Изготовление изделий из полимерных материалов. Детали из полимеров

Производство изделий из полимерных материалов является сложной и ответственной задачей, так как именно из полимеров сегодня изготовляется половина предметов быта, техники, косметики и мебели.

Технологии производства изделий из полимерных материалов

При производстве изделий из полимерных материалов могут быть использованы следующие технологии:

  • Вальцево-каландровая технология.

  • Трехкомпонентная технология.

  • Экструзия термопластов.

  • Литье мелких, средних и крупных деталей из полимеров.

  • Производство полиэтиленовой пленки.

  • Формирование полистирола.

  • Изготовление пенополистирольных плит.

  • Выдувное формование.

  • Формование изделий из ППУ.

Наиболее распространенными методами являются метод выдува и метод термоформировки. В первом случае в качестве сырья используется полипропилен и полиэтилен.

Полиэтилен обладает некоторыми свойствами, в частности, быстрой усадкой и устойчивостью к температурам, что делает его самым распространенным материалом для изготовления деталей различного рода. Обычно такой метод используется для создания объемных изделий.

Метод термоформировки используется при создании флакончиков, посуды. В данном случае процесс содержит 3 стадии. Сначала определяется доза пластмассы, она отправляется в полузакрытую форму, затем ее плавят.

Пластмассу подводят под пресс, форму закрывают. Далее форму открывают, изделие попадает в формирующую станцию. Для сохранения полученной формы станция охлаждается и изделие затвердевает.

На конечном этапе несущий элемент раскрывается, изделие освобождается и вбрасывается в специальную емкость.

В современном мире производство полимерных пластмасс ведется при помощи новейшего оборудования, которое позволяет получить высококачественные, прочные и долговечные изделия.

Благодаря наличию большого выбора оборудования ассортимент продукции и ее характеристики также улучшились.

Все новинки в сфере оборудования для производства изделий из полимерных материалов будут представлены на выставке, которая пройдет в конце октября в ЦВК «Экспоцентр». Выставка будет посвящена химической технике, науке и технологиям, на ней можно будет ознакомиться с продукцией ведущих мировых брендов.

Автоматизированное оборудование для производства полимеров

Использование автоматизированного оборудования имеет множество преимуществ, так как за счет применения в технологии особых роботов, субъективный и человеческий фактор полностью исчезает.

Автоматизированный процесс литья или экструзии позволяет получить более качественные результаты производства, расширить ассортимент товаров, а также снизить трудозатраты и затраты материалов на производство.

Оборудование применяется для производства самых разных деталей по форме и размерам. Полимерные изделия могут быть как большими, так и маленькими, иметь разный состав.

Производственный комплекс оборудования, которое подойдет для изготовления различных деталей, содержит в себе обычно такие составляющие:

  • Термопластавтоматы. Такое оборудование может иметь разные характеристики, усилие прибора колеблется от 50 до 2700 тонн, то есть прибор подойдет для изготовления любых деталей.

  • Выдувные формовочные машины. Усилие для нормальной работы – 60 тонн.

  • Автоматизированные роботы разных размеров. Предназначением роботов может служить подача сырья, его погрузка и обработка. Все процессы осуществляются автоматически.

  • Комплекс приборов для производства изделий из пенополистирола.

  • Разнообразные машины для формования.

  • Тиснильный каландр.

  • Смеситель, работающий на несколько стадий. Как правило, их две.

При производстве изделий из полимеров должно быть использовано качественное сырье.

От его характеристик зависит прочность и надежность будущего изделия. Обычно для выпуска современных продуктов из полимеров используются такие материалы:

  • Полиамиды натурального происхождения, в которых содержится тальк и стекловолокно.

  • Полипропилены, а также компаунды, отличающиеся устойчивостью к морозам и ударам, а также любым механическим воздействиям.

  • Поликарбонаты.

  • Полиуретан.

  • Поливинилхлорид.

  • Натуральный АБС и компаунды с поликарбонатом.

Современные технологии производства изделий из полимерных материалов демонстрируются на выставке «Химия», проходящей ежегодно в ЦВК «Экспоцентр».

Рассмотрим общие характеристики полимерных изделий.

Пластмасса — материал, основным компонентом которого являются полимеры и их смеси, обладающий свойством перерабатываться в изделия в вязко-текучем или высоко-эластичном состоянии.

Полимер — группа материалов, основным компонентом которых являются высокомолекулярные соединения.

Сополимер — гомополимеры, видоизмененные за счет внедрения других нехарактерных групп или мономеров. (Различают блок-сополимер или привитые сополимеры).

Гомополимер — полимер состоящий из одинаковых мономеров. (Чистый полимер).

Мономер — это низкомолекулярные вещества, являющиеся основой полимеров.

Полимерную упаковку изготавливают из следующих видов

Целофан (ЦЛ) получают при химической переработке целлюлозы. Применяют в виде пленок и волокон. Достоинства: высокие гигиенические свойства, сравнительно низкая газопроницаемость, высокая проницаемость паров воды, устойчивость к жирам. Недостатки: низкая прочность во влажном состоянии, высокая намокаемость. Получают разнообразные пленки широкого применения, употребляют с учетом свойств присущих ЦЛ.

Эфиры целлюлозы, производные получают этерификацией целлюлозы. Получают: диацетаты, триацетаты, ацетобутираты, этролы и т. п Пленки на их основе хорошо воспринимают печать, следовательно декорируются.

Полиэтилен (ПЭ) впервые был получен путем полимеризации газа этилена. Считается самым объемным по производству и дешевым полимером.

Выпускают три марки ПЭ:

1) ПЭ высокого давления ПЭВД получают при давлении в 1500 атмосфер и температуре 200 °С. Отличается более низкой плотностью, разветвленной формой молекул, эластичностью, мягкостью, гигиеничностью. В основном, это пленки и волокна;

2) ПЭ низкого давления ПЭНД — при давлении в 6 атмосфер и обычной температуре, но в присутствии катализатора Циглера Натта. Отличается высокой плотностью, линейной формой молекул, твердостью, меньшей гигиеничностью по отношению к ПЭВД. Изготавливают ведра, канистры и другие жесткие изделия;

3) ПЭ среднего давления ПЭСД — при давлении 30-40 атмосфер.

В целом, ПЭ довольно морозостойкие, малотермостойкие, подвержены процессу старения, в следствие чего добавляют стабилизаторы в виде аминов. Широко применяется для производства жесткой тары и однослойных или комбинированных упаковочных пленок. ПЭВД чаще применяется для производства потребительской тары, ПЭНД — для производства транспортной тары (бочки, ящики, паллеты и др).

Полипропилен (ПП) начал выпускаться путем полимеризации газа пропилена с катализатором Циглера Натта (горючий, взрывоопасный). От ПЭ отличается большей прозрачностью, гладкостью, блестящей поверхностью, твердостью и жесткостью,

а также термостойкостью, но меньшей морозостойкостью, дает меньшую усадку при охлаждении готовых изделий, сильнее подвержен старению. Эти качества определяют обширную сферу применения ПП.

Выпускают ориентированный и двуосноориентированный полипропилен.

Поливинилхлорид (ПВХ) получают полимеризацией жидкости винилхлорида. Выпускают двух видов:

1) твердый винипласт — используется как конструкционный материал;

2) ПВХ-пластикат — когда в ПВХ смолу добавляют большое количество 50-60% пластификатора. Он нашел применение в производстве пленок.

Известны сополимеры ПВХ:

1) ПВХ и акрилонитрил — пищевые пленки для упаковки;

2) ПВХ и винилиденхлорид — пленки, получившие название сополимер хлористого винила, сарановые пленки — термоусадочные пленки для упаковки продуктов сложной формы;

3) ПВХ и винилацетат — получают мягкую смолу для производства пленок, лакокрасочных материалов, клеев, грампластинок и пр.

В целом ПВХ малотермостоек (до +70 °С). Его морозостойкость зависит от вида пластификатора, имеет большую химическую стойкость, хороший диэлектрик. Сфера применения полимера обусловлена его свойствами.

Полистирол (ПС) получают полимеризацией стирола. Классический ПС очень прозрачен, имеет высокое светопреломление, химическую стойкость, но хрупкий и мало термостойкий (до +80 °С) с высокими изоляционными свойствами. Для производства упаковки применяют ПС высокой молекулярной массы, который обладает высокими оптическими свойствами, прозрачностью, устойчивостью к воздействию воды, растворов кислот и щелочей, устойчивостью к некоторым органическим растворителям. Пленки из ПС прозрачные, но жесткие, поэтому чаще выпускают жесткую тару из ПС. ПС легко формуется, хорошо декорируется и сваривается.

Выпускают сополимеры ПС:

1) ударопрочный ПС и каучуки акрилонитрильные, бутадиеновый. Изготовляют сантехоборудование;

2) акрилбутадиенстирольный — твердый, ударопрочный, легко окрашивающийся материал для корпусов телевизоров, деталей бытовой аппаратуры.

Полистирол и его сополимеры выделяют стирол (ядовитое вещество), поэтому его содержание ограничивается. Выпускают марки «пищевого» и «непищевого» ПС, а также вспененный ПС или стиропор. Из-за его высоких морозостойких и термостойких свойств он нашел довольно широкое применение для выпуска пористых лотков для пищевых продуктов, требующих заморозки, а также стаканчиков под горячее (супы быстрого приготовления).

Полиэтилентерефталат (ПЭТФ) относится к классу полиэфиров, производится синтезом терефталевой кислоты и этиленгли-коля или смеси этиленгликоля и диэтиленгликоля. Он химически инертен, что дает возможность использовать упаковку из него для химической группы товаров. Пленки из ПЭТФ очень прочные, прозрачные, блестящие, выносят большие колебания температур, вследствие чего могут использоваться для продуктов, подвергаемых глубокой заморозке или стерилизации. Выпускают комбинированные пленки: лавсан, ПЭ, лавсан, сополимеры ПЭ, ПП и др. Они позволяют снизить температуру сваривания пленки, следовательно, используются в качестве упаковки широкой группы товаров. Еще одним достоинством ПЭТФ является низкая проницаемость к углекислому газу, вследствие чего бутылки из ПЭТФ широко применяют для фасовки и хранения газированных напитков.

Полиамиды (ПА) — полярные полимеры, характеризуются высокой механической прочностью, особенно в ориентированном состоянии, эластичностью, термо-, жиро- и химической стойкостью, низкой газопроницаемостью, однако высокая гигроскопичность и паропроницаемость являются их недостатками. ПА нашли широкое применение в производстве пленок для упаковки пищевых продуктов, упаковки для масел животного и растительного происхождения, оболочек колбас и сосисок.

Вследствие высоких барьерных свойств ПА, их могут использовать как промежуточный слой в многослойных пленках.

Поликарбонат (ПК) — по химическому строению является производным угольной кислоты, в которой атомы водорода замещены на органические радикалы. Пленки из него обладают высокими прочностными показателями, низкой паро- и газопроницаемостью, большим интервалом колебания температур (от -100 °С до +200 °С), устойчивы к изгибам. Эти свойства обусловливают сферу применения упаковок из ПК. Они широко применяются для упаковок продуктов, которые стерилизуются, замораживаются, а также нагреваются в микроволновой печи.

Полиуретаны (ПУ) получаются синтезом диизоцианитов (жесткий блок) и полиэфиров (мягкий блок). Могут бьггь в высокоэластичном (эластомеры) или твердом стеклообразном состоянии. Вспененные ПУ (поролон) используют в качестве амортизаторов, прокладочных, вспомогательных материалов для транспортной тары.

Перечисленные виды полимеров являются основными при производстве полимерной упаковки.

Полимерные материалы и изделия

Полимерныминазывают материалы, в состав которых в качестве основного компонента входят высокомолекулярные органические вяжущие вещества (полимеры) .

Благодаря способности в процессе переработки принимать требуемую форму и сохранять ее после снятия действующих усилий полимерные материалы называют также пластическими массами (пластмассами или пластиками). Пластмассы, применяемые в строительстве, представляют из себясложные композиции, состоящие из полимерного связующего, наполнителœей, стабилизаторов, пластификаторов, отвердителœей и других компонентов.

Полимеры (от греческого ʼʼполиʼʼ – много, ʼʼмеросʼʼ – часть, доля)- ϶ᴛᴏ высокомолекулярные вещества, молекулы которых состоят из большого количества звеньев одинаковой структуры, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул.

По составу основной цепи макромолекул полимеры разделяют на три группы: а) карбоцепные полимеры – макромолекулярные цепи полимера состоят лишь из атомов углерода; б) гетероцепные полимеры, в состав цепей которых входят кроме атомов углерода еще атомы кислорода или серы, азота͵ фосфора и т.п.; в) элементоорганические полимеры, в основные цепи которых могут входить атомы кремния, алюминия, титана и других элементов, имеющие кремнийкислородные, силоксановые связи.

Полимеры могут иметь линœейное, разветвленное или сетчатое (трехмерное) строение , что определяет физико-механические и химические свойства полимеров. Макромолекулы полимеров линœейного строения вытянуты в виде цепей, связанных между собой слабыми силами межмолекулярного взаимодействия (рис. 9а). Для разветвленных полимеров характерно наличие мономерных звеньев, ответвленных от основной цепи макромолекулы (рис. 9б). Сетчатые (трехмерные) структуры полимеров характеризуются тем, что прочные химические связи между цепями (ʼʼсшивкаʼʼ отдельных линœейных или разветвленных цепей полимера) приводят к образованию единого пространственного каркаса (рис. 9в).

Полимеры с макромолекулами линœейного или разветвленного строения плавятся при нагревании с изменением свойств и растворяются в соответствующем органическом растворителœе, а при охлаждении вновь затвердевают. Такие полимеры, способные многократно размягчаться при нагревании и затвердевать при охлаждении, называются термопластичными (термопласты). Напротив, полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются в растворителях, а лишь набухают. Такие полимеры не могут обратимо размягчаться при повторном нагревании и носят название термореактивных полимеров (реактопласты).

Высокомолекуляр­ные соединœения характеризуются не только структурой молекул, но и моле­кулярной массой . Полимеры обычно имеют молекулярную массу свыше 5000 единиц; высокомолекуляр­ные соединœения с меньшей молекулярной массой называют олигомерами. По мере увеличения молекулярной массы полимера растворимость его в органических раствори­телях снижается, несколько снижается эластичность, однако прочность зна­чительно возрастает.

Свойства многих полимеров неразрывно связаны с величиной молеку­лярной массы и межмолекулярных сил, которые слабее обычных валентных связей. При увеличении молекулярной массы полимера суммарный эффект межмолекулярных сил становится ощутимым, поскольку их источником яв­ляется каждый атом. В этой связи возрастающая роль межмолекулярных сил при повышении молекулярной массы качественно отличает полимеры от низкомолекулярных соединœений.

в
а
б

Рис. 9. Схематическое строение макромолекул полимеров с линœейной (а), разветвленной (б), сетчатой (в) структурой

Для производства полимеров основным сырьем служат мономеры, ᴛ.ᴇ. вещества, способные соединяться друг с другом, образуя полимеры. Моно­меры получают путем переработки природных и нефтяных газов, каменного угля, аммиака, углекислоты и других подобных веществ. Учитывая зависимость отметода получения полимеры подразделяются на полимеризационные, поликонденсационные и модифицированные природные.

Полимеризационные полимеры получают в процессе полимеризации мономеров вследствие раскрытия кратных связей (или раскрытия цикла) и соединœения элементарных звеньев мономера в длинные цепи. Поскольку при реакции полимеризации атомы и их группировки не отщепляются, побочные продукты не образуются, химический состав мономера и полимера одинаков.

Поликонденсационные полимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. При этой реакции наряду с основным продуктом поликонденсации образуются побочные соединœения (вода, спирты и другие), а химический состав полимера отлича­ется от химического состава исходных продуктов поликонденсации.

Модифицированные полимеры получают из природных высокомолеку­лярных веществ (целлюлоза, казеин) путем их химической модифи­кации для изменения их первоначальных свойств в заданном направлении. Из ацетилцеллюлозы вырабатывают прочные и водостойкие лаки для окрашивания древесины и металла.

К полимеризационным полимерам (термопластам) относятся полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, полиметилметакрилат (органическое стекло), поливинилацетат и др.
Размещено на реф.рф
Полиэтилен [-СН 2 -СН 2 -] п – продукт полимеризации этилена. Выпускается в виде гранул размером 3 – 4 мм или белого порошка. Технические свойства полиэтилена зависят от молекулярной мас­сы, разветвленности цепи и степени кристалличности. Полиэтилен один из самых легких полимеров – его плотность меньше плотности воды (0,92-0,97 г/см 3). Характеризуется высоким пределом прочности при растяжении (12-32 МПа), незначительным водопоглощением (0,03-0,04 %), высокой химической стойкостью и морозостойкостью. Сле­дует учитывать особенности полиэтилена, свойственные всœем полимерам с линœей­ной структурой: сравнительно низкий модуль упругости (150-800 МПа), малую твердость, ограниченную теплостойкость (108-130 °С), большой коэффициент теплового расширения. Полиэтилен применяется для производства труб, пленок, теплоизоляционных газонаполненных материалов, тары и сантехнического оборудования.

Поливинилхлорид (ПВХ) является продуктом полимеризации винилхлорида (СH 2 =CHCl). Высокие механические свойства поливинилхлорида определили главные области его применения в строительстве. Из поливинилхлорида изготовляют гидро­изоляционные и отделочные материалы, плинтуса, поручни, оконные и дверные переплеты, линолеум и др.
Размещено на реф.рф
Ценным свой­ством поливинилхлорида является стойкость к действию кислот, ще­лочей, спирта͵ бензина, смазочных масел. По этой причине его широко при­меняют для производства труб, используемых в системах водоснаб­жения, канализации и технологических трубопроводов.

Недостатками поливинилхлорида является резкое понижение прочности при повышении температуры, а также ползучесть при дли­тельном действии нагрузки.

Полистирол [-СН 2 -СНС 6 Н 5 -] п – твердый продукт полимеризации стирола (винилбензола). При обычной температуре полистирол представляет собой твердый прозрачный материал, похожий на стек­ло, пропускающий до 90 % видимой части спектра. Выпускают поли­стирол в виде гранул (6-10 мм), мелкого и крупнозернистого порошка, а также в виде бисера (при суспензионном методе производства) с влажностью до 0,2 %.

Полистирол обладает высокими механическими свойствами (предел прочности на сжатие 80-110 МПа), водостоек, хорошо сопротивляется действию концентрированных кислот (кроме азотной и ледяной ук­сусной кислот), противостоит растворам щелочей (с концентрацией до 40 %). К недостаткам полистирола, ограничивающим его применение, относятся: невысо­кая теплостойкость, хрупкость, проявляющаяся при ударной нагруз­ке.

Применяют для изготовления гидроизоляционных пленок, облицовочных плиток, теплоизоляционных материалов, водопроводных труб и др.

Среди поликонденсационных полимеров (реактопластов) наиболее значимыми являются фенолформальдегидные, карбамидные (мочевиноформальдегидные), эпоксидные, кремнийорганические полимеры, полиуретаны и др.
Размещено на реф.рф
Фенолформальдегидные полимеры получают путем поликонденсации фенола с формальдегидом. Эти полимеры хорошо совмещаются с на­полнителями - древесной стружкой, бумагой, тканью, стеклянным волокном, при этом получаются пластики более прочные и менее хрупкие, чем сами полимеры. По этой причине фенолформальдегидные по­лимеры широко применяют в качестве связующего при изготовлении древесностружечных плит, бумажнослоистых пластиков, стеклопла­стиков и разнообразных изделий из минœеральной ваты. Вместе с тем, они используются для производства клеев, водостойкой фанеры, спиртовых лаков.

Макромолекулы кремнийорганических полимеров состоят из чередующихся атомов кремния и кислорода, а углерод входит лишь в состав групп, обрамляющих главную цепь СН 3 . Наличие силоксановой связи придает свойства, присущие силикатным материалам (прочность, твердость, теплостойкость), а углеводородистых радикалов СН 3 – органическим поли­мерам (эластичность и др.).

Полимеры характеризуются следующими техническими свойствами : термическими (температурой размягчения и теплостойкостью, температурой стеклования и те­кучестью), механическими (прочностью, деформативностью и поверх­ностной твердостью), химическими (атмосферостойкостью и сопротивляемостью деструкции).

В целом, наряду с положительными свойствами полимеров – малой средней плотностью (около 1 г/см 3), низкой теплопроводностью, водо- и газонепроницаемостью, химической стойкостью, высоким коэффициентом конструктивного качества, практически неограниченной сырьевой базой и др.
Размещено на реф.рф
– они обладают и рядом недостатков. К ним относятся: низкая теплостойкость, невысокий модуль упругости, значительная ползучесть, склонность к старению, что в итоге определяет недостаточную долговечность. Вместе с тем, крайне важно учитывать горючесть и определœенную токсичность полимеров. Так, при получении многих полимерных материалов используются в качестве связующего фенолформальдегидные смолы, содержащие до 9 % свободного фенола, до 11 % свободного формальдегида и 1,5-2,0 % метанола. В процессе производства и эксплуатации изделий значительная часть этих высокотоксичных веществ выделяется в воздух. Пенополистирол при обычных условиях эксплуатации (и особенно при горении) выделяет высокотоксичный стирол. Пенополиуретановые теплоизоляционные материалы при горении образуют множество летучих высокотоксичных соединœений, включая синильную кислоту.

Наполнители в пластических массах, снижая расход полимера, удешевляют пластмассы. Вместе с тем, структурируя полимерное связующее, они улучшают ряд технических свойств пластмасс: прочность, твердость, термостойкость, сопротивляемость усадке и ползучести и др.

Наполнители исходя из химической природы разделяют на органические и неорганические; исходя из формы и структуры – порошкообразные и волокнистые. В производстве полимерных композиционных материалов широко применяются органические и неорганические порошкообразные наполнители (древесная мука, отход целлюлозного производства – лигнин, микрослюда, кварцевая мука, тальк и т.д.).

Волокнистыми наполнителями служат целлюлозное, асбестовое и стеклянное, а также синтетические (из капрона, нейлона, лавсана и др.) волокна.

Добавочные вещества. Введение пластификаторов (эфиры алифатических и ароматических кислот и алифатических спиртов, эфиры гликолей и эфиры фосфорной кислоты, эпоксидированные и хлорированные соединœения) позволяет улучшить условия переработки полимерных композиций, снизить их хрупкость. Добавки-стабилизаторы (антиоксиданты, термо- и светостабилизаторы) способствуют длительному сохранению свойств пластмасс в процессе их эксплуатации. Отвердители (сшивающие и вулканизующие агенты) обеспечивают процесс отверждения полимеров (формирование их пространственной структуры). Для получения окрашенных пластмасс используют пигменты . Стойкость пластмасс против возгорания повышают антипирены . Создание газонаполненных (ячеистых) пластмасс достигается с помощью порообразователœей .

Все многообразие пластмасс исходя из назначения их в строительстве сводится к группам: конструкционным, кровельным, гидроизоляционным и герметизирующим; тепло- и звукоизоляционным; отделочным (покрытия полов и стен, лаки, краски, клеи и т.п.) материалам, а также материалам для инженерных коммуникаций. Основными конструкционными материалами на базе полимеров являются полимербетоны. К конструкционно-отделочным материалам относятся стеклопластики, бумажно-слоистые, угольные и другие пластики; древесноволокнистые и древесностружечные плиты (которые могут являться также конструкционно-теплоизоляционными материалами).

Полимербетоны – композиционные материалы, изготовляемые преимущественно на базе термореактивных полимеров: поли­эфирных, эпоксидных, фенолоформальдегидных, фурановых и др.
Размещено на реф.рф
Заполнители выбираются исходя из вида агрессивной среды эксплуатации. Для кислых сред получают полимербетоны на кислотостойких за­полнителях – кварцевом песке и щебне из кварцита͵ базальта или гра­нита. Используют также бой кислотоупорного кирпича, кокс, антра­цит, графит. Наиболее высокие физико-механические свойства полимербетоны имеют на эпоксидных смолах. Для уменьшения расхода и стоимости эпоксидных смол их модифицируют каменноугольной смолой (до 35-50 %). Широкое распространение получили полимербетоны на фурановых полимерах, которые модифицируют эпоксидны­ми смолами для улучшения свойств композиций.

Расход связующего составляет 100-200 кг на 1 м 3 полимербетона при соотношении полимера к наполнителю 1:5-1:12 по массе. Технология при­готовления и уплотнения полимербетонов такая же, как и цементных. Термообработка при 40-80 °С значительно ускоряет процесс тверде­ния. Полимербетоны (полимеррастворы) хорошо склеиваются с це­ментным бетоном, в связи с этим их применяют для ремонта желœезобетон­ных конструкций. Для уменьшения хрупкости полимербетона применяют волок­нистые наполнители – асбест, стекловолокно и др.
Размещено на реф.рф
Полимербетоны отличаются от обычного цементного бетона не только химической стойкостью (особенно по отношению к кислотам), но и высокими показателями прочности , в особенности при растяжении (7-20 МПа) и изгибе (16-40 МПа). Прочность при сжатии достигает 60-120 МПа. Морозостойкость полимербетонов может иметь 200-300 и более циклов за­мораживания и оттаивания; теплостойкость 100-200 °С (до 300 °С). Но их стои­мость в несколько раз выше цементных бетонов.

Применяют полимербетоны для химически стойких конструкций, износостойких покрытий, там, где высокая стоимость полимербето­нов будет оправдана. Отрицательными свойствами полимербетонов яв­ляются их большая ползучесть и старение, усиливающееся при действии попеременного нагревания и охлаждения. Не­обходимо соблюдение специальных правил охраны труда при работе с полимерами и кислыми отвердителями, могущими вызвать ожоги. В частности необходимы хорошая вентиляция, обеспечение рабочих защитными очками, резиновыми рукавицами, спецодеждой.

Стеклопластики - ϶ᴛᴏ композиционные листовые материалы, из­готовляемые из стеклянных волокон или тканей, связанных по­лимером. Связующим веществом в стеклопластиках обычно служат феноло-формальдегидные, полиэфирные и эпоксидные полимеры. Выпускают три разновидности стеклопластиков: на базе ориен­тированных волокон, рубленых волокон и тканей или матов. Стеклопластики с ориентированными волокнами (типа СВАМ – стекловолокнистого анизотропного материала) обладают большой прочностью (при растяжении до 1000 МПа), легкостью (их плотность 1,8-2 г/см 3), что в сочетании с химической стойкостью делает их эф­фективным материалом для строительных конструкций, емкостей и труб. Стеклопластики с рубленым стеклянным волокном изготовляют в виде волокнистых или плоских листов на полиэфирном связующем, обладающим светопрозрачностью. Эти изделия применяют для уст­ройства кровель, ограждений балконов, лоджий и перегородок. Стеклопластики, изготовляемые на базе стеклянной ткани (стеклотекстолиты) , получают горячим прессованием полотнищ ткани, пропитанной термореактивным полимером, при высоком дав­лении и температуре. Стеклотекстолит идет для наружных слоев трехслойных стеновых панелœей. Этот же материал применяют для ус­тройства оболочек и других строительных конструкций. Стеклотекстолиты получают также прессованием пастообразной массы из полиэфирного полимера, стекловолокна, асбеста и порош­кообразного наполнителя. Из этого материала формуют оконные и дверные блоки, фурнитуру, санитарно-технические изделия.

Бумажно-слоистые пластики изготовляют из нескольких слоев специальной бумаги, пропитанных фенолоформальдегидным или карбамидным полимером. Пластик выпускают в виде листов длиной 1000-3000 мм, шириной 600-1600 мм, толщиной 1-5 мм. Бумажно-слоистые пластики разнообразны по цвету и рисунку, хорошо обраба­тываются – их можно пилить, сверлить. Пластик тол­щиной до 1,6 мм крепят битумно-каучуковыми и другими мастиками, эпоксидными и резорциноформальдегидными клеями. Более толстые листы пластика крепят механическим способом.

Полимерные материалы и изделия - понятие и виды. Классификация и особенности категории "Полимерные материалы и изделия" 2017, 2018.

Производство и переработка полимеров

Производство полимероа

Изделия из пластика давно стали неотъемлемой частью нашей повседневной жизни. Именно поэтому производство полимеров - это перспективная и стремительно развивающаяся отрасль промышленности. Полимеры - это вещества, состоящие из больших макромолекул, которые соединяются из элементарных звеньев, или мономеров. Благодаря своим свойствам, полимерные материалы обрели такую популярность на сегодняшнем рынке. Производство изделий из полимеров насчитывает множество различных направлений, так как эти изделия с успехом используются практически во всех сферах нашей жизни, начиная от автомобильных запчастей и заканчивая обычной пищевой плёнкой. А производство полимеров в России особенно актуально, ведь наша страна богата на природные ресурсы, тогда как основным сырьём, применяемым в производстве полимеров, является нефть, а вспомогательным - природный газ.

Технология производства полимеров

Полимеры, используемые в промышленности, можно разделить на три группы. Природные полимеры, такие как каучук, целюллоза или казеиновый клей, не получили широкого распространения и мало используются. Химически обработанные природные полимеры - переработанные - используются немного больше, но всё равно не играют в современной промышленности значительной роли. Наиболее распространены сегодня в промышленности синтетические полимеры, их получают, объединяя мономеры в макромолекулы. Технология производства полимеров из мономеров включает в себя два основных способа: поликонденсация и полимеризация. В первом случае между двумя молекулами мономера образуется связь при отрывании от них небольшой молекулы другого вещества, например, аммиака, воды или хлористого водорода. Во втором же случае в мономерах разрываются двойные связи, что приводит к образованию полимерной цепи с межмономерными связями.

Завод по производству полимеров комплекса предприятий ООО «Пластик» обладает огромным научным потенциалом и современным оборудованием. При этом, технологическая база постоянно обновляется, поэтому полимеры, произведённые нами, и изделия из них отличаются высшим качеством, а ассортимент стремительно растёт.

Переработка полимеров

Не менее важным и остро стоящим является вопрос экологичности изделий из полимеров. Срок разложения обычной пластиковой бутылки или пищевой плёнки превышает стони лет. Именно поэтому так важна переработка полимеров. Производство изделий из пластикового вторичного сырья - один из вариантов решения данной проблемы, однако этот процесс сопряжён со значительным количеством трудностей. Главной загвоздкой становится то, что изделия, при производстве которых используется переработанный полимерный материал, получаются гораздо более низкого качества. Полимерные отходы значительно уступают исходным полимерам в их механических свойствах. Более того, по сравнению с исходными полимерами, изменяются параметры технологического процесса получения полимерной массы для производства изделий из вторичного сырья, потому что такое сырьё достаточно сильно отличается от исходного: изменяется вязкость, прочность, материал может содержать неполимерные включения. Однако, не смотря на все трудности, тенденция к производству из вторичных полимеров новых изделий постепенно развивается. Например, всё чаще каскадную переработку применяют к производству пластиковых бутылок, так как это не сказывается на их качестве.

Ещё одним вариантом решения проблемы экологичности является производство биоразлагаемых полимеров. На сегодня наибольшей популярностью среди таких пластмасс пользуется полилактид (PLA), так как он изготавливается из органических материалов. Также ведутся исследования в области придания способности к биоразложению другим широко распространённым в промышленности видам пластика, таким как полистирол, поливинилхлорид, полипропилен и другие. Одним из вариантов реализации этой задачи является добавление в полимерную массу органического концентрата, что не особенно сказывается на качестве получаемого изделия, но значительно сокращает срок его разложения.

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.



Закрытие ИП