абонентское устройство с поддержкой LTE-A суммирует каналы передачи данных в разных частотных диапазонах, доступных оператору. Например, объединяя несколько частотных диапазонов в полосе 2600 МГц получает канал в 40 МГц, что даёт скорость в сети LTE-Advanced 300 Мбит/с. Но это далеко не предел. Если добавить сюда ещё 20 МГц из полосы 1800 МГц, что получится канал 60 МГц (band 7 + band 3), а это уже 450 Мбит/с! В прочем, это теоритические или стендовые скорости. В реальности они конечно значительно меньше, но тем не менее беспроводная технология LTE-Advanced вполне приближается к проводным скоростям.

Стоит отметить, что агрерировать разные каналы в разных частотных диапазонах могут все операторы при наличии соответствующих лицензий и сетевой инфраструктуры. Главной задачей является расширение частотного диапазона. Чем он шире, чем выше максимальная скорость, т.е. пропускная способность сети. Но и конечно должно быть абонентское оборудование, поддерживающее LTE-Advanced.

Перспективы 4G LTE

Несмотря на то, что стандарт 4G LTE появился уже несколько лет назад, во многих регионах нашей страны до сих пор нет даже сетей 3G. Так что ещё есть куда расти. В мире тестируют сети уже 5-го поколения (5G), но в реальных условиях сети 4G LTE ещё долго будут господствовать, благо операторы их активно развивают.

Во многих случаях 4G интернет является не только альтернативной проводному подключению, но и безальтернативным единственным вариантом, в том числе экономически целесообразным. Отдалённые объекты, прокладка провода к которым связана с определёнными сложностями или риском, а иногда и вовсе невозможна, тоже нуждаются в подключении. Зачастую возможно подключить 4G интернет даже там, где покрытие сетей LTE отсутствует. Для этого используются специальные , которые ловят и усиливают сигнал 4G LTE. Чтобы правильно подобрать антенну, надо знать, сеть какого оператора необходимо поймать, на какой частоте она работает, а также в каком режиме дуплекса (FDD или TDD). Наши определят тип сигнала, замерят его параметры, подберут соответствующее оборудование для обеспечения быстрого и стабильного выхода в Интернет через сеть 4G LTE.

Сеть стандарта LTE не так давно была одобрена консорциумом 3GPP. Благодаря использованию такого радиоинтерфейса удается получить сеть с беспрецедентными эксплуатационными параметрами в плане максимальной скорости, с которой осуществляется передача данных, времени задержки при пересылке пакетов, а также спектральной эффективности. Авторы говорят, что запуск сети LTE позволяет более гибко использовать радиоспектр, мультиантенную технологию, адаптацию канала, механизмы диспетчеризации, организацию повторной ретрансляции данных и регулирование мощности.

Предыстория

Мобильная широкополосная связь, которая базируется на технологии передачи пакетов данных на высокой скорости по стандарту HSPA, уже стала достаточно широко признанной пользователями сотовых сетей. Однако необходимо и дальше производить совершенствование их обслуживания, к примеру, используя увеличение скорости трансляции данных, минимизацию времени задержки, а также увеличение общей емкости сети, так как требования пользователей к услугам подобной связи постоянно повышаются. Именно с этой целью и была произведена спецификация радиоинтрфейсов HSPA Evolution и LTE консорциумом 3GPP.

Основные отличия от ранних версий

Сеть стандарта LTE отличается от ранее разработанной системы 3G улучшенными техническими характеристиками, включая максимальную скорость, с которой осуществляется передача информации - более 300 мегабит за секунду, задержка пересылки пакетов не превышает 10 миллисекунд, а спектральная эффективность стала гораздо выше. Построение сетей LTE можно осуществлять как в новых частотных полосах, так и в уже имеющихся у операторов.

Данный радиоинтерфейс позиционируется как решение, на которое постепенно операторы будут переходить с систем стандартов, существующих на данный момент, это 3GPP и 3GPP2. А разработка этого интерфейса - это достаточно важный этап на пути формирования стандарта IMT-Advanced сетей 4G, то есть нового поколения. Фактически в спецификации LTE уже содержится большинство функций, которые изначально предназначались для систем 4G.

Принцип организации радиоинтерфейса

Радиосвязь обладает характерной особенность, которая состоит в том, что радиоканал по качеству не является постоянным во времени и пространстве, а зависит от частоты. Тут необходимо сказать и о том, что параметры связи меняются относительно быстро в результате многолучевого распространения радиоволн. Чтобы поддерживать постоянную скорость обмена информацией по радиоканалу, обычно применяется целый ряд способов свести к минимуму подобные изменения, а именно - различные методы разнесенной передачи. Одновременно с этим в процессе передачи пакетов информации пользователи не всегда могут заметить кратковременные колебания битовой скорости. Режим сети LTE предполагает в качестве основного принципа радиодоступа не уменьшение, а применение стремительных изменений качества радиоканала для того, чтобы обеспечить максимально эффективное использование радиоресурсов, доступных в каждый момент времени. Это реализуется в частотной и временной областях посредством технологии радиодоступа OFDM.

Устройство сети LTE

Что это за система, можно понять, только разобравшись, как она организована. В ее основу заложена обычная технология OFDM, предполагающая по нескольким узкополосным поднесущим. Применение последних в совокупности с циклическим префиксом позволяет сделать связь на базе OFDM устойчивой к временным дисперсиям параметров радиоканала, а также дает возможность практически исключить необходимость в использовании сложных эквалайзеров на принимающей стороне. Это обстоятельство оказывается весьма полезным для организации нисходящего канала, так как в этом случае удается упростить обработку сигналов приемником на главной частоте, что позволяет снизить стоимость самого терминального устройства, а также мощность, потребляемую им. И это становится особенно важно в случае использования сети 4G LTE вместе с передачей в режиме нескольких потоков.

Восходящий канал, где излучаемая мощность существенно ниже, чем в нисходящем, требует обязательного включения в работу энергоэффективного метода передачи информации для увеличения зоны покрытия, снижения принимающим устройством, а также его стоимости. Проведенные исследования привели к тому, что теперь для восходящего канала LTE используется одночастотная технология трансляции информации в форме OFDM с дисперсией, соответствующей закону дискретного Подобное решение позволяет обеспечить меньшее отношения среднего и максимального уровня мощности в сравнении с применением традиционной модуляции, что позволяет повысить энергоэффективность и упростить конструкцию терминальных устройств.

Базовый ресурс, используемый при передаче информации в соответствии с технологией ODFM, можно продемонстрировать в виде частотно-временной сети, которая соответствует набору символов OFDM, и поднесущим во временной и частотной областях. Режим сети LTE предполагает, что в качестве основного элемента передачи данных тут использованы два ресурсных блока, которые соответствуют частотной полосе 180 килогерц и интервалу времени в одну миллисекунду. Широкий диапазон скоростей для передачи данных можно реализовать посредством объединения частотных ресурсов, настройки параметров связи, включая скорость кодирования и выбор модуляционного порядка.

Технические характеристики

Если рассматривать сети LTE, что это такое, станет понятно после определенных объяснений. Чтобы достичь высокие целевые показатели, которые установлены для радиоинтерфейса такой сети, его разработчиками был организован ряд достаточно важных моментов и функциональных возможностей. Далее будет описан каждый из них с подробным указанием на то, какое влияние они оказывают на такие важные показатели, как емкость сети, зона радиопокрытия, время задержки и скорость передачи данных.

Гибкость применения радиоспектра

Законодательные нормы, которые действуют в том или ином географическом регионе, влияют на то, как будет организована мобильная связь. То есть, в них предписывается радиоспектр, выделяемый в разных частотных диапазонах непарными или парными полосами разной ширины. Гибкость использования - это одно из важнейших преимуществ радиоспектра LTE, что позволяет задействовать его в разных ситуациях. Архитектура LTE сети позволяет не только работать в разных частотных диапазонах, но и использоватьем частотные полосы, имеющие различную ширину: от 1,25 до 20 мегагерц. Помимо этого, такая система может осуществлять работу в непарных и парных частотных полосах, поддерживая временной и частотный дуплекс соответственно.

Если говорить о терминальных устройствах, то при использованении парных частотных полос прибор может действовать в дуплексном или полудуплексном режиме. Второй режим, в котором терминалом осуществляется прием и передача данных в разное время и на различных частотах, привлекателен тем, что существенно понижает требования, выставляемые к характеристикам дуплексного фильтра. Благодаря этому удается уменьшить стоимость терминальных устройств. Помимо того, появляется возможность для введения в действие парных частотных полос с незначительным дуплексным разносом. Получается, что сети мобильной связи LTE можно организовать почти при любом распределении частотного спектра.

Единственная проблема при разработке технологии радиодоступа, где предусматривается гибкое применение радиспектра, - сделать устройства связи совместимыми. С такой целью в технологии LTE реализована идентичная кадровая структура в случае использования частотных полос различной ширины и разных дуплексных режимов.

Многоантенная трансляция данных

Применение многоантенной трансляции в системах мобильной связи позволяет улучшить их технические характеристики, а также расширить их возможности в плане абонентского обслуживания. Покрытие сети LTE предполагает использование двух методов многоантенной передачи: разнесенной и многопоточной, в качестве частного случая которой выделяется формирование узкого радиолуча. Разнесенную информацию можно рассматривать в качестве способа выравнивания уровня сигнала, который идет с двух антенн, что позволяет устранить глубокие провалы в уровне сигналов, которые принимаются от каждой антенны в отдельности.

Можно подробнее рассмотреть сеть LTE: что это и как она использует все указанные режимы? Разнесенная передача тут базируется на методе пространственно-частотного кодирования блоков данных, которое дополнено разнесением по времени с частотным сдвигом при применении четырех антенн одновременно. Разнесенную передачу используют обычно на общих нисходящих каналах, где нельзя применять функцию диспетчеризации в зависимости от того, в каком состоянии находится При этом разнесенная передача может быть использована для пересылки пользовательских данных, к примеру, трафика VoIP. Из-за относительно низкой интенсивности подобного трафика нельзя оправдать дополнительные накладные расходы, которые связаны с функцией диспетчеризации, упомянутой ранее. Благодаря разнесенной передаче данных удается повысить радиус сот и емкость сети.

Многопоточная передача для одновременной пересылки ряда потоков информации по одному радиоканалу предполагает использование нескольких приемных и передающих антенн, находящихся в терминальном устройстве и базовой сетевой станции соответственно. Это существенно увеличивает максимальную скорость трансляции данных. К примеру, если терминальное устройство снабжено четырьмя антеннами и такое количество имеется на базовой станции, то вполне реальной является одновременная передача по одному радиоканалу до четырех потоков данных, что позволяет фактически сделать его пропускную способность вчетверо больше.

Если используется сеть с небольшой рабочей нагрузкой либо маленькими сотами, то благодаря многопоточной передаче удастся добиться достаточно высокой пропускной способности для радиоканалов, а также эффективно использовать радиоресурсы. Если имеются большие соты и нагрузка высокой степени интенсивности, то качество канала не позволит использовать передачу в режиме мультипотока. В таком случае качество сигнала можно повысить, если задействовать несколько передающих антенн, чтобы сформировать узкий луч для передачи данных в

Если рассматривать сеть LTE - что это дает ей для достижения большей эффективности - то тут стоит заключить, что для качественной работы при различных эксплуатационных условиях в этой технологии реализована адаптивная мультипотоковая передача, которая позволяет постоянно регулировать количество потоков, передаваемых одновременно, в соответствии с постоянно изменяющимся состоянием канала связи. При хорошем состоянии канала можно осуществлять одновременную передачу до четырех потоков данных, что позволяет достичь скорости передачи до 300 мегабит за секунду при ширине частотной полосы в 20 мегагерц.

Если состояние канала не является настолько благоприятным, то передача производится меньшим количеством потоков. В данной ситуации антенны могут использоваться для формирования узкой диаграммы направленности, повышая общее качество приема, что в итоге приводит к увеличению пропускной способности системы и расширению обслуживаемой зоны. Чтобы обеспечить обширные зоны радиопокрытия либо передачу данных на высокой скорости, можно осуществлять передачу одного потока данных с узком луче либо задействовать на общих каналах разнесенную трансляцию данных.

Механизм адаптация и диспетчеризации канала связи

Принцип работы LTE сетей предполагает, что под диспетчеризацией будет подразумеваться распределение между пользователями сетевых ресурсов для передачи данных. Тут предусматривается динамическая диспетчеризация в нисходящем и восходящем каналах. Сети LTE в России настроены на данный момент так, чтобы сбалансировать каналы связи и общую производительность всей системы.

Радиоинтерфейс LTE предполагает реализацию функции диспетчеризации в зависимости от того, в каком состоянии находится канал связи. С ее помощью обеспечивается передача данных на высоких скоростях, что достигается за счет применения модуляции высокого порядка, передачи дополнительных потоков информации, уменьшения степень кодирования каналов, а также снижения количества повторных трансляций. Для этого задействованы частотные и временные ресурсы, характеризующиеся относительно хорошими условиями связи. Получается, что передача любого конкретного объема данных производится за более короткий промежуток времени.

Сети LTE в России, как и в других странах, построены так, что трафик сервисов, которые заняты пересылкой пакетов с небольшой полезной нагрузкой спустя одинаковые временные промежутки, может вызывать необходимость в увеличении объемов трафика сигнализации, который требуется для динамической диспетчеризации. Он может даже превосходить объем информации, транслируемой пользователем. Именно поэтому существует такое понятие, как статическая диспетчеризация сети LTE. Что это, станет понятно, если сказать, что пользователю выделяется радиочастотный ресурс, предназначенный для передачи какого-то конкретного числа подкадров.

Благодаря механизмам адаптации удается «выжать все возможное» из канала с динамическим качеством связи. Он позволяет выбрать схему канального кодирования и модуляции в соответствии с тем, какими условиями связи характеризуются сети LTE. Что это, станет понятно, если сказать, что его работа влияет на скорость трансляции данных, а также на вероятность возникновения в канале каких-либо ошибок.

Мощность в восходящем канале и ее регулирование

Этот аспект касается управления уровнем мощности, излучаемой терминалами, чтобы увеличить емкость сети, повысить качество связи, сделать зону радиопокрытия больше, снизить потребление энергии. Чтобы достичь перечисленных целей механизмами регулирования мощности, стремятся к максимальному увеличению уровня полезного входящего сигнала с одновременным снижением радиопомех.

Сети LTE "Билайн" и других операторов предполагают, что сигналы в восходящем канале остаются ортогональными, то есть между пользователями одной соты не должно быть взаимных радиопомех, по крайней мере, это касается идеальных условий связи. Уровень помех, которые создаются пользователями соседних сот, зависит о того, где находится излучающий терминал, то есть от того, как затухает его сигнал на пути к соте. Сеть LTE "Мегафон" устроена точно так же. Правильно будет сказать так: чем ближе терминал находится к соседней соте, тем выше будет уровень помех, которые он в ней создает. Терминалы, которые находятся на более значительном расстоянии от соседней соты, способны передавать сигналы большей мощности в сравнении с терминалами, находящимися с ней в непосредственной близости.

Благодаря ортогональности сигналов, в восходящем канале можно мультиплексировать сигналы от терминалов разной мощности в одном канале на одной и той же соте. Это означает, что нет необходимости компенсировать всплески уровня сигнала, которые возникают из-за многолучевого распространения радиоволн, а можно использовать их с целью увеличения скорости трансляции данных с применением механизмов адаптации и диспетчеризации каналов связи.

Ретрансляции данных

Почти любая система связи, и LTE сети в Украине не являются исключением, время от времени допускает ошибки в процессе пересылки данных, к примеру, из-за замирания сигнала, помех или шумов. Защита от ошибок обеспечивается за счет методов повторной передачи утраченных или искаженных частей информации, предназначенных для гарантии обеспечения высокого качества связи. Радиоресурс используется намного рациональнее, если протокол ретрансляции данных организован эффективно. Чтобы максимально полно использовать радиоинтерфейс высокой скорости, технология LTE обладает динамически эффективной двухуровневой системой ретрансляции данных, которая реализует Hybrid ARQ. Он характеризуется небольшими накладными расходами, необходимыми для обеспечения обратной связи и повторной посылки данных, дополненный протоколом селективного повтора высокой степени надежности.

Протоколом HARQ предоставляется приемному устройству избыточная информация, дающая ему возможность корректировать какие-то конкретные ошибки. Ретрансляция по протоколу HARQ приводит к формированию дополнительной информационной избыточности, которая может потребоваться в том случае, когда для устранения ошибок оказалось недостаточно повторной передачи. Ретрансляция пакетов, которые не прошли исправление протоколом HARQ, производится с использованием протокола ARQ. LTE сети на iPhone работают в соответствии с вышеописанными принципами.

Это решение позволяет гарантировать минимальную задержку трансляции пакетов с малыми накладными расходами, а надежность связи при этом гарантируется. Протокол HARQ позволяет обнаружить и исправить большую часть ошибок, что приводит к достаточно редкому использованию протокола ARQ, так как это сопряжено с немалыми накладными расходами, а также с повышением времени задержки при трансляции пакетов.

Является конечным узлом, который поддерживает оба эти протокола, обеспечивая тесную связь уровней двух этих протоколов. В числе разнообразных преимуществ подобной архитектуры можно назвать высокую скорость устранения ошибок, которые остались после работы HARQ, а также регулируемый объем информации, передаваемой посредством использования протокола ARQ.

Радиоинтерфейс LTE обладает высокими рабочими характеристиками, благодаря его основным компонентам. Гибкость применения радиоспектра позволяет задействовать данный радиоинтерфейс при любом доступном ресурс частот. Технология LTE предусматривает ряд функций, которые обеспечивает эффективное применение стремительно изменяющихся условий связи. В зависимости от состояния канала, функция диспетчеризации выдает лучшие ресурсы пользователям. Применение многоантенных технологий приводит к уменьшению замирания сигнала, а с помощью механизмов адаптации канала можно задействовать методы кодирования и модуляции сигнала, гарантирующие в конкретных условиях оптимальное качество связи.



Онлайн калькуляторы