Виды и типы современных тепловых электростанций (ТЭС). Сырье для тепловых электростанций

До вчерашнего дня в моем представлении все угольные электростанции были примерно одинаковыми и представляли из себя идеальные съемочные площадки фильмов ужасов. С почерневшими от времени конструкциями, котлоагрегатами, турбинами, миллионами различных труб и их хитрых сплетений с щедрым слоем черной угольной пыли. Редкие рабочие, больше похожие на шахтеров, в скудном освещении зеленых газовых ламп ремонтируют какие-то сложные агрегаты, тут и там, шипя, вырываются клубы пара и дыма, на полу разлились густые лужи из жиж темного цвета, повсюду что-то капает. Вот примерно такими я видел угольные станции и считал, что век их уже уходит. Будущее за газом - думал я.

Оказывается вовсе нет. Вчера я посетил новейший угольный энергоблок Черепетской ГРЭС в Тульской области. Оказывается, что современные угольные станции вовсе не чумазые, и дым из их труб идет не густой и не черный.

1. Черепетская ГРЭС – первая в Европе мощная паротурбинная электростанция сверхвысокого давления. Станция расположена в городе Суворов на реке Черепеть. Место для электростанции было выбрано по двум критериям: с одной стороны недалеко от шахт Подмосковного угольного бассейна, с другой - сравнительно недалеко от потребителей электроэнергии, расположенных в пределах Московской, Тульской, Орловской, Брянской и Калужской областей.

Несколько слов о принципе работы ГРЭС (спасибо Википедии):

В котел с помощью насосов подается под большим давлением вода, топливо и атмосферный воздух. В топке котла происходит процесс горения - химическая энергия топлива превращается в тепловую. Вода протекает по трубной системе, расположенной внутри котла.

(Фотография газового котла из репортажа с )

Сгорающее топливо является мощным источником теплоты, передающейся воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C и под высоким давлением 13–24 МПа по одному или нескольким трубопроводам подается в паровую турбину.

Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.

2. Согласно проектному решению, строительство третьей очереди осуществлялось в границах действующей Черепетской ГРЭС, что позволило частично использовать производственную инфраструктуру станции для обеспечения работы нового оборудования. Пусковой комплекс включает в себя главный корпус, пристанционный узел, системы топливоподачи и шлакоудаления, техводоснабжения и водоподготовки, очистные сооружения.

3. Забор воды осуществляется непосредственно из Черепетского водохранилища.

4. Вода проходит химическую очистку и глубокое обессоливание, чтобы в паровых котлах и турбинах не появлялись отложения на внутренних поверхностях оборудования.

5. Железнодорожным транспортом на станцию доставляются уголь и мазут.

6. Вагоны с углем разгружаются вагоноопрокидывателями, далее уголь по транспортерам поступает на открытый склад угля, где распределяется и срабатывается кранами-перегружателями на первой и второй очередях, на третьей рапределение идет бульдозерами, а сработка - роторным экскаватором.

7. Так уголь попадает на участки дробильной установки для предварительного измельчения угля и последующего пылеприготовления. В сам котел уголь подается в виде смеси угольной пыли и воздуха.

9. Котельная установка располагается в котельном отделении главного корпуса. Сам котел - это что-то гениальное. Огромный сложный механизм высотой с 10-этажный дом.

13. Гулять по лабиринтам котельной установки можно вечно. Время, отведенное на съемку дважды успело закончиться, но оторваться от этой промышленной красоты было невозможно!

15. Галереи, лифтовые шахты, переходы, лестницы и мосты. Одним словом - космос)

16. Лучи солнца осветили крошечного на фоне всего происходящего Виталика dervishv , и я невольно задумался, что все эти сложные гигантские конструкции придумал и построил человек. Вот такой маленький человек придумал десятиэтажные печи, чтобы в промышленных масштабах вырабатывать электроэнергию из полезного ископаемого.

17. Красота!

19. За стеной от котельной установки располагается машинный зал с турбогенераторами. Еще одно гигантское помещение, более просторное.

20. Вчера был торжественно введен в эксплуатацию энергоблок №9, что явилось завершающим этапом проекта расширения Черепетской ГРЭС. Проект включал строительство двух современных пылеугольных энергоблоков мощностью по 225 МВт каждый.

21. Гарантированная электрическая мощность нового энергоблока - 225 МВт;
Электрический КПД - 37.2 %;
Удельный расход условного топлива на выработку электроэнергии - 330 гут/кВт*ч.

23. В состав основного оборудования входят две паровые конденсационные турбины производства ОАО «Силовые машины» и два котлоагрегата, производителя ОАО «ЭМАльянс». Основное топливо нового энергоблока - Кузнецкий каменный уголь марки ДГ

24. Щит управления.

25. Энергоблоки оснащены первой на российском рынке интегрированной системой сухой пыле-сероочистки дымовых газов с электростатическими фильтрами.

26. Дымовая труба высотой 120 метров.

27. Блочный трансформатор.

28. ОРУ.

29. Ввод нового энергоблока позволит вывести из эксплуатации устаревшее угольное оборудование первой очереди без снижения объема выработки электроэнергии и суммарной установленной мощности станции.

30. Вместе с новым энергоблоком были построены две 87-метровые градирни - часть системы технического водоснабжения, которая обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин.

31. Семь пролетов по 12 метров. Снизу такая высота кажется не такой серьезной.

33. На верхней площадке трубы было одновременно и жарко и прохладно. Фотоаппарат постоянно запотевал.

34. Вид с градирни на третью очередь с двумя новыми энергоблоками. Новые энергомощности станции спроектированы таким образом, чтобы значительно снизить выбросы загрязняющих веществ, сократить пылевыделение при работе на складе угля, уменьшить количество потребляемой воды, а также исключить возможность загрязнения окружающей среды сточными водами.

36. Внутри градирни все оказалось довольно просто и скучно)

38. На фотографии хорошо видны все три очереди станции. Постепенно старые энергоблоки выведут из эксплуатации и разберут. Такие дела.

39. Большое спасибо Капитанову Сергею Михайловичу за интереснейшую экскурсию и терпение!

40. Выражаю благодарность пресс-службе «Интер РАО» за организацию съемки и всем коллегам фотографам за отличную компанию!

Тепловая электростанция

Теплова́я электроста́нция

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС – основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70–80 % (в России в 2000 г. – ок. 67 %). Тепловая на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое сжигают в котлоагрегатах ТЭС. В качестве топлива используется уголь, природный газ, мазут, горючие . На тепловых паротурбинных электростанциях (ТПЭС) получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину , соединённую с электрическим генератором. На таких электростанциях вырабатывается почти вся электроэнергия, производимая ТЭС (99 %); их кпд приближается к 40 %, единичная установленная мощность – к 3 МВт; топливом для них служат уголь, мазут, торф, сланцы, природный газ и т. д. Электростанции с теплофикационными паровыми турбинами, на которых тепло отработанного пара утилизируется и выдаётся промышленным или коммунальным потребителям, называются теплоэлектроцентралями. На них вырабатывается примерно 33 % электроэнергии, производимой ТЭС. На электростанциях с конденсационными турбинами весь отработанный пар конденсируется и в виде пароводяной смеси возвращается в котлоагрегат для повторного использования. На таких конденсационных электростанциях (КЭС) вырабатывается ок. 67 % электроэнергии, производимой на ТЭС. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

Паровые турбины ТЭС соединяют с электрогенераторами обычно непосредственно, без промежуточных передач, образуя турбоагрегат. Кроме того, как правило, турбоагрегат объединяют с парогенератором в единый энергоблок, из них затем компонуют мощные ТПЭС.

В камерах сгорания газотурбинных тепловых электростанций сжигают газ или жидкое топливо. Получаемые продукты сгорания поступают на газовую турбину , вращающую электрогенератор. Мощность таких электростанций, как правило, составляет несколько сотен мегаватт, кпд – 26–28 %. Газотурбинные электростанции обычно сооружают в блоке с паротурбинной электростанцией для покрытия пиков электрической нагрузки. Условно к ТЭС относят также атомные электростанции (АЭС), геотермальные электростанции и электростанции с магнитогидродинамическими генераторами . Первые ТЭС, работающие на угле, появились в 1882 г. в Нью-Йорке, в 1883 г. – в Санкт-Петербурге.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "тепловая электростанция" в других словарях:

    Тепловая электростанция - (ТЭС) - электрическая станция (комплекс оборудования, установок, аппаратуры), вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В настоящее время среди ТЭС… … Нефтегазовая микроэнциклопедия

    тепловая электростанция - Электростанция, преобразующая химическую энергию топлива в электрическую энергию или электрическую энергию и тепло. [ГОСТ 19431 84] EN thermal power station a power station in which electricity is generated by conversion of thermal energy Note… … Справочник технического переводчика

    тепловая электростанция - Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива … Словарь по географии

    - (ТЭС) вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Большой Энциклопедический словарь

    ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ - (ТЭС) предприятие для производства электрической энергии в результате преобразования энергии, выделяющейся при сжигании органического топлива. Основные части ТЭС котельная установка, паровая турбина и электрогенератор, превращающий механическую… … Большая политехническая энциклопедия

    Тепловая электростанция - ПГУ 16. Тепловая электростанция По ГОСТ 19431 84 Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    - (ТЭС),вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. ТЭС работают на твёрдом, жидком, газообразном и смешанном топливе (угле, мазуте, природном газе, реже буром… … Географическая энциклопедия

    - (ТЭС), вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Энциклопедический словарь

    тепловая электростанция - šiluminė elektrinė statusas T sritis automatika atitikmenys: angl. thermal power station; thermal station vok. Wärmekraftwerk, n rus. тепловая электростанция, f pranc. centrale électrothermique, f; centrale thermoélectrique, f … Automatikos terminų žodynas

    тепловая электростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

    - (ТЭС) Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 в Нью Йорке, 1883 в Петербурге, 1884 в… … Большая советская энциклопедия

March 23rd, 2013

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.

  В1879 г., когда Томас Алва Эдисон изобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле. По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.
  Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.
  Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности существующих установок. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых технологических процессов направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования различных видов угля и не требовали больших сроков строительства.

Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
  Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину высокого давления. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины низкого давления и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.
  Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.


  Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.
  Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).

ДЕМОНСТРАЦИОННАЯ СТАНЦИЯ "Cool Water" фирмы Southern California Edison ежедневно перерабатывает 1000 т каменного угля, получая сгорающий без отходов газ.
  Продукты сгорания приводят во вращение газовую турбину электрогенератора. Отработанное тепло выхлопных газов используется для производства водяного пара, который вращает паровую турбину другого электрогенератора.
  На фотографии видны два угольных бункера (в центре). Справа от них газификационная установка, система охлаждения газов и электрогенерирующее оборудование.


  В последние 20 лет на стоимость тепловых электростанций на угольном топливе наибольшее влияние оказывали ужесточившиеся требования к удалению газообразных,
  жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.
  Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу - более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.

Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
  Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
  Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
  Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.
  Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и финансовых проблем, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.
  Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
  В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.
  Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной составной частью эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.
  Рост удельных расходов на транспортировку и обработку угля и на шлакоудаление сделал важным фактором и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
  На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.
  Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.


СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции.
  Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости.
  Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле.
  Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота.


ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его можно использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл).
  Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле.



  В настоящее время разрабатывается более десятка способов сжигания угля с повышенным кпд и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха.
  Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.
  Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
  Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более низкого качества, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
  Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
  Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
  За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
  Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация каменного угля с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
  Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых эффективных способов производства электрической энергии.
  Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и природный газ, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно меньше воды, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
  Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции "Cool Water" фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
  Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
  Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о кислотных дождях, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и экологические проблемы, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство побочных продуктов сжигания угля.
  Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

ТЭС — это (расшифровка с амой аббревиатуры выглядит как "тепловая электростанция"), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 - 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как "конденсационная электростанция".

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как "теплоэнергоцентраль".

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

  • парогазовые.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Принцип работы ТЭС

ТЭС — это электростанция , на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

    Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

    Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

    Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

    Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

    Деаэ рированная вода подогревается и подается в котел.

    Преимущества ТЭС

    ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

    Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 - 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

    Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 - 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

    Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

    Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

    Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

    Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

    ТЭЦ-26 «Мосэнерго» (1800 МВт).

    Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.



Бизнес идеи