Теоретические и практические вопросы оптимизации. Какие существуют методы оптимизации? Методы оптимизации управленческих решений. Задачи по методам принятия решений

На практике постоянно встречаются такие ситуации, когда достичь какого-то результата можно не одним, а многими различными способами. В подобной ситуации может оказаться и отдельно взятый человек, например, когда он решает вопрос о распределении своих расходов, и целое предприятие или даже отрасль, если необходимо определить, как использовать имеющиеся в их распоряжении ресурсы, чтобы добиться максимального выхода продукции, и, наконец народное хозяйство в целом. Естественно, при большом количестве решений должно быть выбрано наилучшее.

Успешность решения подавляющего большинства экономических задач зависит от наилучшего, наивыгоднейшего способа использования ресурсов. И от того, как будут распределены эти, как правило, ограниченные ресурсы, будет зависеть конечный результат деятельности.

Суть методов оптимизации (оптимального программирования) заключается в том, чтобы, исходя из наличия определенных ресурсов, выбрать такой способ их использования (распределения), при котором будет обеспечен максимум или минимум интересующего показателя.

Необходимым условием использования оптимального подхода к планированию (принципа оптимальности) является гибкость, альтернативность производственно-хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей).

Оптимальное программирование, таким образом, обеспечивает успешное решение целого ряда экстремальных задач производственного планирования. В области же макроэкономического анализа, прогнозирования и планирования оптимальное программирование позволяет выбрать вариант народнохозяйственного плана (программы развития), характеризующийся оптимальным соотношением потребления и сбережений (накоплений), оптимальной долей производственных капиталовложений в национальном доходе, оптимальным соотношением коэффициента роста и коэффициента рентабельности национальной экономики и т. д.

Оптимальное программирование обеспечивает получение практически ценных результатов, так как по своей природе оно вполне соответствует характеру исследуемых технико-экономических процессов и явлений. С математической и статистической точек зрения этот метод применим лишь к тем явлениям, которые выражаются положительными величинами и в своей совокупности образуют объединение взаимозависимых, но качественно различных величин. Этим условиям, как правило, отвечают величины, которыми характеризуются экономические явления. Перед исследователем экономики всегда имеется – некоторое множество разного рода положительных величин. Решая задачи оптимизации, экономист всегда имеет дело не с одной, а с несколькими взаимозависимыми величинами или факторами.

Оптимальное программирование можно применять лишь к таким задачам, при решении которых оптимальный результат достигается лишь в виде точно сформулированных целей и при вполне определенных ограничениях, обычно вытекающих из наличных средств (производственных мощностей, сырья, трудовых ресурсов и т. д.). В условия задачи обычно входит некоторая математически сформулированная система взаимозависимых факторов, ресурсы и условия, ограничивающие характер их использования.

Задача становится разрешимой при введении в нее определенных оценок как для взаимозависимых факторов, так и для ожидаемых результатов. Следовательно, оптимальность результата задачи программирования имеет относительный характер. Этот результат оптимален только с точки зрения тех критериев, которыми он оценивается, и ограничений, введенных в задачу.

Отталкиваясь от вышесказанного, для любых задач оптимального программирования характерны три следующих момента:

1) наличие системы взаимозависимых факторов;

2) строго определенный критерий оценки оптимальности;

3) точная формулировка условий, ограничивающих использование наличных ресурсов или факторов.

Из многих возможных вариантов выбирается альтернативная комбинация, отвечающая всем условиям, введенным в задачу, и обеспечивающая минимальное или максимальное значение выбранного критерия оптимальности. Решение задачи достигается применением определенной математической процедуры, которая заключается в последовательном приближении рациональных вариантов, соответствующих выбранной комбинации факторов, к единственному оптимальному плану.

Математически это может быть сведено к нахождению экстремального значения некоторой функции, то есть к задаче типа:

Найти max (min) f(x) при условии, что переменная х (точка х) пробегает некоторое заданное множество Х:

f(x) ® max (min), х I Х (4.1)

Определенная таким образом задача называется задачей оптимизации. Множество Х называется допустимым множеством данной задачи, а функция f(x) – целевой функцией.

Итак, оптимизационной является задача, которая состоит в выборе среди некоторого множества допустимых (т. е. допускаемых обстоятельствами дела) решений (Х) тех решений (х), которые в том или ином смысле можно квалифицировать как оптимальные. При этом допустимость каждого решения понимается в смысле возможности его фактического существования, а оптимальность – в смысле его целесообразности.

Очень многое зависит от того, в каком виде задается допустимое множество Х. Во многих случаях это делается с помощью системы неравенств (равенств):

q1 (х1, х2, … , хn) {? , = , ?} 0,

q2 (х1, х2, … , хn) {? , = , ?} 0, (4.2)

……………………………..

qm (х1, х2, … , хn) {? , = , ?} 0,

где q1, q2, … ,qm – некоторые функции, (х1, х2, … , хn) = х – способ, которым точка х задается набором из нескольких чисел (координат), являясь точкой n-мерного арифметического пространства Rn. Соответственно множество Х есть подмножество в Rn и составляет множество точек (х1, х2, … , хn) I Rn и удовлетворяющих системе неравенств (2.2.2).

Функция f(х) становится функцией n переменных f(х1, х2, … , хn), оптимум (max или min), который требуется найти.

Понятно, что следует найти не только само значение max (min) (х1, х2, … , хn), но и точку или точки, если их больше одной, в которых это значение достигается. Такие точки называются оптимальными решениями. Множество всех оптимальных решений называют оптимальным множеством.

Задача, описанная выше, есть общая задача оптимального (математического) программирования, в основе построения которой лежат принципы оптимальности и системности. Функция f называется целевой функцией, неравенства (равенства) qi (х1, х2, … , хn) {? , = , ?} 0, i = 1, 2, … , m – ограничениями. В большинстве случаев в число ограничений входят условия неотрицательности переменных:

х1 ? 0, х2 ? 0, … , хn ? 0,

или части переменных. Впрочем, это может быть и необязательным.

В зависимости от характера функций-ограничений и целевой функции различают разные виды математического программирования:

1. линейное программирование – функции линейны;

2. нелинейного программирования – хотя бы одна из этих функций нелинейна;

3. квадратичного программирования – f(х) является квадратичной функцией, ограничения линейны;

4. сепарабельное программирование – f(х) представляет собой сумму функций, различных для каждой переменной, условия – ограничения могут быть как линейными, так и нелинейными;

5. целочисленное (линейное или нелинейное) программирование – координаты искомой точки х являются только целыми числами;

6. выпуклое программирование – целевая функция – выпуклая, функции – ограничения – выпуклые, то есть рассматриваются выпуклые функции на выпуклых множествах и т. п.

Наиболее простым и часто встречающимся является случай, когда эти функции линейны и каждая из них имеет вид:

а1х1 + а2х2 + … аnхn + b ,

то есть имеет место задача линейного программирования. Подсчитано, что в настоящее время примерно 80-85% всех решаемых на практике задач оптимизации относятся к задачам линейного программирования.

Сочетая в себе простоту и реалистичность исходных посылок, этот метод вместе с тем обладает огромным потенциалом в области определения наилучших с точки зрения избранного критерия планов.

Первые исследования в области линейного программирования, ставившие своей целью выбор оптимального плана работы в рамках производственного комплекса относятся к концу 30-х годов нашего века и связаны с именем Л.В. Канторовича. В отечественной научной традиции именно его принято считать первым разработчиком этого метода.

В 30-е гг., в период интенсивного эко­номического и индустриального разви­тия Советского Союза, Канторович был в авангар­де математических исследований и стре­мился применить свои теоретические разработки в практике растущей совет­ской экономики. Такая возможность представилась в 1938 г., когда он был на­значен консультантом в лабораторию фанерной фабрики. Перед ним была по­ставлена задача разработать такой ме­тод распределения ресурсов, который; мог бы максимизировать производительность оборудования, и Канторович, сформули­ровав проблему с помощью математиче­ских терминов, произвел максимизацию линейной функции, подверженной боль­шому количеству ограничителей. Не имея чистого экономического образо­вания, он тем не менее знал, что максими­зация при многочисленных ограниче­ниях-это одна из основных экономиче­ских проблем и что метод, облегчающий планирование на фанерных фабриках, может быть использован во многих дру­гих производствах, будь то определение оптимального использования посевных площадей или наиболее эффективное распределение потоков транспорта.

Говоря о развитии этого метода на Западе, следует сказать о Тьяллинге Купмансе, американском экономисте-математике голландского происхождения.

В миссии торгового флота Купманс пытался так разработать маршруты флотов союзни­ков, чтобы снизить до минимума затра­ты на доставку грузов. Задача была крайне сложной: тысячи торговых судов везли миллионы тонн грузов по морским путям между сотнями портов, рассеян­ных по всему миру. Эта работа предоста­вила возможность Купмансу применить свои математические знания к решению фун­даментальной экономической проблемы – оптимальному распределению дефицитных ресурсов между конкурирующими потребителями.

Купманс разработал аналитическую методи­ку, названную анализом деятельности, которая решительно изменила подход экономистов и руководителей к распре­делению маршрутов. Впервые он описал эту методику в 1942 г., назвав ее «Соот­ношение между грузами на различных маршрутах» ("Exchange Ratios Between Cargoes on Various Routes"), где показал возможность подхода к проблеме рас­пределения как к математической про­блеме максимизации в пределах ограни­чений. Величина, подлежащая макси­мальному увеличению, - это стоимость доставленного груза, равная сумме стои­мостей грузов, доставленных в каждый из портов. Ограничения были представ­лены уравнениями, выражающими отно­шение количества расходуемых факто­ров производства (например, судов, вре­мени, труда) к количеству груза, достав­ленному в различные места назначения, где величина любой из затрат не должна превышать имеющуюся в распоряжении сумму.

При работе над проблемой максими­зации Купманс разработал математические уравнения, которые нашли широкое при­менение как в экономической теории, так и в практике управления. Эти уравнения определяли для каждой из затрат на про­изводство коэффициент, равный цене этой затраты в условиях идеальных кон­курентных рынков. Таким образом была установлена основополагающая связь между теориями эффективности про­изводства и теориями распределения че­рез конкурентные рынки. Кроме того, уравнения Купманса представляли большую ценность для центральных планирую­щих органов, которые могли использо­вать эти уравнения для определения со­ответствующих цен на различные затра­ты, оставляя при этом выбор оптималь­ных маршрутов на усмотрение местных директоров, обязанность которых со­стояла в максимизации прибыли. Метод анализа деятельности мог широко при­меняться любыми руководителями при планировании процессов производства.

В 1975 году Л.В. Канторовичу и Тьяллингу Ч. Купмансу была присуждена Нобелевская премия «за вклад в теорию оптимального распределения ресурсов».

Говоря о первых исследованиях в области линейного программирования, нельзя также не упомянуть еще об одном американском ученом – Джордже Д. Данциге. Конкретная формулировка метода линейного программирования восходит к его работе, выполненной им по заказу ВВС США во время Второй Мировой войны, когда возникла проблема координации действий одной большой организации в таких вопросах, как накопление запасов, производство и содержание оборудования и материально-технического снаряжения, причем имелись альтернативы и ограничения. Кроме того, в свое время Дж. Данцинг работал совместно с В.В. Леонтьевым, и симплекс-метод решения линейных оптимизационных задач (наиболее часто применяемый для их решения) появился в связи с одним из первых практических применений метода межотраслевого баланса.

3.2.1. Линейное программирование

Среди оптимизационных задач в теории принятия решений наиболее известны задачи линейного программирования, в которых максимизируемая функция F (X ) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола - 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол - 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула - 45 долларов США, при производстве стола - 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х 1 - число изготовленных стульев, Х 2 - число сделанных столов. Задача оптимизации имеет вид:

45 Х 1 + 80 Х 2 → max ,

5 Х 1 + 20 Х 2 ≤ 400 ,

10 Х 1 + 15 Х 2 ≤ 450 ,

Х 1 ≥ 0 ,

Х 2 ≥ 0 .

В первой строке выписана целевая функция - прибыль при выпуске Х 1 стульев и Х 2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х 1 и Х 2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) - истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) - затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х 1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х 1 положительно. Но невозможно представить себе отрицательный выпуск - Х 1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х 1 , а по вертикальной оси ординат - значения Х 2 . Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х 1 , Х 2) объемов выпуска в виде треугольника (рис.1).

Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1 , соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х 2 , соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на


изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - материал останется.

Аналогичным образом можно изобразить и ограничения по труду (рис.2).

Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1 , соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х 2 , соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - часть рабочих будет простаивать.

Мы видим, что очевидного решения нет - для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо "совместить" рис.1 и рис.2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис.3).

Таким образом, множество возможных значений объемов выпуска стульев и столов (Х 1 , Х 2), или, в других терминах, множество А , задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис.3. Три его вершины очевидны - это (0,0), (45,0) и (0,20). Четвертая - это пересечение двух прямых - границ треугольников на рис.1 и рис.2, т.е. решение системы уравнений

5 Х 1 + 20 Х 2 = 400 ,

10 Х 1 + 15 Х 2 = 450 .

Из первого уравнения: 5 Х 1 = 400 - 20 Х 2 , Х 1 = 80 - 4 Х 2 . Подставляем во второе уравнение:

10 (80 - 4 Х 2) + 15 Х 2 = 800 - 40Х 2 + 15 Х 2 = 800 - 25 Х 2 = 450,

следовательно, 25 Х 2 = 350, Х 2 = 14, откуда Х 1 = 80 - 4 х 14 = 80 -56 =24.

Итак, четвертая вершина четырехугольника - это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования - максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае - в одной вершине, и это - единственная точка максимума. В частном - в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х 1 + 80 Х 2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24,14) она принимает значение 2200. При этом прямая 45 Х 1 + 80 Х 2 = 2200 проходит между прямыми ограничений 5 Х 1 + 20 Х 2 = 400 и 10 Х 1 + 15 Х 2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24,14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача . Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума - максимум). Задача, двойственная к двойственной - эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х 1 + 80 Х 2 → max , 400 W 1 + 450 W 2 → min ,

5 Х 1 + 20 Х 2 ≤ 400 , 5 W 1 + 10 W 2 ≥ 45,

10 Х 1 + 15 Х 2 ≤ 450 , 20 W 1 + 15 W 2 ≥ 80,

Х 1 ≥ 0 , W 1 ≥ 0,

Х 2 ≥ 0 . W 2 ≥ 0.

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W 1 и W 2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W 1 и W 2 называют "объективно обусловленными оценками" сырья и рабочей силы.

Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения - системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912-1986) в 1930-х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910-1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько типовых задач линейного программирования (см. также ).

Задача о диете (упрощенный вариант). Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Таблица 1.

Исходные данные в задаче об оптимизации смеси.

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов - К и С . Известно содержание тиамина и ниацина в этих продуктах, а. также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в табл.1.

3,8 К + 4,2 С → min ,

0,10 К + 0,25 С ≥ 1,00 ,

1,00 К + 0,25 С ≥ 5,00 ,

110,00 К + 120,00 С ≥ 400,00 ,

К ≥ 0 ,

С ≥ 0 .

Ее графическое решение представлено на рис.4.

Рис.4. Графическое решение задачи об оптимизации смеси.

На рис.4 ради облегчения восприятия четыре прямые обозначены номерами (1) - (4). Прямая (1) - это прямая 1,00 К + 0,25 С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С ) лежат выше прямой (1) или на ней, в отличие от ранее рассмотренных случаев в предыдущей производственной задаче линейного программирования.

Прямая (2) - это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К =0, прямая (1) проходит через точку (0,20), а прямая (2) - через расположенную ниже точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00 К + 0,25 С = 5,00 ,

110,00 К + 120,00 С = 400,00 .

Из первого уравнения К = 5 - 0,25 С . Подставим во второе: 110 (5- 0,25 С ) + 120 С = 400, откуда 550 - 27,5 С + 120 С = 400. Следовательно, 150 = - 92,5 С , т.е. решение достигается при отрицательном С . Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением - некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) - это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров (К , С ) лежат выше прямой (4) или на ней, как и для прямой (1).

Следовательно, область допустимых значений параметров (К , С ) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых, а также включает граничные отрезки). Область допустимых значений параметров, т.е. точек (К , С ), можно назвать "неограниченным многоугольником". Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого "многоугольника". Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина - это точка А пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10 К + 0,25 С = 1,00 ,

1,00 К + 0,25 С = 5,00 .

Из второго уравнения К = 5 - 0,25 С , из первого 0,10 (5 - 0,25 С ) + 0,25 С = 0,5 - 0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5 - 5/9 = 40/9. Итак, А = (40/9; 20/9).

Прямая (3) на рис.4 - это прямая, соответствующая целевой функции 3,8 К + 4,2 С . Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А , через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8 К + 4,2 С → min , W 1 + 5 W 2 + 400 W 3 → max ,

0,10 К + 0,25 С ≥ 1,00 , 0,1 W 1 + 1,10 W 2 + 110 W 3 ≤ 3,8 ,

1,00 К + 0,25 С ≥ 5,00 , 0,25W 1 + 0,25 W 2 + 120 W 3 ≤ 4,2 ,

110,00 К + 120,00 С ≥ 400,00 , W 1 ≥ 0 ,

К ≥ 0 , W 2 ≥ 0 ,

С ≥ 0 . W 3 ≥ 0 .

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т.е. оба числа равны 236/9. Интерпретация двойственных переменных: W 1 - "стоимость" единицы вещества Т, а W 2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W 3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W 1 , W 2 , W 3 - это т.н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Планирование номенклатуры и объемов выпуска. Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары . В табл.2 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).

Таблица 2.

Производственные мощности (в шт.)

Кофеварки

Самовары

Штамповка

Объем выпуска

Удельная прибыль (на одно изделие)

При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.

Задача линейного программирования имеет вид:

Х 1 ≥ 0 , Х 2 ≥ 0 , Х 3 ≥ 0 , (0)

Х 1 / 200 + Х 2 / 300 + Х 3 / 120 ≤ 100 , (1)

Х 1 / 300 + Х 2 / 100 + Х 3 / 100 ≤ 100 , (2)

Х 1 / 200 ≤ 100 , (3)

Х 2 / 120 ≤ 100 , (4)

Х 3 / 80 ≤ 100 , (5)

F = 15 Х 1 + 12 Х 2 + 14 Х 3 → max .

(0) - обычное в экономике условие неотрицательности переменных,

(1) - ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),

(2) - ограничение по возможностям отделки,

(3) - ограничение по сборке для кухонь,

(4) - то же для кофемолок,

(5) - то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).

Наконец, целевая функция F - общая прибыль предприятия.

Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) - из (2). Поэтому неравенства (3) и (4) можно из формулировки задачи линейного программирования ислючить.

Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане Х 3 = 0, т.е. самовары выпускать невыгодно.

Методы решения задач линейного программирования. Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике. Однако экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.

С ростом мощности компьютеров необходимость применения изощренных математических методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, оно весьма мало (доли секунд). Поэтому разберем лишь три метода.

Простой перебор . Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2Х 1 + 5Х 2 ≤ 10, то, очевидно, 0 ≤ Х 1 ≤ 10/2 = 5 и 0 ≤ Х 2 ≤ 10/5 = 2. Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его "обращенную" к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед.

Проведем перебор точек параллелепипеда с шагом 1/10 n последовательно при n =2,3,…, вычисляя значения целевой функции и проверяя выполнение ограничений. Из всех точек, удовлетворяющих ограничениям, возьмем ту, в которой целевая функция максимальна. Решение найдено! (Более строго выражаясь, найдено с точностью до 1/10 n .)

Направленный перебор. Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно – с помощью т.н. метода случайного поиска) менять ее координаты на определенную величину ∆, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до ∆. Если необходимо, в окрестности найденного решения проводим направленный перебор с шагом ∆/2 , ∆/4 и т.д.)

Симплекс-метод. Этот один из первых специализированных методов оптимизации, нацеленный на решение задач линейного программирования, в то время как методы простого и направленного перебора могут быть применены для решения практически любой задачи оптимизации. Симплекс-метод был предложен американцем Г. Данцигом в 1951 г. Основная его идея состоит в продвижении по выпуклому многограннику ограничений от вершины к вершине, при котором на каждом шаге значение целевой функции улучшается до тех пор, пока не будет достигнут оптимум. Разберем пример на основе данных табл.2.

Рассмотрим задачу линейного программирования, сформулированную выше при рассмотрении оптимизации номенклатуры и объемов выпуска:

F = 15 Х 1 + 12 Х 2 + 14 Х 3 → max .

Х 1 / 200 + Х 2 / 300 + Х 3 / 120 ≤ 100 ,

Х 1 / 300 + Х 2 / 100 + Х 3 / 100 ≤ 100 ,

Х 3 / 80 ≤ 100 .

Неотрицательность переменных не будем специально указывать, поскольку в задачах линейного программирования это предположение всегда принимается.

В соответствии с симплекс-методом введем т.н. "свободные переменные" Х 4 , Х 5 , Х 6 , соответствующие недоиспользованным мощностям, т.е. от системы неравенств перейдем к системе уравнений:

Х 1 / 200 + Х 2 / 300 + Х 3 / 120 + Х 4 = 100 ,

Х 1 / 300 + Х 2 / 100 + Х 3 / 100 + Х 5 = 100 ,

Х 3 / 80 + Х 6 = 100 ,

15 Х 1 + 12 Х 2 + 14 Х 3 = F .

У этой системы имеется очевидное решение, соответствующее одной из вершин многогранника допустимых значений переменных:

Х 1 = Х 2 = Х 3 = 0, Х 4 = Х 5 = Х 6 = 100, F = 0.

В терминах исходной задачи это означает, что ничего не надо выпускать. Такое решение приемлемо только на период летних отпусков.

В соответствии с симплекс-методом выбираем переменную, которая входит в целевую функцию F с самым большим положительным коэффициентом. Это Х 1 .

Сравниваем частные от деления свободных членов в первых трех уравнениях на коэффициенты при только что выбранной переменной Х 1:

100 / (1/200) = 20000, 100 / (1/300) =30000, 100/0 = + ∞ .

Выбираем строку из системы уравнений, которой соответствует минимальное из всех положительных отношений. В рассматриваемом примере - это первая строка, которой соответствует отношение 20000.

Умножим первую строку на 200, чтобы получить Х 1 с единичным коэффициентом:

Х 1 + 2/3 Х 2 + 2/1,2 Х 3 + 200 Х 4 = 20000 .

Затем умножим вновь полученную строку на (-1/300) и сложим со второй строкой, чтобы исключить член с Х 1 , получим

7/900 Х 2 + 4/900 Х 3 - 2/3 Х 4 + Х 5 = 100/3.

Ту же преобразованную первую строку умножим на (-15) и сложим со строкой, в правой части которой стоит F , получим:

2 Х 2 - 11 Х 3 - 3000 Х 4 = F - 300000.

В результате система уравнений преобразуется к виду, в котором переменная Х 1 входит только в первое уравнение:

Х 1 + 2/3 Х 2 + 2/1,2 Х 3 + 200 Х 4 = 20000 ,

7/900 Х 2 + 4/900 Х 3 - 2/3 Х 4 + Х 5 = 100/3,

Х 3 / 80 + Х 6 = 100 ,

2 Х 2 - 11 Х 3 - 3000 Х 4 = F - 300000.

Очевидно, у новой системы имеется улучшенное по сравнению с исходным решение, соответствующее другой вершине выпуклого многогранника в шестимерном пространстве:

Х 1 = 20000, Х 2 = Х 3 = Х 4 = 0, Х 5 = 100/3, Х 6 = 100, F = 300000.

В терминах исходной задачи это решение означает, что надо выпускать только кухни. Такое решение приемлемо, если допустимо выпускать только один вид продукции.

Повторим описанную выше операцию. В строке с F имеется еще один положительный коэффициент - при Х 2 (если бы положительных коэффициентов было несколько - мы взяли бы максимальный из них). На основе коэффициентов при Х 2 (а не при Х 1 , как в первый раз) образуем частные от деления соответствующих свободных членов на эти коэффициенты:

20000 / (2/3) = 30000, (100/3) / (7/900) = 30000/7, 100/0 = + ∞.

Таким образом, нужно выбрать вторую строку, для которой имеем наименьшее положительное отношение 30000/7. Вторую строку умножим на 900/7 (чтобы коэффициент при Х 2 равнялся 1). Затем добавим обновленную строку ко всем строкам, содержащим Х 2 , предварительно умножив их на подходящие числа, т.е. такие, чтобы все коэффициенты при Х 2 стали бы после сложения равны 0, за исключением коэффициента второй строки, который уже стал равняться 1. Получим систему уравнений:

Х 1 + 9/7 Х 3 + 1800/7 Х 4 - 600/7 Х 5 = 120000/7 ,

Х 2 + 4/7 Х 3 - 600/7 Х 4 + 900/7 Х 5 = 30000/7,

Х 3 / 80 + Х 6 = 100 ,

85/7 Х 3 - 19800/7 Х 4 - 1800/7 Х 5 = F - 308571.

Поскольку все переменные неотрицательны, то из последнего уравнения следует, что прибыль F достигает своего максимального значения, равного 308571, при Х 3 = Х 4 = Х 5 = 0. Из остальных уравнений следует, что при этом Х 1 = 120000/7 = 17143, Х 2 = 30000/7 = 4286, Х 6 = 100. Поскольку в строке с F не осталось ни одного положительного коэффициента при переменных, то алгоритм симплекс-метода закончил свою работу, оптимальное решение найдено.

Практические рекомендации таковы: надо выпустить 17143 кухни, вчетверо меньше, т.е. 4286, кофемолок, самоваров не выпускать вообще. При этом прибыль будет максимальной и равной 308571. Все производственное оборудование будет полностью загружено, за исключением линии по сборке самоваров.

Транспортная задача. Различные технико-экономические и экономические задачи производственного менеджмента, от оптимальной загрузки станка и раскройки стального листа или полотна ткани до анализа межотраслевого баланса и оценки темпов роста экономики страны в целом, приводят к необходимости решения тех или иных задач линейного программирования. В книге приведен обширный перечень публикаций, посвященный многочисленным применениям линейного программирования в металлургии, угольной, химической, нефтяной, бумажной и прочих отраслях промышленности, в проблемах транспорта и связи, планирования производства, конструирования и хранения продукции, сельском хозяйстве, в научных исследованиях, в том числе экономических, и даже при регулировании уличного движения.

В качестве очередного примера рассмотрим т.н. транспортную задачу. Имеются склады, запасы на которых известны. Известны потребители и объемы их потребностей. Необходимо доставить товар со складов потребителям. Можно по-разному организовать "прикрепление" потребителей к складам, т.е. установить, с какого склада какому потребителю и сколько вести. Кроме того, известна стоимость доставки единицы товара с определенного склада определенному потребителю. Требуется минимизировать издержки по перевозке.

Например, может идти речь о перевозке песка - сырья для производства кирпичей. В Москву песок обычно доставляется самым дешевым транспортом - водным. Поэтому в качестве складов можно рассматривать порты, а в качестве запасов - их суточную пропускную способность. Потребителями являются кирпичные заводы, а их потребности определяются суточным производством (в соответствии с имеющимися заказами). Для доставки необходимо загрузить автотранспорт, проехать по определенному маршруту и разгрузить его. Стоимость этих операций рассчитывается по известным правилам, на которых не имеет смысла останавливаться. Поэтому затраты на доставку товара с определенного склада тому или иному потребителю можно считать известными.

Рассмотрим пример транспортной задачи, исходные данные к которой представлены в табл. 3.

В табл.3, кроме объемов потребностей и величин запасов, приведены стоимости доставки единицы товара со склада i , i = 1,2,3, потребителю j , j = 1,2,3,4. Например, самая дешевая доставка - со склада 2 потребителям 1 и 3, а также со склада 3 потребителю 2. Однако на складе 2 имеется 80 единиц товара, а потребителям 1 и 3 требуется 50+70 =120 единиц, поэтому к ним придется вести товар и с других складов. Обратите внимание, что в табл.3 запасы на складах равны суммарным потребностям. Для примера с доставкой песка кирпичным заводам это вполне естественное ограничение - при невыполнении такого ограничения либо порты будут засыпаны горами песка, либо кирпичные заводы не выполнят заказы.

Таблица 3.

Исходные данные к транспортной задаче.

Потреби-тель 1

Потреби-тель 2

Потреби-тель 3

Потреби-тель 4

Запасы на складах

Потреб-ности

Надо спланировать перевозки, т.е. выбрать объемы Х ij поставок товара со склада i потребителю j , где i = 1,2,3; j = 1,2,3,4. Таким образом, всего в задаче имеется 12 переменных. Они удовлетворяют двум группам ограничений. Во-первых, заданы запасы на складах:

X 11 + Х 12 + Х 13 + Х 14 = 60 ,

X 21 + Х 22 + Х 23 + Х 24 = 80 ,

X 31 + Х 32 + Х 33 + Х 34 = 60 .

Во-вторых, известны потребности клиентов:

X 11 + Х 21 + Х 31 = 50 ,

X 12 + Х 22 + Х 32 = 40 ,

X 13 + Х 23 + Х 33 = 70 ,

X 14 + Х 24 + Х 34 = 40 .

Итак, всего 7 ограничений типа равенств. Кроме того, все переменные неотрицательны - еще 12 ограничений.

Целевая функция - издержки по перевозке, которые необходимо минимизировать:

F = 2 X 11 + 5 Х 12 + 4 Х 13 + 5 Х 14 + X 21 + 2 Х 22 + Х 23 + 4 Х 24 +

3 X 31 + Х 32 + 5 Х 33 + 2 Х 34 → min .

Кроме обсуждаемой, рассматриваются также различные иные варианты транспортной задачи. Например, если доставка производится вагонами, то объемы поставок должны быть кратны вместимости вагона.

Количество переменных и ограничений в транспортной задаче таково, что для ее решения не обойтись без компьютера и соответствующего программного продукта.

3.2.2. Целочисленное программирование

Задачи оптимизации, в которых переменные принимают целочисленные значения, относятся к целочисленному программированию. Рассмотрим несколько таких задач.

Задача о выборе оборудования. На приобретение оборудования для нового участка цеха выделено 20000 долларов США. При этом можно занять площадь не более 38 м 2 . Имеется возможность приобрести станки типа А и станки типа Б. При этом станки типа А стоят 5000 долларов США, занимают площадь 8 м 2 (включая необходимые технологические проходы) и имеют производительность 7 тыс. единиц продукции за смену. Станки типа Б стоят 2000 долларов США, занимают площадь 4 м 2 и имеют производительность 3 тыс. единиц продукции за смену. Необходимо рассчитать оптимальный вариант приобретения оборудования, обеспечивающий при заданных ограничениях максимум общей производительности участка.

Пусть Х - количество станков типа А, а У - количество станков типа Б, входящих в комплект оборудования. Требуется выбрать комплект оборудования так, чтобы максимизировать производительность С участка (в тыс. единиц за смену):

С = 7 Х + 3 У → max .

При этом должны быть выполнены следующие ограничения:

по стоимости (в тыс. долларов США)

5 Х + 2 У ≤ 20,

по занимаемой площади (в м 2)

8 Х + 4 У ≤ 38,

а также вновь появляющиеся специфические ограничения по целочисленности, а именно,

Х ≥ 0 , У ≥ 0 , Х и У - целые числа.

Сформулированная математическая задача отличается от задачи линейного программирования только последним условием целочисленности. Однако наличие этого условия позволяет (в данном конкретном случае) легко решить задачу перебором. Действительно, как ограничение по стоимости, так и ограничение по площади дают, что Х ≤ 4. Значит, Х может принимать лишь одно из 5 значений: 0, 1, 2, 3, 4.

Если Х = 4, то из ограничения по стоимости следует, что У = 0, а потому С = 7 Х = 28.

Если Х = 3, то из первого ограничения вытекает, что У ≤ 2, из второго У ≤ 3. Значит, максимальное С У =2, а именно С = 21 + 6 = 27.

Если Х = 2, то из первого ограничения следует, что У ≤ 5, из второго также У ≤ 5. Значит, максимальное С при условии выполнения ограничений достигается при У =5, а именно С = 14 + 15 = 29.

Если Х = 1, то из первого ограничения имеем У ≤ 7, из второго также У ≤ 7. Значит, максимальное С при условии выполнения ограничений достигается при У = 7, а именно С = 7 + 21 = 28.

Если Х = 0, то из первого ограничения вытекает У ≤ 10, из второго У ≤ 9. Значит, максимальное С при условии выполнения ограничений достигается при У = 9, а именно, С = 27.

Все возможные случаи рассмотрены. Максимальная производительность С = 29 (тысяч единиц продукции за смену) достигается при Х = 2, У = 5. Следовательно, надо покупать 2 станка типа А и 5 станков типа Б.

Задача о ранце . Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.

Есть много эквивалентных формулировок. Например, можно вместо ранца рассматривать космический аппарат – спутник Земли, а в качестве предметов - научные приборы. Тогда задача интерпретируется как отбор приборов для запуска на орбиту. Правда, при этом предполагается решенной предварительная задача - оценка сравнительной ценности исследований, для которых нужны те или иные приборы.

С точки зрения экономики предприятия и организации производства более актуальна другая интерпретация задачи о ранце, в которой в качестве «предметов» рассматриваются заказы (или варианты выпуска партий тех или иных товаров), в качестве полезности – прибыль от выполнения того или иного заказа, а в качестве веса – себестоимость заказа.

Перейдем к математической постановке. Предполагается, что имеется n предметов, и для каждого из них необходимо решить, класть его в ранец или не класть. Для описания решения вводятся булевы переменные Х k , k = 1,2,…, n (т.е. переменные, принимающие два значения, а именно, 0 и 1). При этом Х k = 1, если предмет размещают в ранце, и Х k = 0, если нет, k = 1,2,…, n . Для каждого предмета известны две константы: А k - вес k -го предмета, и С k - полезность k -го предмета, k = 1,2,…, n . Максимально возможную вместимость ранца обозначим В . Оптимизационная задача имеет вид

C 1 Х 1 + С 2 Х 2 + С 3 Х 3 + …. + С n Х n → max ,

А 1 Х 1 + А 2 Х 2 + А 3 Х 3 + …. + А n Х n ≤ В .

В отличие от предыдущих задач, управляющие параметры Х k , k = 1,2,…, n , принимают значения из множества, содержащего два элемента - 0 и 1.

К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т.д. (см., например, монографию ).

Укажем два распространенных метода решения задач целочисленного программирования

Метод приближения непрерывными задачами. В соответствии с ним сначала решается задача линейного программирования без учета целочисленности, а затем в окрестности оптимального решения ищутся целочисленные точки.

Методы направленного перебора . Из них наиболее известен метод ветвей и границ. Суть метода такова. Каждому подмножеству Х множества возможных решений Х 0 ставится в соответствие число - "граница" А(Х ). При решении задачи минимизации необходимо, чтобы А (Х 1) ≥ А(Х 2 ), если Х 1 входит в Х 2 или совпадает с Х 2 .

Каждый шаг метода ветвей и границ состоит в делении выбранного на предыдущем шаге множества Х С на два - Х 1С и Х 2С . При этом пересечение Х 1С и Х 2С пусто, а их объединение совпадает с Х С . Затем вычисляют границы А (Х 1С) и А (Х 2С ) и выделяют "ветвь" Х С +1 - то из множеств Х 1С и Х 2С, для которого граница меньше. Алгоритм прекращает работу, когда диаметр вновь выделенной ветви оказывается меньше заранее заданного малого числа

Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по-своему. Есть много модификаций этого метода.

3.2.3. Теория графов и оптимизация

Один из разделов дискретной математики, часто используемый при принятии решений - теория графов (см., например, учебные пособия ). Граф - это совокупность точек, называемых вершинами графа, некоторые из которых соединены дугами (дуги назыыают также ребрами). Примеры графов приведены на рис.5.

Рис.5. Примеры графов.


На только что введенное понятие графа "навешиваются" новые свойства. Исходному объекту приписывают новые качества. Например, вводится и используется понятие ориентированного графа. В таком графе дуги имеют стрелки, направленные от одной вершины к другой. Примеры ориентированных графов даны на рис.6.

Рис.6. Примеры ориентированных графов.

Ориентированный граф был бы полезен, например, для иллюстрации организации перевозок в транспортной задаче. В экономике дугам ориентированного или обычного графа часто приписывают числа, например, стоимость проезда или перевозки груза из пункта А (начальная вершина дуги) в пункт Б (конечная вершина дуги).

Рассмотрим несколько типичных задач принятия решений, связанных с оптимизацией на графах.

Задача коммивояжера . Требуется посетить все вершины графа и вернуться в исходную вершину, минимизировав затраты на проезд (или минимизировав время).

Исходные данные здесь - это граф, дугам которого приписаны положительные числа - затраты на проезд или время, необходимое для продвижения из одной вершины в другую. В общем случае граф является ориентированным, и каждые две вершины соединяют две дуги - туда и обратно. Действительно, если пункт А расположен на горе, а пункт Б - в низине, то время на проезд из А в Б, очевидно, меньше времени на обратный проезд из Б в А.

Многие постановки экономического содержания сводятся к задаче коммивояжера. Например:

Составить наиболее выгодный маршрут обхода наладчика в цехе (контролера, охранника, милиционера), отвечающего за должное функционирование заданного множества объектов (каждый из этих объектов моделируется вершиной графа);

Составить наиболее выгодный маршрут доставки деталей рабочим или хлеба с хлебозавода по заданному числу булочных и других торговых точек (парковка у хлебозавода).

Задача о кратчайшем пути . Как кратчайшим путем попасть из одной вершины графа в другую? В терминах производственного менеджмента: как кратчайшим путем (и, следовательно, с наименьшим расходом топлива и времени, наиболее дешево) попасть из пункта А в пункт Б? Для решения этой задачи каждой дуге ориентированного графа должно быть сопоставлено число - время движения по этой дуге от начальной вершины до конечной. Рассмотрим пример (рис.7).

Рис.7. Исходные данные к задаче о кратчайшем пути.

Ситуацию можно описать не только ориентированным графом с весами, приписанными дугам, но и таблицей (табл.7). В этой таблице двум вершинам – началу пути и концу пути – ставится в соответствие время в пути. В табл.7 рассматриваются пути без промежуточных остановок. Более сложные маршруты составляются из элементарных отрезков, перечисленных в табл.4.

Таблица 4.

Исходные данные к задаче о кратчайшем пути.

Начало дуги

Конец дуги

Время в пути

Спрашивается в задаче: как кратчайшим путем попасть из вершины 1 в вершину 4?

Решение. Введем обозначение: С (Т ) - длина кратчайшего пути из вершины 1 в вершину Т . (Поскольку любой путь, который надо рассмотреть, состоит из дуг, а дуг конечное число, и каждая входит не более одного раза, то претендентов на кратчайший путь конечное число, и минимум из конечного числа элементов всегда достигается.) Рассматриваемая задача состоит в вычислении С (4) и указании пути, на котором этот минимум достигается.

Для исходных данных, представленных на рис.7 и в табл.4, в вершину 3 входит только одна стрелка, как раз из вершины 1, и около этой стрелки стоит ее длина, равная 1, поэтому С (3) = 1. Кроме того, очевидно, что С (1) = 0.

В вершину 4 можно попасть либо из вершины 2, пройдя путь, равный 4, либо из вершины 5, пройдя путь, равный 5. Поэтому справедливо соотношение

С (4) = min {С(2) + 4; С (5) + 5}.

Таким образом, проведена реструктуризация (упрощение) задачи - нахождение С(4) сведено к нахождению С(2) и С (5).

В вершину 5 можно попасть либо из вершины 3, пройдя путь, равный 2, либо из вершины 6, пройдя путь, равный 3. Поэтому справедливо соотношение

С (5) = min {С (3) + 2; С (6) + 3}.

Мы знаем, что С (3) = 1. Поэтому

С(5) = min {3; С (6) + 3}.

Поскольку очевидно, что С(6) - положительное число, то из последнего соотношения вытекает, что С (5) = 3.

В вершину 2 можно попасть либо из вершины 1, пройдя путь, равный 7, либо из вершины 3, пройдя путь, равный 5, либо из вершины 5, пройдя путь, равный 2. Поэтому справедливо соотношение

С (2) = min {С(1) + 7; С(3) + 5; С (5) + 2}.

Нам известно, что С(1) = 0, С (3) = 1, С (5) = 3. Поэтому

С (2) = min {0 + 7; 1 + 5; 3 + 2} = 5.

Теперь мы можем найти С (4):

С (4) = min {С (2) + 4; С (5) + 5} = min {5 + 4; 3 + 5} = 8.

Таким образом, длина кратчайшего пути равна 8. Из последнего соотношения ясно, что в вершину 4 надо идти через вершину 5. Возвращаясь к вычислению С (5), видим, что в вершину 5 надо идти через вершину 3. А в вершину 3 можно попасть только из вершины 1. Итак, кратчайший путь таков:

1 → 3 → 5 → 4 .

Задача о кратчайшем пути для конкретных исходных данных (рис.7 и табл.4) полностью решена.

Оптимизационные задачи на графах, возникающие при подготовке управленческих решений в производственном менеджменте, весьма многообразны. Рассмотрим в качестве примера еще одну задачу, связанную с перевозками.

Задача о максимальном потоке. Как (т.е. по каким маршрутам) послать максимально возможное количество грузов из начального пункта в конечный пункт, если пропускная способность путей между пунктами ограничена?

Для решения этой задачи каждой дуге ориентированного графа, соответствующего транспортной системе, должно быть сопоставлено число - пропускная способность этой дуги. Рассмотрим пример (рис.8).

Рис.8. Исходные данные к задаче о максимальном потоке

Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис.8, можно также задать таблицей (табл.5).

Решение задачи о максимальном потоке может быть получено из следующих соображений.

Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3.

Таблица 5.

Исходные данные к задаче о максимальном потоке

Пункт отправления

Пункт назначения

Пропускная способность

Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу - в промежуточный пункт 3 (из-за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 2. Их направляем в пункт 4.

Итак, максимальная пропускная способность рассматриваемой транспортной системы - 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 - по ней направлены 2 единицы груза при пропускной способности в 3 единицы.

Решение можно представить в виде таблицы (табл.6).

Таблица 6.

Решение задачи о максимальном потоке

Пункт отправления

Пункт назначения

План перевозок

Пропускная способность

Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM - объем перевозок из пункта К в пункт М . Согласно рис.8 К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM , а именно, Х 01 , Х 02 , Х 03 , Х 12 , Х 13 , Х 14 , Х 23 , Х 24 , Х 34 . Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

F → max ,

Х 01 + Х 02 + Х 03 = F (0)

- Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

- Х 02 - Х 12 + Х 23 + Х 24 = 0 (2)

- Х 03 - Х 13 - Х 23 + Х 34 = 0 (3)

- Х 14 - Х 24 - Х 34 = - F (4)

Х 01 ≤ 2

Х 02 ≤ 3

Х 03 ≤ 1

Х 12 ≤ 4

Х 13 ≤ 1

Х 14 ≤ 3

Х 23 ≤ 1

Х 24 ≤ 2

Х 34 ≤ 2

Х КМ ≥ 0 , К, М = 0, 1, 2, 3, 4

F ≥ 0 .

Здесь F - целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) - (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не "рождаются" в ней. Условие (4) - это условие "выхода" грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом ("вход" равен "выходу"). Следующие девять неравенств задают ограничения на пропускную способность отдельных "веток" транспортной системы. Затем в системе ограничений задачи линейного программирования указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию - через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом "не знает").

О многообразии оптимизационных задач. В различных проблемах принятия решений возникают самые разнообразные задачи оптимизации. Для их решения применяются те или иные методы, точные или приближенные. Задачи оптимизации часто используются в теоретико-экономических исследованиях. Достаточно вспомнить оптимизацию экономического роста страны с помощью матрицы межотраслевого баланса Василия Леонтьева или микроэкономические задачи определения оптимального объема выпуска по функции издержек при фиксированной цене (или в условиях монополии) или минимизации издержек при заданном объеме выпуска путем выбора оптимального соотношения факторов производства (с учетом платы за них).

Кроме затронутых выше методов решения задач оптимизации, напомним о том, что гладкие функции оптимизируют, приравнивая 0 производную (для функций нескольких переменных - частные производные). При наличии ограничений используют множители Лагранжа. Эти методы обычно излагаются в курсах высшей математики и потому опущены здесь.

Представляют интерес задачи оптимизации с нечеткими переменными , а также задачи оптимизации, возникающие в эконометрике . Они рассматриваются в соответствующей литературе.

Литература

1. Гасс С. Путешествие в страну линейного программирования / Пер. с англ. - М.: Мир, 1973. - 176 с.

2. Кофман А., Фор Р. Займемся исследованием операций / Пер. с франц.. - М,: Мир, 1966. -280 с.

3. Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. - М.: Высшая школа, 1976. - 392 с.

4. Бурков В.Н., Заложнев А.Ю., Новиков Д.А. Теория графов в управлении организационными системами. – М.: Синтег, 2001. – 124 с.

5. Орлов А.И. Задачи оптимизации и нечеткие переменные. – М.: Знание, 1980. – 64 с.

6. Орлов А.И. Эконометрика. – М.: Изд-во «Экзамен», 2002. – 576 с.

Задачи по методам принятия решений

1. Изобразите на плоскости ограничения задачи линейного программирования и решите (графически) эту задачу:

400 W 1 + 450 W 2 → min ,

5 W 1 + 10 W 2 ≥ 45,

20 W 1 + 15 W 2 ≥ 80,

W 1 ≥ 0, W 2 ≥ 0.

2. Решите задачу линейного программирования:

W 1 + 5 W 2 → max ,

0,1 W 1 + W 2 ≤ 3,8 ,

0,25 W 1 + 0,25 W 2 ≤ 4,2 ,

W 1 ≥ 0 , W 2 ≥ 0 .

3. Решите задачу целочисленного программирования:

10 Х + 5 У → max .

8 Х + 3 У ≤ 40,

3 Х + 10 У ≤ 30,

Х ≥ 0 , У ≥ 0 , Х и У - целые числа.

4. Решите задачу о ранце:

Х 1 + Х 2 + 2 Х 3 + 2Х 4 + Х 5 + Х 6 → max ,

0,5 Х 1 + Х 2 + 1,5 Х 3 + 2Х 4 + 2,5Х 5 + 3Х 6 ≤ 3.

Управляющие параметры Х k , k = 1,2,…, 6 , принимают значения из множества, содержащего два элемента - 0 и 1.

5. Транспортная сеть (с указанием расстояний) приведена на рис.9. Найдите кратчайший путь из пункта 1 в пункт 4.

Рис.9. Исходные данные к задаче о кратчайшем пути.

7. Решите задачу коммивояжера для четырех городов (маршрут должен быть замкнутым и не содержать повторных посещений). Затраты на проезд приведены в табл.7.

Таблица 7.

Исходные данные к задаче коммивояжера

Город отправления

Город назначения

Затраты на проезд

8. Как послать максимальное количество грузов из начального пункта 1 в конечный пункт 8, если пропускная способность путей между пунктами транспортной сети (рис.10) ограничена (табл.8)?

Рис.9. Транспортная сеть к задаче о максимальном потоке.

Таблица 8.

Исходные данные к задаче о максимальном потоке

Пункт отправления

Пункт назначения

Пропускная способность

Темы докладов и рефератов

1. Классификация оптимизационных задач принятия решений.

2. Решения, оптимальные по Парето.

3. Многокритериальные задачи принятия решений: различные методы свертки критериев.

4. Задачи оптимизации и нечеткие переменные (на основе работы ).

5. Моделирование и экспертные оценки при принятии решений.

6. Интерактивные системы принятия решений.

7. Методы учета неопределенностей принятия решений: вероятностные модели, теория нечеткости, интервальная математика.

8. Эконометрические методы принятия решений (на основе монографии ).

9. Имитационное моделировании и метод статистических испытаний (Монте-Карло) при принятии решений.

11. Методы теории игр (теория конфликтов), роль информации и равновесие по Нэшу в теории принятия решений.

12. Проблемы комбинированного применения различных методов в конкретных прикладных работах.

13. Информационные технологии поддержки принятия решений.


Предыдущая

Наиболее приемлемый вариант решения, которое принимается на управленческом уровне относительно любого вопроса, принято считать оптимальным, а сам процесс его поиска - оптимизацией.

Взаимозависимость и сложность организационных, социально-экономических, технических и иных аспектов управления производством в настоящее время сводится к принятию управленческого решения, которое затрагивает большое количество разного рода факторов, тесно переплетающихся друг с другом, ввиду чего становится невозможным произвести анализ каждого отдельно с использованием традиционных аналитических методов.

Большинство факторов выступают определяющими в процессе принятия решения, и они (по своей сути) не поддаются какой-либо количественной характеристике. Также существуют и такие, которые практически неизменны. В связи с этим возникла необходимость в разработке особых методов, способных обеспечить выбор важных управленческих решений в рамках сложных организационных, экономических, технических задач (экспертные оценки, исследование операций и методы оптимизации и др.).

Методы, направленные на исследование операций, применяются в целях поиска оптимальных решений в таких областях управления, как организация процессов производства и перевозок, планирование крупномасштабного производства, материальное и техническое снабжение.

Методы оптимизации решений заключаются в исследовании посредством сравнения числовых оценок ряда факторов, анализ которых традиционными методами осуществить нельзя. Оптимальное решение - наилучшее среди возможных вариантов относительно экономической системы, а наиболее приемлемое в отношении отдельно взятых элементов системы - субоптимальное.

Сущность методов исследования операций

Как уже было упомянуто ранее, они формируют методы оптимизации управленческих решений. Их основа - математические (детерминированные), вероятностные модели, представляющие исследуемый процесс, вид деятельности или систему. Данного рода модели представляют количественную характеристику соответствующей проблемы. Они служат базой для принятия важного управленческого решения в процессе поиска оптимально приемлемого варианта.

Перечень вопросов, которые играют существенную роль для непосредственных руководителей производства и которые разрешаются в ходе использования рассматриваемых методов:

  • степень обоснованности выбранных вариантов решений;
  • насколько они лучше альтернативных;
  • степень учета определяющих факторов;
  • каков критерий оптимальности выбранных решений.

Данные методы оптимизации решений (управленческих) нацелены на поиск оптимальных решений для как можно большего количества фирм, компаний либо их подразделений. Они основаны на существующих достижениях статистических, математических и экономических дисциплин (теории игр, массового обслуживания, графиков, оптимального программирования, математической статистики).

Методы экспертных оценок

Данные методы оптимизации управленческих решений применяются, когда задача частично либо полностью не подвержена формализации, а также ее решение не может быть найдено посредством математических методов.

Экспертиза - это исследование сложных особых вопросов на этапе выработки определенного управленческого решения соответствующими лицами, которые владеют специальным багажом знаний и внушительным опытом, для получения выводов, рекомендаций, мнений, оценок. В процессе экспертного исследования применяются новейшие достижения и науки, и техники в рамках специализации эксперта.

Рассматриваемые методы оптимизации ряда управленческих решений (экспертных оценок) эффективны в решении нижеперечисленных управленческих задач в сфере производства:

  1. Изучение сложных процессов, явлений, ситуаций, систем, которые характеризуются неформализованными, качественными характеристиками.
  2. Ранжирование и определение согласно заданному критерию существенных факторов, выступающих определяющими относительно функционирования и развития производственной системы.
  3. Рассматриваемые методы оптимизации особо эффективны в области прогнозирования тенденций развития системы производства, а также ее взаимодействия с внешней средой.
  4. Повышение надежности экспертной оценки преимущественно целевых функций, которые имеют количественный и качественный характер, посредством усреднения мнений квалифицированных специалистов.

И это лишь некоторые методы оптимизации ряда управленческих решений (экспертной оценки).

Классификация рассматриваемых методов

Методы решения задач оптимизации, исходя из числа параметров, можно подразделить на:

  • Методы оптимизации одномерной.
  • Методы оптимизации многомерной.

Их еще называют "численные методы оптимизации". Если быть точным, это алгоритмы ее поиска.

В рамках применения производных методы бывают:

  • прямые методы оптимизации (нулевого порядка);
  • градиентные методы (1-го порядка);
  • методы 2-го порядка и др.

Большая часть методов многомерной оптимизации приближена к задаче второй группы методов (одномерной оптимизации).

Методы одномерной оптимизации

Любые численные методы оптимизации основаны на приближенном либо точном вычислении таких ее характеристик, как значения целевой функции и функций, которые задают допустимое множество, их производные. Так, для каждой отдельной задачи вопрос тносительно выбора характеристик для вычисления может быть решен в зависимости от существующих свойств рассматриваемой функции, имеющихся возможностей и ограничений в хранении и обработке информации.

Существуют следующие методы решения задач оптимизации (одномерной):

  • метод Фибоначчи;
  • дихотомии;
  • золотого сечения;
  • удвоения шага.

Метод Фибоначчи

Для начала необходимо установить координаты т. x на промежутке в качестве числа, равного отношению разницы (x - a) к разнице (b - a). Следовательно, a имеет относительно промежутка координату 0, а b - 1, средняя точка - ½.

Если допустить, что F0 и F1 между собой равны и принимают значение 1, F2 будет равно 2, F3 - 3, …, то Fn = Fn-1 + Fn-2. Итак, Fn - числа Фибоначчи, а поиск Фибоначчи - это оптимальная стратегия так называемого последовательного поиска максимума ввиду того, что она довольно тесно связана с ними.

В рамках оптимальной стратегии принято выбирать xn - 1 = Fn-2: Fn, xn = Fn-1: Fn. При любом из двух интервалов ( либо ), каждый из которых может выступать в качестве суженного интервала неопределенности, точка (унаследованная) относительно нового интервала будет иметь либо координаты , либо . Далее, в качестве xn - 2 принимается точка, которая имеет относительно нового промежутка одну из представленных координат. Если использовать F(xn - 2), значение функции, которое унаследовано от прежнего промежутка, становится возможным сокращение интервала неопределенности и передача в наследство одного значения функции.

На финишном шаге получится прейти к такому интервалу неопределенности, как , при этом средняя точка унаследована от предыдущего шага. В качестве x1 устанавливается точка, которая имеет относительную координату ½+ε, а окончательный интервал неопределенности будет или [½, 1] по отношению к .

На 1-м шаге длина данного интервала сократилась до Fn-1: Fn (с единицы). На финишных шагах сокращение длин соответствующих интервалов представляется числами Fn-2: Fn-1, Fn-3: Fn-2, …, F2: F3, F1: F2 (1 + 2ε). Итак, длина такого интервала, как окончательный вариант примет значение (1 + 2ε) : Fn.

Если пренебречь ε, то асимптотически 1: Fn будет равно rn, при этом n→∞, а r = (√5 - 1) : 2, что приблизительно равно 0,6180.

Стоит отметить, что асимптотически для значительных n каждый последующий шаг поиска Фибоначчи существенно сужает рассматриваемый интервал с вышеуказанном коэффициентом. Данный результат требуется сравнить с 0,5 (коэффициент сужения интервала неопределенности в рамках метода бисекции для поиска нуля функции).

Метод дихотомии

Если представить некую целевую функцию, то для начала потребуется найти ее экстремум на промежутке (a; b). Для этого ось абсцисс делится на четыре эквивалентные части, затем необходимо определить значение рассматриваемой функции в 5 точках. Далее выбирается минимум среди них. Экстремум функции должен лежать в пределах промежутка (a"; b"), который прилегает к точке минимума. Границы поиска сужаются в 2 раза. А если минимум расположен в т. a либо b, то он сужается во все четыре раза. Новый интервал также разделяется на четыре равных отрезка. В связи с тем, что значения данной функции в трех точках были определены на предыдущем этапе, далее требуется вычислить целевую функцию в двух точках.

Метод золотого сечения

Для существенных значений n координаты таких точек, как xn и xn-1 приближены к 1 - r, равное 0,3820, а r ≈ 0,6180. Толчок с данных значений весьма близок к искомой оптимальной стратегии.

Если предположить, что F(0,3820) > F(0,6180), то тогда очерчивается интервал . Однако ввиду того, что 0,6180 * 0,6180 ≈ 0,3820 ≈ xn-1, то в данной точке F уже известна. Следовательно, на каждом этапе, начиная со 2-го, необходимо только одно вычисление целевой функции, при этом каждый шаг сокращает длину рассматриваемого интервала с коэффициентом 0,6180.

В отличие от поиска Фибоначчи, в данном методе не требуется фиксация числа n еще до начала поиска.

«Золотое сечение» участка (a; b) - сечение, при котором отношение его r длины к более крупной части (a; c) идентично отношению большей части r к меньшей, то есть (a; с) к (c; b). Нетрудно догадаться, что r определяется по вышерассмотренной формуле. Следовательно, при существенных n метод Фибоначчи переходит в данный.

Метод удвоения шага

Суть - поиск направления убывания целевой функции, движение в данном направлении в случае удачного поиска с постепенно возрастающим шагом.

Сначала определяем начальную координату M0 функции F(M), минимальное значение шага h0, направление поиска. Затем определяем функцию в т. M0. Далее совершаем шаг и находим значение данной функции в данной точке.

В случае если функция меньше значения, которое было на предыдущем шаге, следует произвести следующий шаг в том же направлении, предварительно увеличив его в 2 раза. При ее значении, которое больше предыдущего, потребуется поменять направление поиска, а затем начать двигаться в выбранном направлении с шагом h0. Представленный алгоритм можно модифицировать.

Методы многомерной оптимизации

Вышеупомянутый метод нулевого порядка не берет в расчет производные минимизированной функции, ввиду чего их использование может быть эффективно в случае возникновения каких-либо трудностей с вычислением производных.

Группу методов 1-го порядка еще называют градиентными, потому что для установления направления поиска применяют градиент данной функции - вектор, составляющими которого выступают частные производные минимизированной функции по соответствующим оптимизированным параметрам.

В группе методов 2-го порядка применяются 2 производные (их использование достаточно ограничено ввиду наличия трудностей в их вычислении).

Перечень методов безусловной оптимизации

При использовании многомерного поиска без применения производных методы безусловной оптимизации следующие:

  • Хука и Дживса (осуществление 2 видов поиска - по образцу и исследующий);
  • минимизации по правильному симплексу (поиск точки минимума соответствующей функции посредством сравнения на каждой отдельной итерации ее значений в вершинах симплекса);
  • циклического координатного спуска (использование в качестве ориентиров поиска координатных векторов);
  • Розенброка (основан на применении одномерной минимизации);
  • минимизации по деформированному симплексу (модификация метода минимизации по правильному симплексу: добавление процедуры сжатия, растяжения).

В ситуации использования производных в процессе многомерного поиска выделяют метод наискорейшего спуска (наиболее фундаментальная процедура минимизации дифференцируемой функции с несколькими переменными).

Также выделяют еще такие методы, которые используют сопряженные направления (Метод Дэвидона-Флетчера-Пауэлла). Его суть - преставление направлений поиска как Dj*grad(f(y)).

Классификация математических методов оптимизации

Условно, исходя из размерности функций (целевых), они бывают:

  • с 1 переменной;
  • многомерные.

В зависимости от функции (линейная или нелинейная) существует большое количество математических методов, направленных на поиск экстремума для решения поставленной задачи.

По критерию применения производных математические методы оптимизации подразделяются на:

  • методы вычисления 1 производной целевой функции;
  • многомерные (1-я производная-векторная величина-градиент).

Исходя из эффективности вычисления, существуют:

  • методы быстрого вычисления экстремума;
  • упрощенного вычисления.

Это условная классификация рассматриваемых методов.

Оптимизация бизнес-процессов

Методы здесь могут использоваться различные, в зависимости от решаемых проблем. Принято выделять следующие методы оптимизации процессов бизнеса:

  • исключения (уменьшение уровней существующего процесса, ликвидация причин помех и входного контроля, сокращение транспортных путей);
  • упрощения (облегченное прохождение заказа, снижение комплексности продуктовой структуры, распределение работ);
  • стандартизации (использование специальных программ, методов, технологий и т. д.);
  • ускорения (параллельный инжиниринг, стимуляция, оперативное проектирование опытных образцов, автоматизация);
  • изменение (перемены в области сырья, технологий, методов работ, кадрового расположения, рабочих систем, объема заказа, порядка обработки);
  • обеспечения взаимодействия (в отношении организационных единиц, персонала, рабочей системы);
  • выделения и включения (относительно необходимых процессов, комплектующих).

Налоговая оптимизация: методы

Российское законодательство предоставляет налогоплательщику весьма богатые возможности сокращения размеров налогов, ввиду чего принято выделять такие способы, направленные на их минимизацию, как общие (классические) и специальные.

Общие методы налоговой оптимизации следующие:

  • проработка учетной политики компании с максимально возможным применением предоставленных российским законодательством возможностей (порядок списания МБП, выбор метода расчета выручки от реализации товара и др.);
  • оптимизация посредством договора (заключение льготированных сделок, четкое и грамотное использование формулировок и т. п.);
  • применение разного рода льгот, налоговых освобождений.

Вторую группу методов также могут использовать все фирмы, однако они все же имеют достаточно узкую область применения. Специальные методы оптимизации налогов следующие:

  • замены отношений (операция, которая предусматривает обременительное налогообложение, замещается другой, которая позволяет достичь аналогичную цель, но при этом использовать льготный порядок налогового обложения).
  • разделения отношений (замена лишь части хозяйственной операции);
  • отсрочки налогового платежа (перенесение момента появления объекта налогообложения на другой календарный период);
  • прямого сокращения объекта налогового обложения (избавление от многих налогооблагаемых операций либо имущества без оказания негативного влияния на основную хозяйственную деятельность компании).

Параметров при заданной структуре объекта, то она называется параметрической оптимизацией . Задача выбора оптимальной структуры является структурной оптимизацией .

Стандартная математическая задача оптимизации формулируется таким образом. Среди элементов χ, образующих множества Χ, найти такой элемент χ * , который доставляет минимальное значение f(χ *) заданной функции f(χ). Для того, чтобы корректно поставить задачу оптимизации необходимо задать:

Тогда решить задачу означает одно из:

Если минимизируемая функция не является выпуклой , то часто ограничиваются поиском локальных минимумов и максимумов: точек таких, что всюду в некоторой их окрестности для минимума и для максимума.

Если допустимое множество , то такая задача называется задачей безусловной оптимизации , в противном случае - задачей условной оптимизации .

Классификация методов оптимизации

Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом).

Методы оптимизации классифицируют в соответствии с задачами оптимизации:

  • Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.
  • Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.

Существующие в настоящее время методы поиска можно разбить на три большие группы:

  1. детерминированные;
  2. случайные (стохастические);
  3. комбинированные.

По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации .

По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:

По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:

  • прямые методы, требующие только вычислений целевой функции в точках приближений;
  • методы первого порядка : требуют вычисления первых частных производных функции;
  • методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.

Помимо того, оптимизационные методы делятся на следующие группы:

  • аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);
  • графические методы.

В зависимости от природы множества X задачи математического программирования классифицируются как:

  • задачи дискретного программирования (или комбинаторной оптимизации) - если X конечно или счётно ;
  • задачи целочисленного программирования - если X является подмножеством множества целых чисел;
  • задачей нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства .
  • Если же все ограничения и целевая функция содержат лишь линейные функции, то это - задача линейного программирования.

Кроме того, разделами математического программирования являются параметрическое программирование , динамическое программирование и стохастическое программирование .

Математическое программирование используется при решении оптимизационных задач исследования операций .

Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:

  • Определение границ системы оптимизации
    • Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
  • Выбор управляемых переменных
    • «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
  • Определение ограничений на управляемые переменные
    • … (равенства и/или неравенства)
  • Выбор числового критерия оптимизации (например, показателя эффективности)
    • Создаём целевую функцию

История

Канторовичем совместно с М. К. Гавуриным в 1949 году разработан метод потенциалов , который применяется при решении транспортных задач . В последующих работах Канторовича, Немчинова , В. В. Новожилова , А. Л. Лурье , А. Брудно , Аганбегяна , Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования , так и приложение её методов к исследованию различных экономических проблем.

Методам линейного программирования посвящено много работ зарубежных учёных. В 1941 году Ф. Л. Хитчкок поставил транспортную задачу . Основной метод решения задач линейного программирования - симплекс-метод - был опубликован в 1949 году Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Куна (англ. ), А. Таккера (англ. ), Гасса (Saul. I. Gass), Чарнеса (Charnes A.), Била (Beale E. M.) и др.

Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция , либо ограничения, либо то и другое нелинейны. В 1951 году была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.

Начиная с 1955 году опубликовано много работ, посвященных квадратическому программированию (работы Била, Баранкина и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.

В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.

См. также

Примечания

Литература

  • Абакаров А. Ш., Сушков Ю. А. Статистическое исследование одного алгоритма глобальной оптимизации . - Труды ФОРА, 2004.
  • Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. пец. вузов. - М .: Высшая школа, 1986.
  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. - М .: Мир, 1985.
  • Гирсанов И. В. Лекции по математической теории экстремальных задач. - М .; Ижевск : НИЦ «Регулярная и хаотическая динамика», 2003. - 118 с. - ISBN 5-93972-272-5
  • Жиглявский А. А., Жилинкас А. Г. Методы поиска глобального экстремума. - М .: Наука, Физматлит, 1991.
  • Карманов В. Г. Математическое программирование. - Изд-во физ.-мат. литературы, 2004.
  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М .: Наука, 1970. - С. 575-576.
  • Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. - М .: Энергоатомиздат, 1972.
  • Максимов Ю. А., Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. - М .: МИФИ, 1982.
  • Максимов Ю. А. Алгоритмы линейного и дискретного программирования. - М .: МИФИ, 1980.
  • Плотников А. Д. Математическое программирование = экспресс-курс. - 2006. - С. 171. - ISBN 985-475-186-4
  • Растригин Л. А. Статистические методы поиска. - М ., 1968.
  • Хемди А. Таха. Введение в исследование операций = Operations Research: An Introduction. - 8 изд. - М .: Вильямс, 2007. - С. 912. - ISBN 0-13-032374-8
  • Кини Р. Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. - М .: Радио и связь, 1981. - 560 с.
  • С.И.Зуховицкий , Л.И.Авдеева. Линейное и выпуклое программирование. - 2-е изд., перераб. и доп.. - М .: Издательство «Наука», 1967.

Ссылки

  • Б.П. Поляк . История математического программирования в СССР: анализ феномена // Труды 14-й Байкальской школы-семинара «Методы оптимизации и их приложения» . - 2008. - Т. 1. - С. 2-20.

Wikimedia Foundation . 2010 .

УДК 711.4 МАЗАЕВ А. Г

Методы и критерии оптимизации в современной теории расселения

В статье рассматривается понятие оптимизации в градостроительстве. Показано происхождение термина «оптимизация», его связь с основными терминами в области методологии науки и, в частности, экономики. Показаны возможности дальнейшего развития понятия оптимизации в градостроительстве. В качестве выводов предложен набор критериев оптимизации в приложении к градостроительству.

Ключевые слова: оптимизация в градостроительстве, теория оптимизации, критерии и методы оптимизации, критерий Парето.

METHODS AND CRITERIA OPTIMIZATION IN THE MODERN THEORY OF SETTLEMENT

In clause the concept of town-planning optimization is considered. The origin of the term optimization, its communication with the basic concepts in the field of methodology of a science, economy is shown. Opportunities of development of concept of optimization in modern town-planning are considered. The set of criteria of optimization which is possible in modern town-planning activity is offered.

Keywords: optimization in town-planning, theory of optimization, oriteria and methods of optimization, сriterion Pareto.

Мазаев Антон

Григорьевич

кандидат архитектуры, советник РААСН, зав. лабораторией Филиала ФГБУ «ЦНИИП Минстроя России» УралНИИпроект

e-mail: [email protected]

Цель данной статьи состоит в том, чтобы представить теоретическое рассмотрение понятия «оптимизация» применительно к градостроительным объектам - городам и системам расселения. Оптимизация расселения крупного региона России на примере Уральского федерального округа является темой проводимого автором научного исследования. Актуальность этой темы связана с назревшим вопросом упорядочения развития региональных систем расселения Национальной системы России, развитие которой приняло неуправляемый и неравновесный характер. Методология разработки темы строится на формируемой в настоящее время теории геополитического развития расселения.

Понятие оптимизации в современной науке

Необходимо уточнить понятие оптимизации в теории науки, а затем дать его определение применительно к теории расселения. Первоначально термин «оптимизация» возник в математике: «Оптимизация - в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств. Теорию и методы решения задачи оптимизации изучает

математическое программирование... (Оно) занимается математическими методами решения задач нахождения наилучших вариантов из всех возможных» . Большая Советская Энциклопедия уточняет: «Оптимизация - процесс нахождения экстремума (глобального максимума или минимума) определенной функции или выбора наилучшего (оптимального) варианта из множества возможных. Наиболее надежным способом нахождения наилучшего варианта является сравнительная оценка всех возможных вариантов (альтернатив)» . Иными словами, критериев оптимизации может быть много в отношении одного и того же явления, системы. Оптимизировать можно что угодно и по значительному количеству критериев оптимизации. Причем критерии эти могут находиться между собой в противоречии, и для оптимизации необходимо определиться с ними, иначе решение оптимизационной задачи окажется неверным, т. е. ложным, опасным и неэффективным. Источники по-разному толкуют содержание оптимизации, исходя из целей и задач конкретной научной дисциплины. Например, словарь по экономике так трактует это понятие: «Оптимизация - это определение значений экономических показателей, при которых достигается оптимум, то есть оптимальное, наилучшее состояние системы. Чаще всего оптимуму соответствует достижение наивысшего результата при данных затратах ресурсов

или достижение заданного результата при минимальных ресурсных затратах» . Иначе говоря, оптимизация связывается с ресурсными затратами и эффективностью их применения.

Понятие оптимизации в экономической теории

Именно в экономике вопросы оптимизации поднимаются наиболее часто как актуальная научная и практическая задача. В рамках экономических теорий выработана развитая теория оптимизации, причем у экономики и у теории расселения сходный объект изучения - общество в целом, его хозяйственные потребности, с той разницей, что теория расселения занимается пространственным аспектом жизнедеятельности человека.

Экономисты дают большое число определений оптимизаций, которые могут быть распространены и на вопросы теории расселения. «Оптимизация - максимизация экономического благосостояния общества по отношению к макроэкономическим целям» . Отсюда можно вывести понимание оптимизации как наращивания некоего ресурса, который отождествляется с благом. В данном случае речь идет об экономическом благосостоянии как ключевом благе, причем оптимизация связана с достижением не оптимального значения или множества значений, а неограниченного наращивания этого блага.

Наиболее емкое и глубокое определение оптимизации дал в свое время В. Парето: «...Любое изменение, которое никому не причиняет убытков и которое приносит некоторым людям пользу (по их собственной оценке), является улучшением» . Этот критерий имеет весьма широкий смысл: он применяется при решении таких задач, когда оптимизация означает улучшение одних показателей при условии, чтобы другие не ухудшались, а также таких, когда реализуется композиционный подход к построению плана развития экономической системы, учитывающий интересы составляющих ее подсистем (групп экономических объектов). Приведенное выше определение можно формализовать следующим утверждением: состояние экономики S* считается лучшим, по В. Парето, чем другое состояние Б1, если хотя бы один экономический субъект предпочитает S*, а все остальные, по меньшей мере, не делают различий между этими состояниями, но в то же время нет таких, кто предпочитает 81; согласно В. Парето, состояние 8* безразлично состоянию Б1, если все экономические субъекты не делают между ними различий; наконец, оно оптимально, если не существует такого допустимого состояния экономики, которое было бы лучше, чем это. Критерий оптимальности В. Парето имеет большое методологическое значение, так как дает понимание, какое изменение в экономической системе можно назвать позитивным, т. е. направленным на общее ее улучшение, а какое нет. Рост экономического благосостояния одних субъектов за счет других не может быть признан позитивным по данному критерию. На Иллюстрации 1 показано действие критерия В. Парето в виде графика, показана область «приемлемых значений», которые обеспечивают улучшение хотя бы одного показателя, не приводя к ухудшению остальных.

Мы считаем, что единого развернутого определения оптимизации для всех видов человеческой деятельности невозможно дать в силу их принципиально различного характера. Исследования по проблемам оптимизации получили значительное развитие в СССР в связи с плановым характером его экономики. Вопросы оптимизации экономики занимали советских ученых вплоть до перехода к рыночной экономике. Причем острота проблемы

Иллюстрация 1. Оптимальность по В. Парето

оптимизации в экономике не снижалась в силу быстрого роста номенклатуры производимой продукции, размещения значительного числа производств на большой территории, как следствие, большого объема перевозок грузов. Аналогичные вопросы стояли и перед западными учеными, особенно вопрос оптимизации остро встал во время Второй мировой войны, когда возникла необходимость аналогичного централизованного управления большими объемами войск, техники и снаряжения. За последние десятилетия были разработаны множество теоретических и прикладных методик оптимизации, которые в систематизированном виде представлены на Иллюстрации 2.

Понятие оптимизации в градостроительной науке

Данное понятие в градостроительстве использовалось в советский период в нескольких смыслах. В первую очередь, оно было связано с понятием экономической оптимизации, обслуживанием экономических интересов. Градостроительство понималось как один из инструментов оптимизации, чьей задачей является примирение интересов производственного комплекса с интересами населения. Возникали различные концепции оптимизации, к числу важнейших следует отнести концепцию ГСНМ - групповых систем населенных мест. Она представляла собой попытку оптимизации расселения путем многофакторого сокращения его недостатков - оторванности сельского населения от мест приложения труда и центров культуры, чрезмерного разрастания городов, создающего огромную нагрузку на биосферу.

Реализация концепции ГСНМ была предпринята в рамках Генеральной схемы расселения СССР, разработанной в 1970-е гг. Создание ГСНМ предполагалось для оптимизации набравшего к тому времени процесса агломерирования больших и средних городов. Вместо произвольного «слипания» населенных пунктов должна была быть создана их иерархическая организация. Другим следствием оптимизации в градостроительстве

Иллюстрация 2. Основные методы решения задач оптимизации. Систематическое обобщение ее различных методик

стало выяснение вопроса относительно так называемой «оптимальной величины» городов. Подразумевалось, что раз существует чрезмерное перенаселение некоторых городов, то есть и оптимальная его величина, которая может быть вычислена градостроительной наукой. «...Понятие "оптимального"города оставалось одним из наиболее существенных элементов советской градостроительной политики. .Не было сомнения в том, что такой оптимум существует. Разногласия начинались при попытке определить, какую именно людность следует считать оптимальной. В 1920-е гг. оптимальным казалось 50-тысячное население. Оно было достаточным для того, чтобы проявились выгоды от экономии на масштабе производства и городской инфраструктуре, и в то же время не столь большим, чтобы разрушить чувство общности и социалистическую коммунальную этику. В середине 1950-х гг. оценки оптимума колебались между 150 тысячами и 200 тысячами, а к 1960 г. они подскочили уже к 250-300 тысячам человек, и сама правомерность этой концепции. была поставлена под сомнение» . Спор оказался схоластичен, потому что оптимальность размера города зависит не от абсолютной ве-

личины численности его населения, а от экономико-географического положения в системе расселения. Иными словами, важна не абсолютная, а относительная величина города, в каждом конкретном случае разная.

Вопрос об этой оптимальной величине города по-новому остро встал в 1960-1970-е гг., когда в СССР наметился рост числа крупных и крупнейших городов, стали заметны их недостатки. В статье с характерным названием «Максимальные размеры города» (1970) утверждалось: «С точки зрения городского хозяйства, наиболее экономичны города, в которых меньше сумма капиталовложений и эксплуатационных расходов в пересчете на одного жителя. Неэкономичными оказываются как слишком маленькие города, так и города-гиганты. В городском строительстве проявляется общий для всех областей экономики принцип, в соответствии с которым крупная хозяйственная единица эффективнее малой. В маленьких городках с числом жителей до 20 тысяч приходится создавать мелкие, малопроизводительные коммунальные и бытовые предприятия. С ростом городов, они становятся экономичнее. <.> С дальнейшим ростом численности населения положение ухудшается, <.> невозможно

обеспечить нормальное функционирование города без крупного инженерно-технического строительства и таких видов транспорта, которые ранее не требовались» .

Авторы статьи считают, что им удалось найти ответ на оптимизационную задачу: «Взвешивая все "за" и "против", во многих странах, в том числе и в СССР, градостроители и экономисты пришли к выводу, что в настоящее время следует ограничить рост городов с миллионным населением, стимулируя развитие городов средней величины (курсив наш. - А. М.)» .

Видим, что оптимальным признается город средней величины, с численностью населения от 50 тыс. до 100 тыс. жителей. С этим выводом не согласен В. И. Переведенцев, который видит решение вопроса опять-таки в сфере экономики, но более глубоко. Он показывает нелинейный характер зависимостей экономической эффективности от величины города: «Город - это не только дома, где живут люди, но и заводы, где они работают. Оказывает ли размер города влияние на производительность труда? Да, оказывает. Большой город выгоден с точки зрения производства. Это выгоды совместного использования

энергетики, транспорта, водопроводного и канализационного хозяйств. Это обеспеченность квалифицированной рабочей силой... Территориальная концентрация промышленности повышает производительность труда. Поэтому большой город сам создает предпосылки для дальнейшей концентрации производства» . Далее автор отмечает, что «содержание» человека в очень большом городе обходится дороже, чем в среднем, но отдача от человека в таком городе, по его мнению, больше. Он указывает: «Принятое сейчас понимание оптимальных размеров города, на мой взгляд, неверно принципиально, методологически. Если иметь в виду не только потребление, но и производство, то оптимальным будет не тот город, в котором содержание человека дешевле, а тот, в котором разница между тем, что дает человек, и тем, что тратится на него, будет наибольшая» [Там же]. Получается модель «затраты - издержки» применительно к жителю данного города, которая показывает, что рост экономической эффективности может быть весьма длительным по мере роста размеров города, так как за счет кооперационного эффекта производительность труда может расти в широких пределах. Иными словами, оптимальным размером города может быть сколь угодно большой, если сохранится тенденция к росту экономической отдачи от каждого индивидуума.

При этом автор создает концепцию оптимальности размера города. С его точки зрения, оптимальность величины города вообще определяется по критерию соответствия величины города его предварительно запланированным значениям. «... Большинство неудобств большого города связано не с самой его величиной, а с градостроительными ошибками. Это ошибки прогноза роста города, несоответствие "оборудования" города его величине, чисто планировочные ошибки и, наконец, узко экономический подход к сфере обслуживания. Нередко строительство планируется на полмиллиона жителей, а вырастает город до миллиона. При этом все коммуникации, все коммунальное хозяйство, структура города и его планировка сохраняются в основном такими, как было намечено в начальном проекте» . По сути, на этом утверждении дискуссия об оптимальном размере города закрывается - оптимальным признается город, чье развитие соответствует его собственному генеральному плану.

Надо сказать, что по этому критерию найти оптимальные города весьма непросто, потому что, как показывают многочисленные исследования, ключевые положения генеральных планов практически никогда не выполнялись. Получается, что российские города хронически находятся в «неоптимизированном» состоянии.

В качестве завершения этой дискуссии стоит привести симптоматичную жалобу самого В. И. Пере-веденцева о том, что города в своем развитии уходят от состояния оптимальности, а не приходят к нему: «... Наиболее высокие темпы прироста населения имели города, в которых в 1959 г. было от 400 до 600 тысяч человек - свыше 35 процентов. По господствующим в нашем градостроительстве воззрениям, оптимальными считаются города с населением 50-200 тысяч человек, допустимыми - до 400 тысяч. Значит, быстрее всего росли города, вышедшие за пределы "допустимых". "Оптимальные" города росли тоже быстро, становясь неоптимальными (курсив наш. - А. М.)» .

С нашей точки зрения, данная дискуссия весьма плодотворна в научном плане, хотя практические результаты ее оказались отрицательными, так как оптимальный размер города так и не был найден. Тем не менее можно вычленить ее теоретический результат:

1 Концепция оптимизации города по одному ключевому параметру - величине населения - не получила должного теоретического и практического подтверждения. Не удалось четко сформулировать и обосновать такую величину. Не создано методики, позволяющей эффективно направлять развитие городов к оптимальным величинам.

2 Вопрос о том, существует ли такая оптимальная величина в принципе, остается открытым и до сих пор неразрешенным. Для его разрешения требуются новые методологические подходы, которые формируются в рамках проводимого исследования относительно оптимизации системы расселения Уральского федерального округа.

3 Возникло новое понимание понятия оптимальной величины города, своего рода не абсолютная, а относительная оптимальная величина, которая связана не с абсолютными, а относительными показателями. Причем наиболее четким таким показателем предлагается считать соответствие размеров города его параметрам, заданным в генеральном плане.

4 Авторы концепции оптимизации города просто подошли к своему вопросу на уровне, не адекватном проблеме. Нам представляется наиболее вероятным путем ее решения оптимизация не отдельного города, а именно системы расселения - региональной и национальной. Это связано с тем, что любой город существует только как элемент системы более высокого уровня, а именно системы расселения, и оптимизировать его в изоляции от этой системы представляется задачей мало выполнимой. Реальным масштабом, в котором возможна постановка и решение задачи оптимизации, является масштаб системы расселения. Определение размеров и уровня этой системы представляет собой дополнительную теоретическую задачу.

Виды оптимизационных задач в градостроительстве

Стало возможным выделить несколько ключевых критериев, по которым необходимо оценить задачу оптимизации расселения. Совокупность этих критериев является своего рода матрицей, которая должна раскрыть суть задачи оптимизации систем расселения.

1 По наличию или отсутствию предела роста оптимизируемого ресурса. При некоторых задачах оптимизации возможен теоретически ничем не ограниченный рост того показателя, который необходимо оптимизировать. Или, наоборот, существует некий финальный уровень, после которого рост показателя становится невозможным. В нашем случае мы предварительно считаем, что задача оптимизации расселения относится к первому варианту, так как нарастание показателя оптимизации связано с численностью населения, а данный показатель теоретически может нарастать неограниченно.

2 По наличию одного оптимума или нескольких оптимумов (оптимального множества). В зависимости от типа задачи у нее может быть один оптимум или некое множество оптимумов. В нашем случае можно предварительно описать задачу как имеющую несколько оптимумов в связи с тем, что возможно несколько вариантов оптимизации распределения на ограниченной плоской поверхности.

3 По выполнению критерия Парето (повышение параметра оптимизации у одних элементов не идет за счет снижения его у других элементов). В данной ситуации нужно ответить на вопрос - можно ли повышать уровень опти-

мизации одних элементов системы расселения, никогда не снижая его у других. Практика градостроительства показывает, что развитие крупной системы расселения с выполнением критерия Парето представляется невозможным. Развитие элементов системы расселения происходит, в том числе, и за счет перетока населения по иерархии расселения (как правило, с нижних на верхние уровни).

4 По какому количеству критериев должна проводиться оптимизация - одному или нескольким. Должна ли оптимизация быть многокритериальной или монокритериальной - вот наиболее крупная теоретическая проблема. Для ее решения необходимо привлечь уже наработанный методологический аппарат: в первую очередь необходимо указать, что на макроуровне жизнедеятельность общества формируется в результате взаимодействия трех его основных подсистем. По очередности своего возникновения их можно перечислить в таком порядке:

1) Природно-экологическая подсистема.

2) Социально-демографическая подсистема.

3) Экономическая подсистема.

В ходе исторического развития эти подсистемы последовательно порождали друг друга. Природно-экологическая подсистема как изначально существовавшая неизмеримо более длительное время, чем сам человек, породила его в ходе своего эволюционного развития. Основным направлением деятельности человека как разумного существа стало стремление обеспечить себе выживание и развитие за счет максимально эффективного использования природных ресурсов с одновременным стремлением максимально снизить свою зависимость от природных катаклизмов. В силу этого стремления создаваемая человеком социально-демографическая подсистема приобрела значительную автономию по отношению к природно-эколо-гической подсистеме. Между ними начали формироваться прямые и обратные связи и развиваться противоречия. Для их преодоления человеком создана экономическая подсистема, которая позволяет человеку резко увеличить объем производимых и потребляемых благ и тем самым закрепляет его отделение от природно-экологической подсистемы. Необходимо отметить, что субъектом в этой системе, безусловно, является социально-де-

мографическая подсистема, которая представляет собой совокупность человеческих индивидов, объединенных в различные сообщества по этническому, расовому, религиозному и иным признакам. На протяжении своей истории человечество живет и развивается в этом треугольнике сил: природа - социум - экономика.

Как видно, имеются три критерия, по которым можно оптимизировать систему расселения, в зависимости от того, какой приоритет развития выберет общество. При этом в рамках проведенного ранее исследования было выдвинуто следующее утверждение: территориальная система расселения, по нашему мнению, является элементом, который скрепляет воедино три подсистемы развития человеческого общества. Это происходит по нескольким причинам.

Во-первых, потому, что человечество в целом и любое человеческое сообщество, в частности, возникает и развивается на эволюционно сформировавшейся территории (в первую очередь сухопутной), которая представляет собой, прежде всего, биосферное пространство - зону, пригодную для существования биологических видов. Тем самым создание любых человеческих поселений всегда происходит, прежде всего, за счет отторжения и использования территории, принадлежащей биосфере. Природно-экологическая подсистема выполняет также очень важную функцию ограничителя развития остальных подсистем и задает специфику их развития в тех или иных условиях.

Во-вторых, развитие территориальной системы расселения является прямым отражением деятельности социально-демографической подсистемы. В территориальной системе расселения в концентрированной форме отражаются конкретные особенности социума, его история и настоящее, достигнутый им уровень развития и демографическая структура. Особенности эти проявляются пространственно через такие показатели, как численность и плотность населения, соотношение и распределение сельского и городского населения, направление и интенсивность миграционных потоков.

В-третьих, экономическая подсистема, являясь производной от социально-демографической подсистемы, является прямым ее пространственным продолжением, выполняющим в пространственном отношении несколько основных функций. Это обеспечение необходимых произ-

водственных процессов, организация транспортной связи между поселениями, добыча необходимых природных ресурсов. Экономическая подсистема, как и породившая ее социально-демографическая подсистема, может существовать и развиваться только в рамках при-родно-экологической подсистемы. Ее развитие в еще большей степени сокращает пространство природ-но-экологической системы, причем как непосредственно своими материальными размещенными в пространстве объектами, так и последствиями своей деятельности. Территориальная система расселения является связующим элементом всех подсистем человеческого общества, и в этом качестве является их синтезом. Вне и без территориальной системы расселения эти подсистемы существовать просто не могут.

Таким образом, мы имеем дело с неоднозначной ситуацией. С одной стороны, существуют три критерия оптимизации расселения: экологический, социальный и экономический. При этом в исследовании вводится в качестве ключевого совершено новый критерий оптимальности - геополитический. Дано первичное понятие этого критерия оптимизации, его содержание раскрыто следующим образом: наиболее адекватный уровень рассмотрения развития территориальных систем расселения - это национальный уровень. И реальной единицей территориальной системы расселения является национальная система расселения. Именно государственные границы являются ясными и обоснованными границами системы расселения.

В этой связи ставится вопрос: какую роль играет национальная система расселения в функционировании именно государства, а не вообще некоего абстрактного человеческого сообщества. По нашему мнению основной целью существования и функционирования национальной территориальной системы расселения является обеспечение максимально эффективного и продолжительного контроля над национальной территорией существующего государства и населяющей его нации. Территориальная система расселения является своего рода «структурой господства», обеспечивающей максимально эффективное освоение территории и имеющихся на ней ресурсов, обеспечение максимально эффективного

развития данного конкретного национального общества как в целом, так и его отдельных членов. И кроме этого - обеспечение наибольшей устойчивости нации от возможных неблагоприятных внешних воздействий. Соответствие или несоответствие этому главному критерию эффективного пространственного контроля является ключевым в оценке качества территориальной системы расселения.

Заключение

Таким образом, мы теоретически имеем целых четыре варианта ответа на поставленный вопрос о том, каков должен быть характер оптимизации в градостроительстве:

1 Оптимизация возможна по любому из трех отдельных параметров: экологическому, социальному или экономическому, что собственно и пытались сделать в советский период в рамках системы районной планировки, когда предполагалось возможным достичь оптимизации системы расселения по экономическому параметру, в его социалистическом понимании.

2 Оптимизация возможна (хотя бы теоретически) по всем трем отдельным параметрам одновременно, сгладив противоречия, которые существуют между ними. По своей сути, такая оптимизация близка к концепции устойчивого развития, которая базируется на стремлении к уравновешиванию социально-экономических потребностей общества и экологических возможностей их обеспечения.

3 Оптимизация по геополитическому параметру, когда обеспечение максимально эффективного и продолжительного контроля над национальной территорией существующего государства и населяющей его нации становится во главу угла. Данный тип оптимизации соответствует методологии данного исследования и представляется наиболее перспективным.

4 Оптимизация сразу по всем четырем параметрам, когда достигается одновременная оптимизация экологического, социального, экономического и геополитического параметров. Можно назвать данный тип оптимизации супероптимизацией, когда оптимизируются одновременно все параметры. Достижение такого состояния представляется весьма сомнительным, но его необходимо иметь в виду

в качестве идеального конечного результата.

Список использованной литературы

1 Шупер В. А. Самоорганизация городского расселения/Рос. открытый ун-т. М., 1995.

2 Покшишевский В. В. Заселение Сибири. Историко-географиче-ские очерки. М., 1951.

3 Бразовская Н. В. Методы оптимизации: учеб. пособие / Алтайский гос. техн. ун-т им. И. И. Ползунова [Центр дистанц. обучения]. Барнаул, 2000.

4 Большая Советская Энциклопедия. 3-е изд. М., 1975. Т. 19.

5 Райзберг Б. А., Лозовский Л. Ш., Стародубцева Е. Б. Современный экономический словарь. 2-е изд., испр. М., 1999.

6 Экономика: толковый словарь. М., 2000.

7 Переведенцев В. И. Методы изучения миграции населения, М., 1975.

8 Дубровский П. Н. Максимальные размеры города // Наука и техника. 1970. № 6.

9 Мазаев А. Г. Национальная территориальная система расселения как фактор контроля: геополитический подход // Академический вестник УралНИИпроект РААСН. 2008. № 1. С. 32-37.

10 Мазаев А. Г. Формирование и развитие системы расселения Урала (XVII-XIX вв.): этапы и геополитические особенности // Академический вестник УралНИИпроект РААСН. 2014. № 1. С. 10.

11 Мазаев А. Г. Анализ развития структуры системы расселения Урала (конец XIV - XX век) методом скользящих средних // Академический вестник УралНИИпроект РААСН. 2014. № 3. С. 34.



Декларация по УСН