Квантовая криптография простыми словами (гостевой пост Романа Душкина). Квантовая криптография

Вы читаете гостевой пост Романа Душкина (Blogspot , ЖЖ , Twitter). Также вас могут заинтересовать другие заметки за авторством Романа:

  • Алгоритм Шора, его реализация на языке Haskell и результаты некоторых опытов ;
  • Факторизация числа при помощи квантового алгоритма Гровера ;
  • Квантовый зоопарк: карта отношений квантовых алгоритмов ;
  • … и далее по ссылкам;

Если вы интересуетесь криптографией, попробуйте еще обратить внимание на заметки Эллиптическая криптография на практике и Памятка по созданию безопасного канала связи моего авторства.

Вся история криптографии основывается на постоянном противоборстве криптографов м криптоаналитиков. Первые придумывают методы сокрытия информации, а вторые тут же находят методы взлома. Тем не менее, теоретически показано, что победа в такой гонке вооружений всегда останется на стороне криптографов, поскольку имеется абсолютно невзламываемый шифр — одноразовый блокнот. Так же есть некоторые очень сложно взламываемые шифры, для получения скрытой информации без пароля из которых у криптоаналитика практически нет шансов. К таким шифрам относятся перестановочные шифры посредством решеток Кардано, шифрование при помощи редких текстов в виде ключей и некоторые другие.

Все перечисленные методы достаточно просты для применения, в том числе и одноразовый блокнот. Но все они обладают существенным недостатком, который называется проблемой распределения ключей . Да, одноразовый блокнот невозможно взломать. Но чтобы использовать его, необходимо иметь очень мощную инфраструктуру по распространению этих самых одноразовых блокнотов среди всех своих адресатов, с которыми ведется секретная переписка. То же самое касается и других подобных методов шифрования. То есть перед тем, как начать обмен шифрованной информацией по открытым каналам, необходимо по закрытому каналу передать ключ. Даже если ключом обмениваться при личной встрече, у криптоаналитика всегда имеются возможности по альтернативному способу добывания ключений (от ректального криптоанализа не защищен практически никто).

Обмен ключами при личной встрече — это очень неудобная штука, которая серьезно ограничивает использование абсолютно невзламываемых шифров. Даже государственные аппараты очень небедных государств позволяют себе это только для очень немногих серьезных людей, занимающих сверхответственные должности.

Однако, в конце концов, был разработан протокол обмена ключами, который позволил сохранять секрет при передаче ключа по открытому каналу (протокол Диффи-Хеллмана). Это был прорыв в классической криптографии, и по сей день этот протокол с модификациями, защищающими от атак класса MITM , используется для симметричного шифрования. Сам протокол основан на гипотезе о том, что обратная задача для вычисления дискретного логарифма является очень сложной. Другими словами, этот стойкость этого протокола зиждется только на том, что на сегодняшний день не существует вычислительных мощностей или эффективных алгоритмов для дискретного логарифмирования.

Проблемы начнутся тогда, когда будет реализован квантовый компьютер достаточной мощности. Дело в том, что Питер Шор разработал квантовый алгоритм , который решает не только задачу факторизации, но и задачу поиска дискретного логарифма. Для этого квантовая схема незначительно изменяется, а принцип работы остается тем же. Так что хитроумный изобретатель одним ударом убил двух криптографических зайцев — асимметричную криптографию RSA и симметричную криптографию Диффи-Хеллмана. Все пойдет прахом, как только на свет появится он, универсальный квантовый компьютер (не факт, что его еще нет; просто мы можем об этом даже и не знать).

Но модель квантовых вычислений как повергла криптографов в шок и трепет, так и дала им новую надежду. Именно квантовая криптография позволила придумать новый метод распределения ключей, в котором отсутствуют многие проблемы схемы Диффи-Хеллмана (например, простая атака MITM абсолютно не поможет в силу чисто физических ограничений квантовой механики). Более того, квантовая криптография устойчива и к квантовым алгоритмам поиска ключей, так как основана на совершенно ином аспекте квантовой механики. Так что сейчас мы изучим квантовый метод секретного обмена ключами по открытому каналу.

Представьте себе, что прежде чем отправить электронное письмо приятелю, вы должны достать карту, измерить расстояние до города, где он живет, и если окажется, что это расстояние больше, чем 100 км, вы со вздохом берете карандаш и бумагу и беретесь за обычное «бумажное» письмо — электронная почта дальше, чем на 100 км, не ходит.

Абсурдная ситуация? Но именно так сейчас обстоят дела с передачей квантовых данных по оптоволоконным линиям связи — рекордная дальность передачи здесь до сих пор лишь немного превышает сотню километров, а устойчивая работа на нормальных, не рекордных линиях вообще ограничивается 40 км. Это означает, например, что линию квантовой коммуникации можно организовать внутри Москвы, а вот о передаче данных в Петербург пока нечего и думать. Каковы же перспективы квантовой криптографии в области дальней связи?

Вскрытие на слух

Первый успешный эксперимент по квантовой передаче данных был проведен Беннетом и Жилем Брассаром в конце октября 1989 года, когда защищенная квантовая связь была установлена на расстоянии 32,5 см. Установка меняла поляризацию фотонов, но при этом блок питания шумел по‑разному в зависимости от того, какой была поляризация. Таким образом, окружающие могли свободно различать нули и единицы на слух. Как пишет Брассар, «наш прототип был защищен от любого подслушивающего, который оказался бы глухим». В октябре 2007 года методы квантовой криптографии были впервые применены в широкомасштабном проекте. Система квантовой защищенной связи, разработанная швейцарской компанией Id Quantique, использовалась для передачи данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева. Таким образом, голоса швейцарцев были защищены как никакая другая информация.

Банкноты и блокноты

История квантовой криптографии началась еще в конце 1960-х годов, когда студент Колумбийского университета Стивен Визнер изложил своему бывшему сокурснику Чарльзу Беннету идею квантовых банкнот, которые в принципе нельзя подделать, поскольку это исключают законы природы. Суть идеи состояла в том, чтобы поместить на каждую банкноту несколько квантовых объектов. Это могут быть, например, ловушки с фотонами, каждый из которых поляризован под определенным углом в одном из двух базисов — либо под углом 0 и 90, либо 45 и 135 градусов. Серийный номер напечатан на банкноте, но соответствующая номеру комбинация поляризаций и базисов (фильтров, с помощью которых фотону придается или измеряется его поляризация) при этом известна только банку. Чтобы подделать такую банкноту, фальшивомонетчик должен измерить поляризацию каждого фотона, но он не знает, в каком базисе поляризован каждый из них. Если он ошибется с базисом, то поляризация фотона изменится, и поддельная банкнота будет с неверной поляризацией. Квантовые деньги до сих пор не появились, поскольку пока не удалось создать достаточно надежных ловушек для фотонов. Однако тогда же Визнер предложил использовать тот же самый принцип для защиты информации, и эта технология сейчас уже близка к реализации.


Первый протокол квантового распределения ключей был создан Жилем Брассаром и Чарльзом Беннетом в 1984 году и получил название BB84. Для передачи данных используются фотоны, поляризованные в четырех разных направлениях, в двух базисах — под углом 0 и 90 градусов (обозначается знаком +) либо 45 и 135 градусов (x). Отправитель сообщения A (традиционно его называют «Алиса») поляризует каждый фотон в случайно выбранном базисе, а затем отправляет его получателю B — «Бобу». Боб измеряет каждый фотон, тоже в случайно выбранном базисе. После этого Алиса по открытому каналу сообщает Бобу последовательность своих базисов, и Боб отбрасывает неправильные (не совпавшие) базисы и сообщает Алисе, какие данные «не прошли». При этом сами значения, полученные в результате измерений, они по открытому каналу не обсуждают. Если шпион (его обычно называют «Евой», от английского eavesdropping — подслушивание) захочет перехватить секретный ключ, он должен будет измерять поляризацию фотонов. Поскольку он не знает базиса, он должен будет определять его случайным образом. Если базис будет определен неправильно, то Ева не получит верных данных, а кроме того, изменит поляризацию фотона. Появившиеся ошибки сразу обнаружат и Алиса, и Боб.

Идеи Визнера, однако, были признаны далеко не сразу. Еще в начале 1970-х годов Визнер отправил свою статью о квантовой криптографии в журнал IEEE Transactions on Information Theory, но редакторам и рецензентам язык статьи показался слишком сложным. Лишь в 1983 году эта статья увидела свет в журнале ACM Newsletter Sigact News, и именно она стала первой в истории публикацией об основах квантовой криптографии.

Первоначально Визнер и Беннет рассматривали вариант передачи зашифрованных сообщений с помощью квантовых «носителей», при этом подслушивание портило бы сообщение и не давало возможности его прочесть. Затем они пришли к улучшенному варианту — использованию квантовых каналов для передачи одноразовых «шифроблокнотов» — шифровальных ключей.


Закрытый конверт

Квантовые системы связи основаны на использовании квантовых свойств носителей информации. Если в обычных телекоммуникационных сетях данные кодируются в амплитуде и частоте излучения или электрических колебаний, то в квантовых — в амплитуде электромагнитного поля или в поляризации фотонов. Разумеется, потребуется значительно более дорогая и сложная аппаратура, но эти ухищрения оправданны: дело в том, что передача информации по квантовым каналам обеспечивает стопроцентную защиту от «прослушки». Согласно законам квантовой механики измерение свойств того или иного квантового объекта, например измерение поляризации фотона, неминуемо меняет его состояние. Получатель увидит, что состояние фотонов изменилось, и предотвратить это нельзя в принципе — таковы фундаментальные законы природы. Это можно описать такой аналогией: представьте себе, что вы пересылаете письмо в закрытом конверте. Если кто-то откроет письмо и прочитает его, цвет бумаги изменится, и получатель неминуемо поймет, что послание читал кто-то третий.

Самая ценная информация — это шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, в принципе невозможно. Остается организовать защищенную передачу ключей, а это как раз и обеспечивают квантовые линии связи. Однако пока дистанция передачи данных для таких линий слишком коротка: из-за тепловых шумов, потерь, дефектов в оптоволокне фотоны не «выживают» на больших расстояниях.

Самая ценная информация — шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, невозможно.

Квантовые ключи

Множество исследовательских групп по всему миру разрабатывают устройства «восстановления» квантовых данных — так называемые квантовые повторители, которые способны «оживлять» фотоны. Группа исследователей из Российского квантового центра под руководством профессора Александра Львовского нашла способ восстанавливать свойства фотонов и подтвердила в эксперименте работоспособность этого метода. Ученые занимались изучением феномена квантовой запутанности, при котором состояния двух или нескольких объектов — атомов, фотонов, ионов — оказываются связаны. Если состояние одного из пары запутанных фотонов измерить, то состояние второго немедленно станет определенным, причем состояния их обоих будут связаны однозначно — например, если один фотон окажется поляризован вертикально, то второй — горизонтально и наоборот.


«Если распределять пары запутанных фотонов между двумя удаленными партнерами, то они оба получают одну и ту же последовательность, которую можно использовать как шифровальный ключ, поскольку это истинно случайная последовательность, которую нельзя угадать или рассчитать. Если же кто-то попытается подсмотреть запутанные фотоны, корреляция между ними потеряется и из них больше нельзя будет извлечь ключ», — объясняет Александр Львовский.

Задача состоит в том, чтобы сохранить состояние квантовой запутанности при передаче на большие расстояния. До сих пор с этим возникали большие проблемы. По оптоволоконным сетям до сих пор не удавалось передавать запутанные фотоны на расстояние больше 100 км. На больших расстояниях квантовые данные просто теряются в шумах. В обычных телекоммуникационных сетях используют разные типы повторителей или усилителей сигнала, которые усиливают амплитуду сигнала и убирают шумы, но в случае с квантовыми данными этот подход не работает. Фотон нельзя «усилить», при попытке измерить его параметры состояние фотона изменится, а значит, все преимущества квантовой криптографии исчезают.

Квантовые повторители

Ученые из разных стран пытаются разработать технологию квантовых повторителей — устройств, способных «воссоздавать» квантовую информацию, не разрушая ее. Группа Львовского, кажется, нащупала путь, который может привести к успеху. Еще в 2002 году он и его коллеги обнаружили любопытный эффект, который был назван «квантовым катализом», по аналогии с химическим термином, где определенные реакции могут идти только в присутствии особого вещества — катализатора. В их эксперименте световой импульс смешивался со «вспомогательным» одиночным фотоном на частично пропускающем свет зеркале. Затем этот фотон «удаляли». Казалось бы, состояние светового импульса не должно было меняться. Но, в силу парадоксальных свойств квантовой интерференции, фотон менял его в сторону «усиления» квантовых свойств.

«В то время это явление выглядело не более чем курьезным феноменом, каковых в квантовой физике множество. Теперь же оказалось, что оно имеет важное практическое применение — позволяет восстановить запутанность квантовых состояний света», — говорит Александр Львовский.


В своей новой работе, отчет о которой был опубликован в журнале Nature Photonics, ученые научились заново запутывать «распутавшиеся» фотоны. В качестве источника запутанных фотонов в эксперименте они использовали нелинейный кристалл титанил-фосфата калия с периодической доменной структурой. Его «обстреливали» пикосекундными импульсами света, которые генерировал титан-сапфировый лазер. В результате в кристалле рождались запутанные пары фотонов, которые ученые отправляли в два разных оптических канала. В одном из них свет подвергался 20-кратному ослаблению с помощью затемненного стекла, в результате чего уровень запутанности падал почти до нуля. Это соответствует уровню потерь в 65 км обычного оптоволоконного кабеля. Затем ослабленный сигнал направляли на светоделитель, где и проходил процесс квантового катализа. Ученые из группы Львовского называют этот процесс «квантовой дистилляцией», поскольку на выходе остается меньше фотонов, зато их уровень запутанности возрастает почти до исходного. «Из миллиона слабо запутанных пар фотонов получается одна сильно запутанная. Но при этом уровень корреляции восстанавливается до первичной, и хотя скорость передачи данных несколько снижается, мы можем получить устойчивую связь на значительно большем расстоянии», — говорит коллега Львовского Александр Уланов.


Не только для шпионов

На основе этой технологии можно будет создавать квантовые повторители, пригодные для коммерческого использования. «Для этого есть и другие методы, но как их использовать в условиях существующих источников квантовой запутанности, непонятно. Это оказывается непропорционально дорого. Возможно, наш повторитель будет и проще, и дешевле», — говорит Львовский. По его мнению, при благоприятных условиях первый прототип такого повторителя может быть создан через четыре-пять лет. А появление его на рынке может открыть дорогу действительно массовому применению квантовой криптографии, что серьезно изменит жизнь не только военных или банкиров.

«Это касается каждого из нас. Квантовая криптография — это не только какие-то военные или шпионские секреты, это номера кредитных карточек, это истории болезни. У каждого из нас масса конфиденциальной информации, и чем более открытым становится мир, тем важнее для нас контролировать доступ к ней», — говорит Львовский. Использование квантовых методов передачи шифровальных ключей может серьезно ослож­нить жизнь злоумышленников, у которых теперь не будет возможности перехватить и расшифровать информацию.

Квантовая криптография -- это сравнительно новое направление исследований, позволяющее применять эффекты квантовой физики для создания секретных каналов передачи данных . С чисто формальной точки зрения данное направление нельзя назвать разделом криптографии, скорее, оно должно быть отнесено к техническим методам защиты информации, так как в квантовой криптографии в основном используются свойства материальных носителей информации. Указанный факт находит свое подтверждение еще и в том, что основной прогресс в данной области достигается инженерами-физиками, а не математиками и криптографами. Тем не менее термин «квантовая криптография» вполне устоялся и используется наряду с более корректным аналогом -- «квантовая коммуникация».

В квантовой криптографии используется фундаментальная особенность квантовых систем, заключающаяся в принципиальной невозможности точного детектирования состояния такой системы, принимающей одно из набора нескольких неортогональных состояний. Это вытекает из факта, что достоверно различить подобные состояния за одно измерение не получается. Например, нельзя определить длину отрезка в пространстве только по его проекции на одну ось, а более одного измерения сделать невозможно, потому что после первого же измерения система непредсказуемым образом изменяет свое состояние. Кроме того, в квантовой механике справедлива теорема о запрете точного клонирования систем, что делает невозможным изготовление нескольких копий исследуемой системы и последующее их тестирование.

Для начала рассмотрим работу идеального квантового канала , принцип действия которого предполагает, что приемно-передающая аппаратура и каналы связи идеальны. В качестве носителей информации в квантовой криптографии, как правило, используются отдельные фотоны, или связанные фотонные пары. Значения 0 и 1 битов информации кодируются различными направлениями поляризации фотонов. Для передачи сигнала отправитель случайным образом выбирает один из двух или в некоторых схемах из трех взаимно неортогональных базисов. При этом однозначно правильное детектирование сигнала возможно, если только получатель правильно угадал базис, в котором отправитель подготовил сигнал. В случае, если базис угадан неверно, исход измерения не определен. На рис. 3 показано, что получатель пытается детектировать сигнал 10 (квант, поляризованный вдоль оси Y0) в неверном базисе 1 (оси X1, Y1, повернуты на 45°), в итоге он может получить с равной вероятностью как 0, так и 1, то есть результат измерения полностью недостоверен.

Рис. 3.

Поскольку отправитель выбирает базис случайным образом, получатель неизбежно будет ошибаться в выборе базиса детектирования, и часть измерений окажется неверной. Затем получатель и отправитель проводят обсуждение исходов передачи по аутентичному, но, возможно, несекретному каналу связи. Что именно при этом передается зависит от использованного квантового протокола, но в любом случае указанная информация позволяет корреспондентам исключить случаи, когда получатель неверно угадал базис, и не дает противнику никаких сведений относительно правильно переданных данных.

Если противник попытается подслушать информацию, передаваемую через квантовый канал, то он, так же как и получатель, будет неизбежно ошибаться в выборе базиса. Поскольку квант, несущий информацию, при детектировании разрушается, противник испускает новый квант, поляризованный тем или иным образом в использованном им базисе. В определенных случаях этот базис не будет совпадать с тем, который использовался отправителем, что приведет к искажению данных. Наличие искажений будет обнаружено в ходе сверки корреспондентами выработанного общего отрезка данных, и это будет означать попытку прослушивания.

Таким образом, системы квантовой криптографии обладают рядом принципиальных особенностей. Во-первых, нельзя заранее сказать, какой из передаваемых битов будет корректно принят получателем, так как этот процесс носит вероятностный характер. Во-вторых, существенной особенностью системы является использование низкоэнергетических импульсов, в идеале состоящих из одного фотона, что сильно снижает скорость передачи по тому же каналу в сравнении с обычным уровнем оптических сигналов. В силу указанных причин квантовый канал связи малопригоден для передачи пользовательских данных, а больше подходит для выработки ключа симметричного шифра, который будет использован корреспондентами для зашифрования передаваемых данных. В этом отношении он подобен асимметричному шифрованию или схемам открытого распределения ключей.

Квантовая криптография.

Квантовые компьютеры и связанные с ними технологии в последнее время становятся все актуальнее. Исследования в этой области не прекращаются вот уже десятилетия, и ряд революционных достижений налицо. Квантовая криптография - одно из них.

Технология квантовой криптографии крайне сложна, и, естественно, данная статья не претендует на широкое освещение темы. Мы также не будем начинать, что называется, "с места в карьер". Начнем с основ шифрования. Это вполне уместно, тем более что нам понадобится рассмотреть, какими же преимуществами обладает квантовая криптография над распространенными ныне алгоритмами. Итак...

В современном мире передача конфиденциальных данных между несколькими абонентами в различных сетях связи может привести как к потере передаваемой информации, так и к ее компрометации. Компрометация означает превращение секретных данных в несекретные, т. е. разглашение информации, ставшей известной какому-либо лицу, не имеющему права доступа к ней.

Криптография - это наука о шифрах. Она представляет собой огромное количество методов изменения открытого сообщения для того, чтобы передаваемое сообщение стало бесполезным для криптоаналитика, специалиста по криптоанализу. Криптоанализ - наука о вскрытии шифров. Криптографические преобразования служат для достижения двух целей по защите информации. Во-первых, они обеспечивают недоступность ее для лиц, не имеющих ключа, и, во-вторых, поддерживают с требуемой надежностью обнаружение несанкционированных искажений. Важным понятием в криптографии является ключ - сменный элемент шифра, который применяется для шифрования конкретного сообщения.

Все криптографические системы основаны на использовании криптографических ключей. Практически все криптографические схемы делятся на симметричные и асимметричные криптосистемы.

Симметричные криптосистемы

В симметричной криптосистеме отправитель и получатель сообщения используют один и тот же секретный ключ.

Этот ключ должен быть известен всем пользователям и требует периодического обновления одновременно у отправителя и получателя.

Симметричная криптосистема генерирует общий секретный ключ и распределяет его между законными пользователями. С помощью этого ключа производится как шифрование, так и дешифрование сообщения.

Процесс распределения секретных ключей между абонентами обмена конфиденциальной информации в симметричных криптосистемах имеет весьма сложный характер. Имеется в виду, что передача секретного ключа нелегитимному пользователю может привести к вскрытию всей передаваемой информации. Наиболее известные симметричные криптосистемы - шифр Цезаря, шифр Вижинера, американский стандарт шифрования DES, шифр IDEA и отечественный стандарт шифрования данных ГОСТ 28147-89.

Асимметричные криптосистемы

Асимметричные криптосистемы предполагают использование двух ключей - открытого и секретного.

В таких системах для зашифрования сообщения используется один ключ, а для расшифрования - другой.


Асимметричные криптосистемы используют для работы два ключа. Первый, открытый, доступен любому пользователю, с помощью которого зашифровывается сообщение. Второй, секретный, должен быть известен только получателю сообщений.

Первый ключ является открытым и может быть опубликован для использования всеми пользователями системы, которые зашифровывают данные. Расшифрование сообщения с помощью открытого ключа невозможно. Для расшифрования данных получатель зашифрованного сообщения применяет второй ключ, секретный. Ключ расшифрования не может быть определен из ключа зашифрования. Схему асимметрической криптографии в 1976 г. предложили два молодых американских математика Диффи и Хеллман. Наиболее известные асимметричные криптосистемы это шифр RSA и шифр Эль Гамаля. Данная схема является довольно-таки сложной для криптоанализа. Чем больше ключ, тем сложнее его подобрать обычным простым перебором. Для вскрытия современной криптосистемы со средней длиной ключа потребуется около 1050 машинных операций, что практически невозможно на современных компьютерных системах.

Безопасность любого криптографического алгоритма определяется используемым криптографическим ключом. Для получения ключей используются аппаратные и программные средства генерации случайных значений ключей. Как правило, применяют датчики псевдослучайных чисел. Однако степень случайности генерации чисел должна быть достаточно высокой. Идеальными генераторами являются устройства на основе натуральных случайных процессов, например на основе белого шума.

Важной задачей при работе с ключами является их распределение. В настоящее время известны два основных способа распределения ключей: с участием центра распределения ключей и прямой обмен ключами между пользователями.

Распределение ключей с участием центра распределения ключей

При распределении ключей между участниками предстоящего обмена информацией должна быть гарантирована подлинность сеанса связи, т. е. все участники должны пройти процедуру аутентификации. Центр распределения ключей осуществляет взаимодействие с одним или более участниками сеанса с целью распределения секретных или открытых ключей.

Прямой обмен ключами между пользователями

При использовании для обмена конфиденциальными данными криптосистемы с симметричным секретным ключом два пользователя должны обладать общим секретным ключом. Они должны обменяться им по каналу связи безопасным образом.

Однако современная наука произвела на свет новый алгоритм шифрования - генерацию секретного ключа при помощи квантовой криптографии.

Квантово-криптографические системы - это побочный продукт разрабатываемого в настоящее время так называемого квантового компьютера. Что это такое? Здесь самым лучшим для вас, дорогие читатели, будет освежить в памяти материал под названием "Квантовые компьютеры, нейрокомпьютеры и оптические компьютеры", который был опубликован в ПЛ №11 за 1999 г. Мы лишь вкратце перечислим базовые понятия.

Итак, основной строительной единицей квантового компьютера является кубит (qubit, Quantum Bit). Классический бит имеет, как известно, лишь два состояния - 0 и 1, тогда как множество состояний кубита значительно больше. Это означает, что кубит в одну единицу времени равен и 0, и 1, а классический бит в ту же единицу времени равен либо 0, либо 1. Основная причина бурных исследований в области квантовых компьютеров - это естественный параллелизм квантовых вычислений. Например, если квантовая память состоит из двух кубитов, то мы параллельно работаем со всеми ее возможными состояниями: 00, 01, 10, 11. За счет возможности параллельной работы с большим числом вариантов квантовому компьютеру необходимо гораздо меньше времени для решения задач определенного класса. К таким задачам, например, относятся задачи разложения числа на простые множители, поиск в большой базе данных и др.

Бурное развитие квантовых технологий и волоконно-оптических линий связи привело к появлению квантово-криптографических систем. Они являются предельным случаем защищенных ВОЛС. Использование квантовой механики для защиты информации позволяет получать результаты, недостижимые как техническими методами защиты ВОЛС, так и традиционными методами математической криптографии. Защита такого класса применяется в ограниченном количестве, в основном для защиты наиболее критичных с точки зрения обеспечения безопасности систем передачи информации в ВОЛС.

Природа секретности квантового канала связи

При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов, приходящихся на один импульс, много меньше единицы (порядка 0,1), вступают в действие законы квантовой физики. Именно на использовании этих законов в сочетании с процедурами классической криптографии основана природа секретности квантового канала связи (ККС). В квантово-криптографическом аппарате применим принцип неопределенности Гейзенберга, согласно которому попытка произвести измерения в квантовой системе вносит в нее нарушения, и полученная в результате такого измерения информация определяется принимаемой стороной как дезинформация. Процесс измерений в квантовой физике характеризуется тем, что он может активно вносить изменения в состояние квантового объекта, и ему присущи определенные стандартные квантовые ограничения. Следует выделить ограничения, связанные с невозможностью одновременного измерения взаимодополняемых параметров этой системы, т. е. мы не можем одновременно измерить энергию и поляризацию фотона. Исследования показали, что попытка перехвата информации из квантового канала связи неизбежно приводит к внесению в него помех, обнаруживаемых законными пользователями этого канала. Квантовая криптография использует этот факт для обеспечения возможности двум сторонам, которые ранее не встречались и не обменивались никакой предварительной секретной информацией, осуществлять между собой связь в обстановке полной секретности без боязни быть подслушанными злоумышленником.


Так в квантово-оптическом канале связи распространяются одиночные фотоны.

Немного истории

В 1984 г. Ч. Беннет (фирма IBM) и Ж. Брассард (Монреальский университет) предположили, что квантовые состояния (фотоны) могут быть использованы в криптографии для получения фундаментально защищенного канала. Они предложили простую схему квантового распределения ключей шифрования, названную ими ВВ84. Эта схема использует квантовый канал, по которому пользователи (пусть это будут Алиса и Боб) обмениваются сообщениями, передавая их в виде поляризованных фотонов.

Подслушивающий злоумышленник может попытаться производить измерение этих фотонов, но, как сказано выше, он не может сделать это, не внося в них искажений. Алиса и Боб используют открытый канал для обсуждения и сравнения сигналов, передаваемых по квантовому каналу, проверяя их на возможность перехвата. Если они при этом ничего не выявят, они могут извлечь из полученных данных информацию, которая надежно распределена, случайна и секретна, несмотря на все технические ухищрения и вычислительные возможности, которыми располагает злоумышленник.

Схема ВВ84

Схема ВВ84 работает следующим образом. Сначала Алиса генерирует и посылает Бобу последовательность фотонов, поляризация которых выбрана случайным образом и может составлять 0, 45, 90 и 135°. Боб принимает эти фотоны и для каждого из них случайным образом решает, замерять его поляризацию как перпендикулярную или диагональную. Затем по окрытому каналу Боб объявляет для каждого фотона, какой тип измерений им был сделан (перпендикулярный или диагональный), но не сообщает результат этих измерений, например 0, 45, 90 или 135°. По этому же окрытому каналу Алиса сообщает ему правильный ли вид измерений был выбран для каждого фотона. Затем Алиса и Боб отбрасывают все случаи, когда Боб сделал неправильные замеры. Если квантовый канал не перехватывался, оставшиеся виды поляризации и будут поделенной между Алисой и Бобом секретной информацией, или ключом. Этот этап работы квантово-криптографической системы называется первичной квантовой передачей.

Алиса посылает фотоны, имеющие одну из четырех возможных поляризаций, которую она выбирает случайным образом.

Для каждого фотона Боб выбирает случайным образом тип измерения: он изменяет либо прямолинейную поляризацию (+) , либо диагональную (х).

Боб записывает результаты изменения и сохраняет в тайне.

Боб открыто объявляет, какого типа измерения он проводил,а Алиса сообщает ему, какие измерения были правильными.

Алиса и Боб сохраняют все данные, полученные в тех случаях, когда Боб применял правильное измерение. Эти данные затем переводятся в биты (0 и 1), последовательность которых и является результатом первичной квантовой передачи.

Принципы первичной квантовой передачи. Рассматривается простой пример создания общего секретного ключа в квантово-криптографической системе.

Следующим важным этапом является оценка попыток перехвата информации в квантово-криптографическом канале связи. Это может производиться Алисой и Бобом по открытому каналу путем сравнения и отбрасывания случайно выбранных ими подмножеств полученных данных. Если такое сравнение выявит наличие перехвата, Алиса и Боб отбрасывают все свои данные и начинают повторное выполнение первичной квантовой передачи. В противном случае они оставляют прежнюю поляризацию, принимая фотоны с горизонтальной или 45°-й поляризацией за двоичный "0", а с вертикальной или 135°-й поляризацией - за двоичную "1". Согласно принципу неопределенности, злоумышленник не может замерить как прямоугольную, так и диагональную поляризацию одного и того же фотона. Даже если он для какого-либо фотона произведет измерение и перешлет Бобу этот фотон в соответствии с результатом своих измерений, то в итоге количество ошибок намного увеличится, и это станет заметно Алисе. Это приведет к стопроцентной уверенности Алисы и Боба в состоявшемся перехвате фотонов.

Более эффективной проверкой для Алисы и Боба является проверка на четность, осуществляемая по открытому каналу. Например, Алиса может сообщить: "Я просмотрела 1-й, 4-й, 4-й, 8-й... и 998-й из моих 1000 бит, и они содержат четное число единиц". Тогда Боб подсчитывает число "1" на тех же самых позициях. Можно показать, что, если данные у Боба и Алисы отличаются, проверка на четность случайного подмножества этих данных выявит количество ошибок. Достаточно повторить такой тест 20 раз с 20 различными случайными подмножествами, чтобы вычислить процент ошибок. Если ошибок слишком много, то считается, что производился перехват в квантово-криптографической системе.

Первое устройство квантовой криптографии

В 1989 г. все те же Беннет и Брассард в Исследовательском центре компании IBM построили первую работающую квантово-криптографическую систему. Она состояла из квантового канала, содержащего передающий аппарат Алисы на одном конце и приемный аппарат Боба на другом, размещенных на оптической скамье длиной около 1 м, в светонепроницаемом кожухе размерами 1,5х0,5х0,5 м. Он представлял собой свободный воздушный канал длиной около 32 см. Во время функционирования макет управлялся от персонального компьютера, который содержал программное представление пользователей Алисы и Боба, а также злоумышленника.

Надежность сохранения в тайне передаваемых сообщений в значительной степени зависит от интенсивности используемых для передачи вспышек света. Слабые вспышки затрудняют перехват сообщений, но приводят к увелечению числа ошибок в измерении правильной поляризации у законного пользователя. Усиление же интенсивности вспышек облегчает возможность перехвата путем расщепления исходного пучка света или одиночного фотона на два: одного, направляемого законному получателю, и другого, анализируемого злоумышленником. Алиса и Боб могут использовать для исправления ошибок коды, исправляющие ошибки, обсуждая результаты кодирования по открытому каналу.


Первая квантово-криптографическая схема. Система состоит из квантового канала и специального оборудования на обоих концах схемы.

Однако при этом часть информации может попасть к злоумышленнику. Тем не менее Алиса и Боб, зная интенсивность вспышек света и количество обнаруженных и исправленных ошибок, могут оценить количество информации, попадающее к злоумышленнику.

Состав квантово-оптической криптографической системы

Основные технические характеристики квантово-криптографических систем (скорость передачи, коэффициент ошибок и т. д.) определяются параметрами образующих квантовый оптический канал связи элементов, осуществляющих формирование, передачу и измерение квантовых состояний. В общем случае квантово-оптическая криптографическая система (КОКС) состоит из передающей и приемной частей, связанных каналом передачи.

Источники излучения для волоконно-оптических систем, в которых реализуется квантовый оптический канал связи, можно разделить на три класса: светоизлучающие диоды, лазеры и микролазеры. В качестве среды передачи оптических сигналов в КОКС используются волоконно-оптические световоды - оптические волокна, которые объединяются в волоконно-оптические кабели различной конструкции. Наконец, приемную часть КОКС составляют, как правило, оптический модулятор и фотодетектор.

Современные системы квантовой криптографии

Большинство схем КОКС требует постоянной подстройки и сложного управления на каждой стороне канала связи. Из-за двойного лучепреломления в оптическом волокне и эффекта воздействия внешней среды поляризация на выходе системы беспорядочно колеблется. Однако недавно была предложена реализация КОКС, которую можно назвать системой plug and play ("подключай и работай"), которая не требует никакой подстройки, кроме синхронизации. В данной системе используется специальное устройство, называемое Зеркало Фарадея, которое позволяет устранить все эффекты двойного лучепреломления и потери, связанные с поляризацией, происходящие в течение передачи. Следовательно, данная система не требует никакой регулировки поляризации. Используя такую систему, можно обмениваться криптографическими ключами по стандартным телекоммуникационным системам связи, значительно снизив необходимость подстройки. Для организации квантового канала необходимо просто подключить приемный и передающий модули, синхронизировать сигналы и начать передачу. Именно поэтому данная система обладает характери-стикой plug and play.

Результатом теоретической разработки швейцарских ученых стала практическая реализация описанной системы. Расстояние между приемным и передающим концами - 23 км волоконно-оптического кабеля по дну Женевского озера между городами Нион и Женева. Экспериментально был сформирован секретный ключ длиной 20 кбит с уровнем ошибок 1,35%. Такое низкое значение уровня ошибок выделяет данную схему из множества других, однако скорости передачи информации, полученные в данной системе, чрезвычайно низки для практических приложений.

В настоящее время уже во многих странах мира квантовые криптосистемы на базе ВОЛС реализованы экспериментально, а в некоторых странах введены в опытную эксплуатацию. В частности, в Лос-Аламосской национальной лаборатории завершена разработка и введена в опытную эксплуатацию в США линия связи общей длиной 48 км (4х12 км), в которой на принципах квантовой криптографии осуществляется распределение ключей со скоростью несколько десятков кбит/с.

В университете Дж. Хопкинса (США) реализована локальная вычислительная сеть с квантовым каналом связи длиной 1 км, в которой за счет оперативной автоматической подстройки каждые 10 мин достигнут низкий уровень ошибок в канале (0,5%) при скорости передачи 5 кбит/с.

В Великобритании, в Оксфордском университете, реализован ряд квантово-криптографических схем с использованием квантовых усилителей для повышения скорости передачи. Как вы, наверное, заметили, скорость передачи в квантовом канале по ряду причин очень низка. Применение квантовых усилителей как раз призвано способствовать преодолению существующих ограничений по скорости передачи в квантовом канале и резкому расширению диапазона возможных применений подобных систем.

Самым важным достижением в области квантовой криптографии можно считать то, что была доказана возможность существенного повышения скоростей передачи - до 1 Мбит/с и более. Это достигается путем уплотнения данных по длинам волн в волоконно-оптической системе. Разделение каналов по длинам волн в одной ВОЛС применительно к случаю КОКС позволяет реализовать как последовательную, так и одновременную работу и открытого высокоскоростного, и секретного квантового каналов связи. Одновременно с этим можно говорить и о повышении скорости передачи информации по КОКС при использовании разделения каналов. Это может быть достигнуто за счет одновременной организации нескольких квантовых каналов по одной общей среде передачи - одному оптическому волокну. В настоящее время в одном стандартном оптическом волокне можно организовать около 50 каналов. Последние экспериментальные схемы подтверждают, что при небольшой доработке системы данного вида будут главенствовать среди КОКС.

С учетом известных экспериментальных результатов по созданию КОКС можно прогнозировать в ближайшие годы достижение следующих параметров:

1. Эффективная скорость передачи информации по квантовому каналу при количестве ошибок, не превышающем 4%, около 50 Мбит/с.

2. Максимальная длина квантового оптического канала связи - 50 км.

3. Количество подканалов при разделении по длинам волн - 8-16.

Квантовый криптоанализ

Выше мы кратко рассмотрели классический криптоанализ. В результате развития квантовых компьютеров и квантовой криптографии на свет появился квантовый криптоанализ. Он обладает неоспоримыми преимуществами. Возьмем, к примеру, известный и распространенный ныне шифр RSA (Rivest, Shamir, Adleman, 1977). В основе системы RSA лежит предположение о том, что решение математической задачи о разложении больших чисел на простые множители на классических компьютерах невозможно - оно требует экспоненциально большого числа операций и астрономического времени. Для решения этой задачи был разработан квантовый алгоритм, который дает возможность вычислить простые множители больших чисел за практически приемлемое время и взломать шифр RSА. Таким образом, для RSA квантовый компьютер, а следовательно, квантовый криптоанализ - крайне плохая новость. Процедура квантового криптоанализа может быть применена ко всем классическим шифросистемам. Остается только создать квантовый компьютер достаточной мощности.

В заключение хотелось бы сказать, что последние разработки в области квантовой криптографии позволяют создавать системы, обеспечивающие практически 100%-ю защиту ключа и ключевой информации. Используются все лучшие достижения по защите информации как из классической криптографии, так и из новейшей "квантовой" области, что позволяет получать результаты, превосходящие все известные криптографические системы. Можно с уверенностью говорить, что в ближайшем будущем вся криптографическая защита информации и распределение ключей будут базироваться на квантово-криптографических системах.

Стивен Визнер (Stephen Wiesner), являясь студентом Колумбийского университета, в 1970 подал статью по теории кодирования в журнал IEEE Information Theory, но она не была опубликована, так как изложенные в ней предположения казались фантастическими, а не научными. Именно в была описана идея возможности использования квантовых состояний для защиты денежных банкнот. Визнер предложил в каждую банкноту вмонтировать 20 так называемых световых ловушек, и помещать в каждую из них по одному фотону, поляризованному в строго определенном состоянии. Каждая банкнота маркировалась специальным серийным номером, который заключал информацию о положении поляризационного фотонного фильтра. В результате этого при применении отличного от заданного фильтра комбинация поляризованных фотонов стиралась. Но на тот момент технологическое развитие не позволяло даже рассуждать о таких возможностях. Однако в 1983 году его работа «Сопряженное кодирование» была опубликована в SIGACT News и получила высокую оценку в научных кругах.

В последствии на основе принципов работы Визнера С. ученые Чарльз Беннет (Charles Bennett) из фирмы IBM и Жиль Брассард (Gilles Brassard) из Монреальского университета разработали способ кодирования и передачи сообщений. Ими был сделан доклад на тему «Квантовая криптография: Распределение ключа и подбрасывание монет» на конференции IEEE International Conference on Computers, Systems, and Signal Processing. Описанный в работе протокол впоследствии признан первым и базовым протоколом квантовой криптографии и был назван в честь его создателей BB84. Для кодирования информации протокол использует четыре квантовых состояния микросистемы, формируя два сопряж?нных базиса.

В это время Артур Экерт работал над протоколом квантовой криптографии, основанном на спутанных состояниях . Опубликование результатов его работ состоялось в 1991 году. В основу положены принципы парадокса Эйнштейна- Подольсого-Розенберга, в частности принцип нелокальности спутанных квантовых объектов.

На протяжении двадцати пяти лет, квантовая криптография прошла путь от теоретических исследований и доказательства основных теорий до коммерческих систем, использующих оптическое волокно для передачи на расстояние десятков километров.

В первой экспериментальной демонстрации установки квантового распределения ключей проведенной в 1989 в лабораторных условиях , передача осуществлялась через открытое пространство на расстояние тридцати сантиметров. Далее эти эксперименты были проведены с использованием оптического волокна в качестве среды распространения. После первых экспериментов Мюллера и др. в Женеве, с использованием оптоволокна длиной 1,1 км , в 1995 расстояние передачи было увеличено до 23 км через оптическое волокно, проложенное под водой . Приблизительно в то же время, Таунсендом из British Telecom была продемонстрирована передача на 30 км . Позднее он, продолжив тестирование систем с использованием различных конфигураций оптических сетей , увеличил дальность до 50 км . Эксперименты по передаче на это же расстояние были позднее повторены Хьюзом и др. в Лос-Аламосе . В 2001г., Хискетом и др. в Соединенном Королевстве была осуществлена передача на расстояние 80 км . В 2004-2005гг., две группы в Японии и одна в Соединенном Королевстве сообщили об осуществлении экспериментов по квантовому распределению ключей и интерференции одиночных фотонов на расстояние свыше 100 км . Первые эксперименты по передаче на расстояние 122 км проводились учеными из Toshiba в Кембридже с использованием детекторов на основе лавинных фотодиодов (ЛФД) . Рекорд по дальности передачи информации принадлежит объединению ученых Лос-Аламоса и Национального института стандартов и технологий, и составляет 184 км . В нем использовались однофотонные приемники охлаждаемые до температур близких к нулевым по Кельвину.

Первая презентация коммерческой системы квантовой криптографии произошла на выставке CeBIT-2002. Там, швейцарские инженеры компании GAP-Optique (www.gap-optique.unige.ch) из Женевского университета представили первую систему квантового распределения ключей (QKD - Quantum Key Distribution). Ученым удалось создать достаточно компактное и надежное устройство. Система располагалась в двух 19-дюймовых блоках и могла работать без настройки сразу после подключения к персональному компьютеру. С его помощью была установлена двухсторонняя наземная и воздушная волоконно-оптическая связь между городами Женева и Лузанна, расстояние между которыми составляет 67 км . Источником фотонов служил инфракрасный лазер с длиной волны 1550 нм. Скорость передачи данных была невысока, но для передачи ключа шифра (длина от 27,9 до 117,6 кбит) большая скорость и не требуется.

В последующие годы к проектированию и изготовлению систем квантовой криптографии подключились такие коммерческие монстры как Toshiba, NEC, IBM, Hewlett Packard, Mitsubishi, NTT. Но наряду с ними стали появляться на рынке и маленькие, но высокотехнологичные компании: MagiQ (www.magiqtech.com), Id Quantique (www.idquantique.com), Smart Quantum (www.smartquantum.com). В июле 2005 в гонке за увеличение расстояния передачи ключа вперед вышли инженеры Toshiba, представив на рынке систему, способную передать ключ на 122 км. Однако, как и у конкурентов, скорость генерации ключа в 1,9 кбит/с оставляла желать лучшего. Производители в настоящие время стремятся к разработке интегрированных систем - новинкой от Id Quantique, является система Vectis, использующая квантовое распределение ключей для создания VPN туннелей, шифрующая данные на канальном уровне с помощью шифра AES. Ключ может быть 128, 196 или 256-битной длины и меняется с частотой до 100 Гц. Максимальная дистанция для данной системы составляет 100 км. Все вышеперечисленные компании производят системы кодирующие информацию о битах ключа в фазовых состояниях фотонов. Со времен первых реализаций, схемы построения систем квантового распределения ключей значительно усложнились.

Британские физики из коммерческого подразделения QinetiQ Британской оборонной исследовательской лаборатории и немецкие физики из Мюнхенского университета Людвига-Максимиллиана впервые осуществили передачу ключа на расстояние 23,4 км непосредственно через воздушное пространство без использования оптического волокна . В эксперименте для кодирования криптографической информации использовались поляризации фотонов - одна для передачи двоичного символа «0» и противоположная для символа «1». Эксперимент проводился в горах Южной Германии. Слабый импульсный сигнал посылался ночью с одной горной вершины (2 950 м) на другую (2 244 м), где находился счетчик фотонов.

Руководитель проекта Джон Рэрити (John Rarity) из QinetiQ полагал , что уже в 2005 году будет проведен эксперимент с посылкой криптографического ключа на низкоорбитальный спутник, а к 2009 году с их помощью можно будет посылать секретные данные в любую точку планеты. Отмечалось, что для этого придется преодолеть ряд технических препятствий.

Во-первых, необходимо улучшить устойчивость системы к неизбежной потере фотонов при их посылке на расстояния в тысячикилометров.

Во-вторых, существующие спутники не оснащены соответствующим оборудованием для пересылки криптографических данных по квантовому протоколу, так что потребуется конструирование и запуск совершенно новых спутников .

Исследователи из Северо-западного университета (Эванстон, штат Иллинойс) продемонстрировали технологию, позволяющую передавать на небольшое расстояние шифрованное сообщение со скоростью 250 Мбит/с . Ученые предложили метод квантового кодирования самих данных, а не только одного ключа. В этой модели учитывается угол поляризации каждого переданного фотона, Поэтому любая попытка декодировать сообщение приводит к такой зашумленности канала, что всякая расшифровка становится невозможной. Исследователи обещают, что уже модель следующего поколения сможет работать практически на магистральной скорости Интернета порядка 2,5 Гбит/с. По словам одного из разработчиков, профессора Према Кумара (Prem Kumar), "еще никому не удавалось выполнять квантовое шифрование на таких скоростях". Ученые уже получили несколько патентов на свои разработки и сейчас работают вместе со своими промышленными партнерами Telcordia Technologies и BBN Technologies над дальнейшим усовершенствованием системы. Первоначально рассчитанный на пять лет проект был поддержан грантом DARPA (the Defense Advanced Research Projects Agency) в 4,7 миллиона долларов. Результатом данного проекта стала система квантового кодирования AlphaEta .

Группа Ричарда Хьюгса (Richard Hughes) из Лос-Аламоса занимается разработками спутниковых оптических линий связи (ОЛС). Для реализации преимуществ квантовой криптографии фотоны должны проходить через атмосферу без поглощения и изменения поляризации. Для предотвращения поглощения исследователи выбирают длину волны в 770 нм, соответствующую минимальному поглощению излучения молекулами атмосферы. Сигнал с большей длиной волны также слабо поглощается, но более подвержен турбулентности, которая вызывает изменение локального показателя преломления воздушной среды и, ввиду этого, изменение поляризации фотонов. Ученым приходится решать и побочные задачи. Спутник, наряду с фотонами, несущими сообщение, может принять и фотоны фонового излучения, исходящего как от Солнца, так и отраженного Землей или Луной. Поэтому применяются сверхузконаправленный приемник, а также фильтр для отбора фотонов определенной длины волны. Кроме того, фотоприемник чувствителен к приему фотонов в течение 5 нс периодически с интервалом в 1 мкс. Это должно быть согласовано с параметрами передатчика. Такие ухищрения вновь обуславливают влияние турбулентности. Даже при сохранении поляризации, вследствие турбулентности может измениться скорость передачи фотонов, приводя к фазовому дрожанию. С целью компенсации фазового дрожания впереди каждого фотона высылается световой импульс. Этот синхронизирующий импульс, подвергается такому же, как следующий за ним фотон, влиянию атмосферы. Поэтому независимо от момента получения импульса приемник спутника знает, что через 100 нс нужно открыться для приема информационного фотона. Изменение показателя преломления вследствие турбулентности вызывает уход луча от антенны. Поэтому для направления потока фотонов передающая система отслеживает слабое отражение от синхроимпульсов. Группой Хьюгса осуществлена передача сообщения по квантовому криптографическому каналу через воздушную среду на расстояние в 500 м на телескоп диаметром 3.5 дюйма . Принимаемый фотон попадал на распределитель, который направлял его на тот или иной фильтр. После этого ключ контролировался на наличие ошибок. Реально, даже при отсутствии перехвата, уровень ошибок достигал 1,6% из-за наличия шума, фоновых фотонов и рассогласования. Это несущественно, поскольку при перехвате уровень ошибок обычно более 25%.

Позднее группой Хьюгса было передано сообщения по квантовому каналу через воздушную среду на расстояние 2 км . При испытаниях сигналы передавались горизонтально, вблизи поверхности Земли, где плотность воздуха и флуктуации интенсивности максимальны. Поэтому расстояние в 2 км вблизи поверхности Земли эквивалентны 300 км, отделяющим низкоорбитальный искусственный спутник от Земли.

Таким образом, менее чем за 50 лет квантовая криптография прошла путь от идеи до воплощения в коммерческую систему квантового распределения ключей. Действующая аппаратура позволяет распределять ключи через квантовый канал на расстояние превышающие 100 км (рекорд 184 км), со скоростями достаточными для передачи ключей шифрования, но не достаточными для поточного шифрования магистральных каналов с помощью шифра Вернама. Основными потребителями систем квантовой криптографии в первую очередь выступают министерства обороны, министерства иностранных дел и крупные коммерческие объединения. На настоящий момент высокая стоимость квантовых систем распределения ключей ограничивает их массовое применение для организации конфиденциальной связи между небольшими и средними фирмами и частными лицами.



Касса