Электронные пучки. Электронно-лучевая трубка

Особенности образования отверстий при электронно-лучевой обработке:

Термическая размерная обработка, как правило, предназначена для изменения химического состава или структуры обрабатываемого материала, получения отверстий заданного диаметра или пазов заданной ширины, глубины и профиля сечения.

Результат размерной обработки зависит от поведения материала при повышении температуры. В результате термической размерной обработки происходят следующие явления:

фазовые превращения в твердом состоянии, появляющиеся, например, при закалке соответствующих сталей;

сублимация - удаление материала при выполнении отверстий, пазов, резании, гравировании алмаза, графита, кварцевого стекла;

разложение твердого материала на летучие компоненты и унос мате-риала при резании синтетических материалов, керамики, бумаги;

разложение с образованием, по крайней мере, одного твердого компонента и удаление материала при резании, сверлении, гравировании арсенида галлия, фосфида галлия;

плавление материалов при микросварке металлов, полировании ме-таллов и полупроводниковых материалов (кремний, германий), нанесении рисок оплавлением (кремний, германий, керамика, ферриты), легировании полупроводников путем вплавления лигатур при изготовлении полупроводниковых приборов и интегральных микросхем;

испарение - удаление материала при сверлении, резании, гравировании металлов, диэлектриков, синтетических материалов.

Обрабатываемость материала в основном зависит от его теплофизи-ческих свойств и удельной мощности пучка электронов. Чтобы избежать избытка жидкой фазы, добиться максимальной производительности за счет реализации резононсных режимов нагрева, обработку ведут в импульсных режимах.При этом возможны следующие технические варианты обработки: моноимпульсная, многоимпульсная, с быстрым отклонением луча.

Выброс жидкой фазы при обработке. Экспериментальные данные различ-ных исследователей по измерению удельной работы разрушения показывают, что практически для всех металлов больше энергии плавления, но меньше энергии превращения в пар.

В продуктах выброса находится значительное количество жидкой фазы. Затраты введенной энергии, приводящие к удалению вещества при обработке и при сварке с «кинжальным» проплавлением, например, сталей только на 10-20 % превышают затраты на плавление. Это приводит к малому различию в энергетических балансах процессов получения отверстий и проплавления и существенно упрощает их тепловые расчеты.

Причины преждевременного вскипания вещества, приводящего к выносу жидкой фазы в основном можно свести к двум моментам:

Вскипанию за счет гетерогенных центров зарождения паровой фазы,

Вследствие перегрева. В первом случае факторами, облегчающими вскипание, являются: пузырьки растворенного в металле газа, объем которого может превышать объем основного металла в десятки и даже сотни раз; неидеальность контактов; локальные пульсации температуры, например вследствие неоднородности временной структуры импульса энергии, приводящие к генерации внутрь материала волн сжатия и разрежения как и при ультразвуковых колебаниях.

Объяснить причины вскипания при перегреве затруднительно из-за сложности физики процесса. Перегрев может возникать вследствие того, что нагрев и плавление металла в зоне действия луча происходят в условиях сжатия материала давлением отдачи паров. Так как разгрузка в распла-вленном объеме после прекращения действия импульса энергии проис-ходит за время 10~ 3 -10~ 4 с, т. е. со скоростью распространения волн напряжения (скоростью звука), то металл практически мгновенно заметно перегревается, что равносильно быстрому избыточному тепловыделе-нию в локальном объеме.

Согласно другой точке зрения, перегрев связан с наличием в зоне дей-ствия луча двух слоев с разным характерным временем изменения темпе-ратуры. Если при колебаниях интенсивности нагрева внутренние слои жидкой фазы попадают в условия перегрева, то происходит вскипание, так как, одновременно является временем релаксации давления отдачи.

Вскипание и вынос жидкой фазы могут быть связаны с периодическими (вследствие экранировки) колебаниями давления отдачи паров при поверхностном испарении, которые приводят к генерации в жидком объеме металла механических колебаний, стимулирующих рост равновесных пузырьков растворенного газа.

Сварка электронным лучом

Электронно-лучевая сварка (ЭЛС) основана на использовании для нагрева энергии электронного луча.

Сущность данного процесса состоит в использовании кинетической энергии электронов, движущихся в высоком вакууме с большой скоростью. При бомбардировке электронами поверхности металла подавляющая часть кинетической энергии электронов превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо получить свободные электроны, сконцентрировать их и сообщить им большую скорость с целью увеличения их энергии, которая должна превратиться в теплоту при торможении в свариваемом металле.Получение свободных электронов достигается применением раскаленного металлического катода, эмитирующего (испускающего) электроны. Ускорение электронов обеспечивается электрическим полем с высокой разностью потенциалов между катодом и анодом. Фокусировка - концентрация электронов - достигается использованием кольцевых магнитных полей. Резкое торможение электронного потока происходит автоматически при внедрении электронов в металл. Электронный луч, используемый для сварки, создается в специальном приборе - электронной пушке.

Электронная пушка представляет собой устройство, с помощью которого получают узкие электронные пучки с большой плотностью энергии (см. рис.2).

Рис. 2. Схема устройства электронно-лучевой пушки.

(1), Пушка имеет катод (1), который размещен внутри прикатодного электрода (2). На некотором удалении от катода находится ускоряющий электрод - анод (3) с отверстием.

Прикатодный и ускоряющий электроды имеют форму, обеспечивающую такое строение электрического поля между ними, которое фокусирует электроны в пучок с диаметром, равным диаметру отверстия в аноде. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроды, эмитированные катодом, на пути к аноду приобретают значительную скорость и, соответственно, кинетическую энергию. После ускоряющего электрода электроны движутся равномерно. Питание пушки электрической энергией осуществляется от высоковольтного источника постоянного тока. Электроны имеют одинаковый заряд, поэтому они отталкиваются друг от друга, вследствие чего диаметр пучка увеличивается, а плотность энергии в пучке уменьшается.

Для увеличения плотности энергии в луче после выхода электродов из анода электроны фокусируются магнитным полем в специальной магнитной линзе (4). Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о поверхность изделия (6), при этом кинетическая энергия электронов, вследствие торможения в веществе, превращается в теплоту, нагревая металл до высоких температур.

Для перемещения луча по свариваемому изделию на пути электронов помещают магнитную отклоняющую систему (5), позволяющую направлять электронный луч точно по сварочному стыку.

Для обеспечения беспрепятственного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возможности дугового разряда между электродами в установке создается высокий вакуум не ниже 1,3 . 10~ 2 Па (1 . 10 -4 мм рт. ст.), обеспечиваемый вакуумной системой установки.

Работа, затраченная электрическим полем на перемещение заряда из одной точки в другую, равна произведению величины заряда на разность потенциалов между этими двумя точками. Эта работа затрачивается на сообщение электрону кинетической энергии.

Таким образом энергия электронов может достигать больших значений и зависит от разности потенциалов разгоняющего поля; в настоящее время эксплуатируются электронно-лучевые установки с ускоряющим напряжением в электронно-лучевой пушке до 200 кВ.

Физическая картина внешних явлений, сопровождающих действие электронов на металл, состоит из рентгеновского излучения, теплоизлучеия, возникновения отраженных, вторичных электронов, испарения металла в виде атомов и ионов металла. Схема данных явлений изображена на рис.3.

Вторичные электроны делятся на три группы: упруго отраженные электроны, энергия которых примерно равна падающим; электроны, отраженные в результате неупругого соударения и имеющие более или менее большие потери; собственно вторичные электроны, энергия которых не превышает 50 эВ.

Рис.3 Фйзическая картина явлений, сопровождающих проникновение электронов в веществе:

1 - атомы металла,

3 - пучок электронов,

4 -рентгеновское излучение,

5 - отраженные и вторичные электроны,

6 - тепловое и световое излучение

Характерные значения параметров сварочных электронных лучей:

Минимальный радиус пучков 0,1... 1 мм;

Электронный луч

Electron Beam

Электронный луч

Пучок электронов, движущийся в одном направлении с одинаковой скоростью.


Толковый англо-русский словарь по нанотехнологии. - М. . В.В.Арсланов . 2009 .

Смотреть что такое "электронный луч" в других словарях:

    электронный луч - Поток движущихся по близким траекториям электронов, размер поперечного сечения которого мал по сравнению с протяженностью в направлении потока. [ГОСТ 17791 82] электронный луч Совокупность электронов, движущихся по одной траектории. [ …

    Электронный луч - 6. Электронный луч Совокупность электронов, движущихся по одной траектории Источник: ГОСТ 21006 75: Микроскопы электронные. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    развёртывающий электронный луч - elektroninis skleidimo pluoštas statusas T sritis radioelektronika atitikmenys: angl. scanning electron beam vok. Elektronenabtaststrahl, m rus. развёртывающий электронный луч, m pranc. faisceau électronique balayeur, m …

    релятивистский электронный луч - reliatyvistinis elektronų pluoštas statusas T sritis radioelektronika atitikmenys: angl. relativistic electron beam vok. relativistischer Elektronenstrahl, m rus. релятивистский электронный луч, m pranc. faisceau électronique relativiste, m … Radioelektronikos terminų žodynas

    коэффициент связи через электронный луч - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN beam coupling factor … Справочник технического переводчика

    ЭЛЕКТРОННЫЙ МИКРОСКОП - ЭЛЕКТРОННЫЙ МИКРОСКОП, МИКРОСКОП, который «освещает» изучаемый объект потоком электронов. Вместо обычных линз в нем имеются магниты, фокусирующие электронный пучок. Это устройство позволяет разглядеть предметы очень малых размеров, потому что… … Научно-технический энциклопедический словарь

    Луч электронный - Электронный луч группа ускоренных электронов, движущихся приблизительно в одном направлении... Источник: ГОСТ Р 50014.7 92 (МЭК 519 7 83). Государственный стандарт Российской Федерации. Безопасность электротермического оборудования. Часть 7.… … Официальная терминология

    Луч - Содержание 1 Наука 2 Предприятия 3 Спортивные клубы … Википедия

    ЭЛЕКТРОННЫЙ МИКРОСКОП - вакуумный электронно оптич. прибор для наблюдения и фотографирования многократно увеличенного (до 106 раз) изображения объектов, полученного с помощью пучка электронов, ускоренных до больших энергий (30 100 кэВ и более). Для фокусировки… … Большой энциклопедический политехнический словарь

    электронный микроскоп - электронно оптический прибор, в котором для наблюдения и фотографирования многократно увеличенного (до 106 раз) изображения объектов используется пучок электронов, ускоренных до больших энергий в условиях глубокого вакуума. При этом используются… … Энциклопедия техники

Книги

  • , Кэтрин Рипли. О чем эта книга У детей всегда есть вопросы. Много вопросов. И большинство из них начинаются с одного-единственного слова - `Почему?`. Почему мы зеваем? Почему у кошекглаза светятся в…

Электронный пучок –это направленный поток электронов. Можно, например, получить электронный пучок из электронной лампы. Для этого необходимо сделать в аноде отверстие. Часть электронов ускоренных электрическим полем будут попадать в это отверстие и создавать за анодом электронный пучок. Причем мы сожжем даже управлять количеством электронов в этом пучке. Для этого надо будет поставить между катодом и анодом дополнительный электрод, потенциал которого мы будем изменять.

Основные свойства электронного пучка

  • При попадании пучка электронов на поверхность какого-либо тела, он будет вызывать нагревание этого тела.Это свойство электронных пучков широко используется для электронной плавки сверхчистых металлов.
  • Получение рентгеновского излучения, которое будет возникать приторможении быстрых электронов. Это свойство широко используется в рентгеновских трубах и аппаратах, сделанных на их основе.
  • При попадании пучка электронов на некоторые вещества, например, стекло, они начинают светиться. Этиматериалы получили название люминофоров.
  • Электронные пучки будут отклоняться электрическим полем. Если, например, мы пустим пучок электронов между пластинами конденсатора, электроны будут отклоняться от отрицательно заряженной пластины.
  • Электронный пучок отклоняется под действием магнитного поля. Если пустить пучок электронов над северным полюсом магнита, то он отклонится в левую сторону, а если над южным – в правую сторону. Именно поэтому полярное сияние можно наблюдать толькоу полюсов Земли.

Последние три свойства электронного пучка нашли применение в электронно-лучевой трубке.

Электронно-лучевая трубка

Общий вид и устройство электронно-лучевой трубки представлены на следующем рисунке:

картинка

В узком краю ЭЛТ расположена электронная пушка. Она состоит из катода и анода и является источником пучка электронов. В электронной пушке пучок электронов разгоняется до нужной скорости. Помимо этого, в электронной трубке пучок электронов фокусируется таким образом, чтобы площадь его поперечного сечения была почти точечных размеров.

После того, как пучок вылетает из электронной пушки он последовательно проходит через две пары управляющих пластин. Они способствуют изменению направления пучка. Если на них нет разности потенциалов, то пучок будет направлен в середину экрана. Если мы подадим напряжение на вертикально расположенные пластины, пучок сместится в горизонтальном направлении на некоторый угол. Если мы подадим напряжение на горизонтально расположенные пластины, соответственно, пучок сместится в вертикальном направлении. Таким образом, используя две пары пластин, мы можем добиться смещение луча в любую точку экрана.



Касса