В чем проявляется взаимосвязь видов выветривания. Процесс химического выветривания. Кора выветривания и элювиальные отложения

Выветривание (синоним - гипергенез) - это совокупность абиотических и биологических процессов разрушения и образования горных пород и слагающих их минералов под воздействием агентов атмосферы, биосферы, гидросферы в верхних слоях земной коры. Неотъемлемой частью процессов выветривания являются процессы денудации - переноса продуктов разрушения горных пород в пониженные участки под действием внешних сил (вода, тепло, ветер и др.). В результате этих процессов образуется кора выветривания – вещественная часть литогенной основы. Мощность современной коры выветривания составляет от нескольких метров до десятков метров.

Выделяют три вида выветривания: физическое, химическое и биологическое.

Физическое выветривание - это процесс разрушения (растрескивания, дробления) минералов под воздействием давления, возникающего за счет суточных и сезонных колебаний температуры (тепловое расширение и сжатие минералов, замерзание и оттаивание воды), механической деятельности ветра, потоков воды, корней растений. В результате увеличивается дисперсность и удельная поверхность пород, снижается их плотность.

Химическое выветривание - процесс химического изменения и разрушения горных пород и минералов с образованием новых минералов и, в конечном итоге, новых пород.

Химические реакции происходят при участии воды, углекислого газа, кислорода и других веществ.

Вода растворяет вещества, содержащиеся в горных породах и минералах, при этом в раствор поступают катионы и анионы, изменяющие кислотно-щелочные условия. Это увеличивает растворяющую способность воды. Разложение минералов водой усиливается с повышением температуры и насыщением ее углекислым газом, который подкисляет реакцию среды. Гидролиз минералов, реагирующих с водой, приводит к образованию новых минералов. В преобразовании минералов в присутствии угольной кислоты большую роль играют реакции карбонатизации (образования карбонатов) и декарбонатизации (разрушение карбонатов).

Реакции окисления-восстановления принимают активное участие в процессах гипергенеза. Красные, красно-бурые, желтые окраски кор выветривания обусловлены окисленными формами железа, марганца и других элементов. В восстановительных условиях преобладают сизые и серые тона. В ходе химического выветривания развивается элювиальный процесс - вынос с растворами ряда элементов за пределы коры выветривания. В первую очередь вымываются наиболее растворимые соединения, что обусловливает стадийность процесса выветривания. В соответствии со стадийностью и химическим составом существует большое разнообразие кор выветривания. Они подразделяются по возрасту: современные, древние, ископаемые; по геохимическому типу: элювиальные, транзитные, аккумулятивные; по вещественному составу и стадиям выветривания: обломочные (состоят из обломков пород), засоленные (содержат водорастворимые соли), сиаллитные (отношение SiO 2:Al 2 O 3 >2), аллитные (SiO 2:Al 2 O 3 <2). Обломочные, сиаллитные коры выветривания формируются и сохраняются в условиях умеренного климата и характеризуются начальными стадиями выветривания; аллитные, более зрелые, - формируются в условиях влажного тропического климата.



В процессе выветривания преобладает разрушение первичных минералов, которые образовались в глубоких слоях земной коры при высоких температурах и давлении. Попадая на поверхность земной коры, в иные термодинамические условия, они теряют устойчивость.

Первичные минералы различаются по устойчивости к выветриванию в соответствии со строением и составом. Наиболее устойчивым из широко распространенных минералов является кварц, к мало устойчивым относятся полевые шпаты. Образующиеся в процессе гипергенеза вторичные глинистые минералы играют большую роль в процессах почвообразования и являются более устойчивыми к выветриванию в условиях земной поверхности.

Биологическое выветривание - процесс разрушения и изменения горных пород и минералов под действием организмов и продуктов их жизнедеятельности. При биологическом выветривании механизмы процессов разрушения, изменения минералов и пород те же, что и при физическом и химическом выветривании. Однако интенсивность процессов существенно увеличивается, поскольку увеличивается агрессивность среды. Корни растений и микроорганизмы выделяют во внешнюю среду углекислый газ и различные кислоты (щавелевую, янтарную, яблочную и др.). Нитрофикаторы образуют азотную кислоту, серобактерии - серную. В процессе разложения мертвых остатков растений и животных образуются агрессивные гумусовые кислоты - фульвокислоты, способные разрушать минералы. Многие виды бактерий, грибов, водоросли, лишайники могут усваивать элементы питания непосредственно из первичных минералов, разрушая их при этом. Именно таким является механизм первичного почвообразования.

В верхней части коры выветривания процесс выветривания протекает совместно с процессом почвообразования и является неотъемлемой составной частью почвообразования, так же как почвообразование является неотъемлемой частью выветривания. Однако в более глубоких слоях за пределами почвенного профиля, а также в подводных ландшафтах выветривание выделяется как самостоятельный процесс. В этих слоях в процессах выветривания так же принимают участие микроорганизмы и продукты их жизнедеятельности.

Процессы выветривания являются начальным этапом большого геологического круговорота веществ. Геологические процессы разделяются на две большие группы: эндогенные (внутренние), которые зарождаются в глубинных оболочках Земли за счет энергии радиоактивного распада, и экзогенные (поверхностные), обусловленные внешней энергией.

К эндогенным (внутренним) процессам относятся: магнетизм, метаморфизм, вулканизм, движения земной коры (землетрясения и горообразование).

К экзогенным - выветривание, деятельность атмосферных и поверхностных вод, ледников, подземных вод, морей и океанов, животных и растительных организмов. Особо следует выделить геологическую деятельность человека - техногенез. Взаимодействие внутренних и внешних геологических процессов объединяет большой геологический круговорот веществ.

В результате действия эндогенных процессов образуются крупные формы рельефа земной поверхности: горные системы, возвышенности, низменности, океанические впадины. Под действием экзогенных процессов происходит разрушение магматических горных пород, перемещение продуктов разрушения в реки, моря и океаны, и формирование осадочных пород. В результате движений земной коры осадочные породы погружаются в глубокие слои, подвергаются процессам метаморфизма (действию высоких температур и давления), и образуются метаморфические породы. Последние при погружении в более глубокие слои могут переходить в расплавленное состояние (магматизация), а затем в результате вулканической деятельности поступать в верхние слои литосферы или на ее поверхность в виде магматических пород. Таким образом, происходит образование основных групп почвообразующих пород и различных форм рельефа.

2.3.2. Систематика осадочных пород.

По происхождению они подразделяются на морские и континентальные. По возрасту осадочные породы подразделяются на древние и четвертичные. Четвертичные отложения образовались в последние 1,5-2 млн лет и продолжают формироваться в настоящее время. Четвертичные осадочные породы характеризуются рыхлым сложением, невысокой плотностью, сложены частицами разного размера и разной степени окатанности: валуны, галечники, пески, суглинки и др.

Древние осадочные породы так же состоят из обломков и мелких частиц разного размера, но в отличие от четвертичных имеют плотное сложение, более высокую плотность, как правило, сцементированы соединениями кремнезема, железа, извести и др. В земной коре преобладают древние осадочные породы, которые накапливались во все геологические эпохи, но в качестве почвообразующих преобладают четвертичные отложения, перекрывающие сравнительно тонким слоем (от нескольких сантиметров до нескольких метров, иногда десятков метров) другие виды горных пород, получивших название коренные.

По составу осадочные породы подразделяются на обломочные, хемогенные и биогенные.

Обломочные отложения различаются по величине обломков и частиц: валуны, камни, гравий, щебень, пески, суглинки и глины. К ним относятся также древние сцементированные аналоги: брекчии, конгломераты, песчаники, глинистые сланцы.

Хемогенные отложения образовались в результате выпадения солей из водных растворов в морских заливах, озерах, в условиях сухого жаркого климата или в результате химических реакций. К ним относятся галоиды (каменная и калийная соль), сульфаты (гипс, ангидрид), карбонаты (известняковый туф, известняк, доломит, мергель), силикаты (кремневый туф, или гейзерит) и фосфаты (фосфорит). Многие из перечисленных пород - гипс, ангидрид, калийная соль, фосфориты, известняковые туфы, известняки, доломит, мергель - являются ценными агрономическими рудами и используются как химические мелиоранты, минеральные удобрения и как сырье для производства цемента и химической промышленности.

Почвы, образующиеся на чистых химических осадках солей, как правило, характеризуются крайне низким плодородием; на известняках и меловых отложениях, особенно в условиях влажного климата, формируются плодородные почвы с высоким содержанием гумуса и благоприятными физическими свойствами.

Биогенные отложения образовались из скоплений остатков растений и животных. По составу они подразделяются на карбонатные, кремнистые и углеродистые.

К карбонатным породам относятся биогенные известняки и мел. Примером кремнистых пород является доломит, состоящий из остатков диатомовых водорослей. Углеродистые породы имеют высокое содержание органических веществ и обладают горючестью. К ним относятся ископаемые угли, торф, сапропель, а также нефть и газы. Известно их большое практическое значение.

Сапропель формируется на дне пресноводных озер и представляет собой ил, обогащенный органическим веществом и элементами питания для растений. Используется он как органическое удобрение и мелиорант. Некоторые бурые угли и лигниты так же используются как органо-минеральные удобрения и мелиоранты.

2.3.3. Главные генетические типы четвертичных осадочных пород

Элювиальные отложения (элювий) - продукты выветривания массивно-кристаллических пород, оставшиеся на месте их образования. Элювий характеризуется разным составом и мощностью, в зависимости от состава исходных пород (элювий гранитов, базальтов и др.), длительности процесса выветривания, климатических условий, в которых происходило выветривание. Для него характерен постепенный переход от землистого материала верхних слоев, через крупнообломочный к исходной коренной породе. Расположен элювий на вершинах водоразделов, где смыв выражен слабо или отсутствует. Свойства почв, сформировавшихся на элювии, также очень разнообразны (от кислых до щелочных, от малоплодородных до высокоплодородных) и зависят от состава и свойств элювиальных отложений и условий формирования.

Делювиальные отложения (делювий) - продукты эрозии, отложенные временными водотоками дождевых и талых вод в нижней части склонов, примыкающих к горам, водоразделам, к понижениям и западинам на водоразделах. Они имеют хорошо выраженную дифференциацию вдоль склона. У подножья крутых склонов откладываются более крупные грубообломочные наносы, ниже - более отсортированные и тонкозернистые отложения.

Состав делювия определяется составом пород, которыми сложены горы и водоразделы. Он может включать обломки массивно-кристаллических пород, пески и состоять из суглинистого и глинистого материала, например, переотложенного лесса, моренных суглинков. Как правило, делювиальные отложения имеют небольшую мощность до 2-5 м и залегают в виде пологих шлейфов.

Пролювиальные отложения (пролювий) образовались в результате переноса и отложения продуктов выветривания временными горными реками и обладающими большой силой потоками у подножий склонов. Характеризуются плохой отсортированностью, включают обломки разного размера и разной степени окатанности. У подножий гор они образуют конусы выноса и часто сочетаются с делювиальными отложениями, образуя делювиально-пролювиальные отложения.

Аллювиальные отложения (аллювий) образовались в результате переноса и отложения продуктов выветривания речными водами. Реками переносятся вещества, поступающие в них с поверхностным стоком. Кроме того вода в реках совершает большую эрозионную работу. Размыв и масса транспортируемого материала резко возрастает с увеличением скорости течения, которая зависит от уклона местности. При снижении скорости движения воды в период паводков в пойме, в дельтах рек, в старицах происходит отложение и накопление транспортируемого материала - аккумуляция. Различают русловый аллювий, содержащий более крупные гравелистые и песчаные материалы; отложения стариц представлены супесями, суглинками, илами с примесью органических веществ. Пойменные отложения прирусловой части, где скорость воды наиболее высокая, имеют более крупнозернистый состав (песчаный и супесчаный) с хорошо выраженной слоистостью, связанной с изменением скорости движения воды в разные годы и в разные периоды паводков. Центральная пойма сложена более тонким суглинистым материалом, поскольку скорость воды здесь не высокая.

Различают древнеаллювиальные отложения (ими сложены речные террасы) и современные - в поймах рек. Последние продолжают формироваться в настоящее время. Аллювий, как правило, обогащен элементами питания для растений, поэтому почвы на аллювиальных отложениях обладают повышенным плодородием.

Озерные отложения представляют собой донные отложения озер. Они сложены наиболее тонкими частицами мелкозема - глинами и илами с хорошо выраженной слоистостью (ленточные глины), отражающей сезонные и многолетние процессы их формирования. Илы с высоким содержанием органических веществ (15-20%) называются сапропелем, который используется как ценное органическое удобрение, обогащенное элементами питания для растений. По мере обмеления и зарастания озер образуются болота, которые постепенно превращаются в мощные торфяники. Озерные болотные отложения часто имеют повышенное содержание извести и железа, а в сухих и жарких областях обогащены водорастворимыми солями, гипсом, карбонатами кальция. Большое распространение озерные отложения имеют в северо-западных областях европейской части России, в Прикаспийской низменности, в Западной Сибири.

Морские отложения - это донные отложения морей. При отступлении морей (трансгрессии) они остаются в качестве почвообразующих пород. Значительное распространение имеют в Прикаспийской низменности, в Приазовье, на побережьях северных морей. Морские отложения часто содержат водорастворимые соли, биогенные известняки, ракушечники, мел. На таких породах, особенно в южных областях, часто формируются засоленные почвы. Они так же обусловливают повышенную степень минерализации грунтовых вод.

Ледниковые (гляциальные), или моренные отложения - продукты выветривания различных пород, перемещенные и отложенные ледником. Ледником называют естественное скопление кристаллического льда, имеющего значительные размеры. Обладая пластическими свойствами, ледник движется под действием силы тяжести. Движение его возможно при толщине льда 15-20 м, когда масса превышает силу трения. Скорость движения горных ледников составляет 1-7 м в сутки, а материковых - до 20 и более метров.

Обширная территория России в ледниковую эпоху подвергалась материковому оледенению в связи с похолоданиями климата. Ледниковые эпохи неоднократно сменялись межледниковыми, которые характеризовались отступлением ледников, а талые воды вызывали морские регрессии. В эпоху максимального оледенения европейский ледниковый щит достигал более двух километров толщины, покрывал площадь 5,5 млн. км 2 , продвигаясь с севера на юг. Граница оледенения опускалась южнее Брянска, Киева.

Моренные отложения представляют собой несортированный грубообломочный материал, состоящий из глины, суглинков, супесей, песков красно-бурого или серого цвета с включениями гальки, камней разного размера, валунов. Они характеризуются отсутствием слоистости. Моренные отложения широко распространены в качестве почвообразующих в таежно-лесной зоне и на севере лесостепной в европейской части России. По химическому составу ледниковые отложения разделяются на алюмосиликатные моренные и карбонатные моренные суглинки. На алюмосиликатной морене формируются подзолистые и дерново-подзолистые почвы с низким естественным плодородием, с кислой реакцией среды, с большим количеством камней и валунов в верхних слоях и на поверхности. На карбонатной морене, в связи с наличием оснований кальция и магния, формируются более плодородные почвы с менее кислой и нейтральной реакцией среды. На таких почвах более интенсивно протекает биологический круговорот веществ Воды формирующиеся на карбонатных породах обогащены основаниями.

Флювиогляциальные (водноледниковые) отложения временных водотоков и замкнутых водоемов, образовавшихся при таянии ледника, соответственно происхождению и положению по отношению к леднику, подразделяются на две группы.

1. Приледниковые , залегающие позади конечноморенных гряд (озы, камы, друмлины), сложены песчано-гравийно-галечниковым материалом; ленточные глины - отложения приледниковых озер, в которых чередуются прослойки песка и глины.

2. Внеледниковые отложения образованы потоками вод, вытекающими из-под ледников, и расположены впереди каменно-моренных гряд. Их называют зандрами. Зандровые равнины сложены песчаными и супесчаными отложениями, слоистыми осадками с включениями гравия, гальки. К равнинам такого типа могут быть отнесены Мещерская низменность, Полесье.

Покровные суглинки относятся к внеледниковым отложениям и рассматриваются как отложения мелководных приледниковых разливов талых вод. Они перекрывают морену сверху слоем 3-5 м, откуда и получили название. Покровные суглинки имеют желто-бурую окраску, хорошо отсортированы, не содержат камней и валунов. В их составе преобладают фракции крупной пыли (0,05 - 0,01 мм) и ила (<0,001 мм). Как правило, покровные суглинки не содержат карбонатов. В качестве почвообразующих они широко распространены в таежно-лесной и в северной части лесо-степной зоны наряду с моренными отложениями. На них формируются подзолистые, дерново-подзолистые и серые лесные почвы.

Почвы на покровных суглинках, особенно легко- и среднесуглинистые разновидности, обладают более высоким плодородием по сравнению с такими же почвами на моренных отложениях.

Лессы и лессовидные суглинки имеют различное неокончательно установленное происхождение. Считается, что они могут быть водно-ледникового, древнеаллювиального, эолового, делювиально-пролювиального происхождения с последующим преобразованием в условиях аридного климата. Эти суглинки характеризуются палевой окраской, повышенным содержанием пылеватых и илистых фракций, рыхлым сложением, высокой пористостью, высоким содержанием карбонатов кальция, а на юге - гипса и водорастворимых солей. Они распространены на больших площадях в лесостепной, степной и сухостепной зонах на Русской равнине, равнинах Сибири, в Предкавказье. На них образовались высокоплодородные серые лесные почвы, черноземы, каштановые почвы, сероземы Средней Азии.

Эоловые отложения образовались в результате деятельности ветра. Эол, по древнегреческой мифологии, - бог ветра. Разрушительная деятельность ветра слагается из коррозии и дефляции.

Коррозия - обтачивание, шлифование песком горных пород, скал ветром. Дефляция - сдувание и перенос ветром мелких частиц почв и горных пород. Оба эти процесса часто объединяют понятием ветровой эрозии. К эоловым отложениям относят пески дюн, барханов, барханных гряд. Они образуются, преимущественно, при перевевании аллювиальных, морских, флювиогляциальных, озерных песков. Характерная особенность эоловых песков - подвижность, рыхлое сложение, хорошая сортировка, отшлифованная округленность песчинок, высокая водопроницаемость. Почвы, формирующиеся на песках, обладают слабой водоудерживающей способностью и низким плодородием. Распространены в пустынях Средней Азии и на побережье Балтийского моря.

Двучленные и многочленные почвообразующие породы выделяются в тех случаях, когда в пределах почвенной толщи происходит смена пород. Наиболее часто встречаются в таежно-лесной зоне. Например, покровные суглинки, подстилаемые мореной или флювиогляциальными песками.

2.4. Влияние горных пород на другие компоненты ландшафта.

Горные породы оказывают влияние на все компоненты ландшафта. Почвы наследуют от горных (почвообразующих) пород гранулометрический, минералогический и химический составы, ряд физических свойств. Свойства почв отражаются в растительном покрове. На породах, обогащенных элементами питания и основаниями, как правило, образуются плодородные почвы с обильной растительностью, наоборот, на бедных породах формируются почвы с низким плодородием и скудной растительностью. Почвы, унаследовавшие негативные, с агрономической точки зрения, свойства, такие как каменистость, высокая плотность, наличие водорастворимых солей и др имеют специфическую растительность и требуют специальных затрат на их освоение и улучшение. Горные породы могут в корне изменять скорость и направление почвообразовательных процессов, что приводит к формированию азональных типов почв, например, дерново-карбонатные почвы в таежно-лесной зоне среди подзолистых.

С составом горных пород тесно связан состав почвенно - грунтовых вод. На карбонатных породах формируются грунтовые воды с повышенным содержанием кальция; на засолённых - с повышенным содержанием водорастворимых солей и др.

Можно привести примеры влияния пород на состав атмосферного воздуха. Это обилие пыли в воздухе на глинистых породах и почвах, обилие песка на песчаных, повышенные концентрации водорастворимых солей на территориях с засолёнными почвами и породами.

Выветривание – это процесс разрушения и изменения состава пород вследствие колебаний температуры, замерзания и оттаивания воды, химического воздействия воды, растворенных в ней газов, кислот и щелочей, под действием ветра, растений и животных и др. Выветривание наиболее интенсивно протекает на поверхности земли, но распространяется и в глубину, особенно по зонам ослабления в породах – трещинам, разломам.

Различают выветривание физическое, химическое и биологическое или органическое. Физическое выветривание преобладает в условиях резко континентального или холодного климата и его значение состоит в раздроблении, дезинтеграции пород (см. обломочные ОГП). При химическом выветривании меняется минералогический состав пород. Активные реагенты при этом – вода, кислород, углекислота, органические кислоты. Наиболее общие процессы химического выветривания - растворение, гидратация, окисление, гидролиз; некоторые процессы называют по характеру образующихся при этом минералов: каолинизация, карбонизация, серпентинизация и др. Биологическое или органическое выветривание, связывая его с действием живых организмов; примеры биологического выветривания – действие корней растений, мхов и лишайников, животных - землероев, различных микроорганизмов.

В природе все виды выветривания протекают совместно, при определяющем влиянии того или другого, в зависимости от конкретных условий – климатических, геологических, гидрогеологических и др.

6.2. Кора выветривания и элювиальные отложения

В результате выветривания породы изменяются на некоторую глубину – обычно несколько метров, а в районах тропического климата до 100 метров. Эта зона сильно измененных пород вместе с почвой называется корой выветривания. Крупнообломочные и песчано-глинистые породы коры выветривания представляют собой элювиальные отложения или элювий. В общем случае кора выветривания имеет следующее строение (рис.6.1). Цифрами указаны:

1 – невыветрелая (материнская) порода; 2 – глыбовая зона, то есть выветрелая трещиноватая порода (вплоть до разборной скалы – рухляка); 3 – зона грубого дробления - крупнообломочный грунт (щебень, дресва с песчано-глинистым заполнителем); зона тонкого дробления: 4 – песок; 5 – глинистая порода; 6 – почва; 7 – уровень сноса пород (базис денудации а-а) или дно котлована; 8 – трещины выветривания; 9 – «острова» элювия среди разборной скалы.

Рис. 6.1. Кора выветривания:

1 – материнская порода; 2 – выветрилая скала; 3 – крупнообломочный грунт; 4 – песок; 5 – глинистая порода; 6 – почва; 7 – базис денудации;

8 – трещины выветривания; 9 – «острова» элювия среди скального грунта

Исходя из условий образования, элювиальные отложения представлены крупнообломочными, песчаными и глинистыми породами и характеризуются следующими свойствами:

Обломки имеют неокатанную, угловатую форму (щебень, дресва, хрящ); поверхность песчаных частиц шероховатая, что связано с отсутствием переноса материала;

Слоистость отсутствует, имеет место постепенный переход одной зоны в другую (рис.6.1);

Неоднородность механического состава;

Минералогический состав элювия связан с подстилающей материнской породой;

Наибольшее распространение и мощность элювия характерны для невысоких плоских водоразделов и отрицательных форм рельефа (понижений), где слабо проявляется денудация;

Нижняя граница элювия обычно неровная из-за разнообразия влияющих на выветривание факторов.

Возможность использования элювия в качестве основания сооружения зависит от мощности и вида грунта, его состава и состояния, а также от действующих нагрузок. Здания и сооружения с умеренными нагрузками успешно возводятся на элювиальных грунтах, особенно в районах широкого их распространения (Урал, Дальний восток). С другой стороны, для тяжелонагруженных особо ответственных сооружений (плотины, опоры мостов и др.) может потребоваться полное удаление выветрелых пород. Например, при возведении плотины Братской ГЭС снималось 1,5 метра верхней части слоя диабаза – основания плотины.

Особый характер имеет выветривание глинистых пород, происходящее в котлованах, откосах, подземных выработках. Увеличение влажности вызывает набухание породы с нарушением цементационных связей. Подсыхание приводит к усадке с появлением трещин. Аналогичные результаты может дать снятие части природной нагрузки (например, при отрывке котлована). Все такие изменения приводят к разупрочнению грунта и последующему разрушению. Это характерно и для таких полускальных пород, как аргиллиты, глинистые сланцы, мергели, опоки и др. Поэтому в строительных технологиях не допускаются длительные перерывы между разработкой котлована и бетонированием фундамента.

Выветривание – всеобщий процесс, действующий и на материалы искусственных сооружений, откосы выемок и насыпей и т.д. Защита от выветривания достигается нанесением на поверхности пород и материалов стойких покрытий или пропиткой их различными вяжущими.

Магматические и метаморфические породы при выходе на поверхность подвергаются разрушению. Они измельчаются, превращаются в рыхлые породы, изменяется их химический состав.

Выветриванием называют процесс механического разрушения и химического изменения горных пород и составляющих их минералов. На горную породу совместно воздействуют живые организмы, вода, газы и колебания температур. Все эти факторы оказывают на породу разрушающее действие одновременно. В зависимости от преобладающего фактора различают три формы выветривания: физическое, химическое и биологическое. Вместе с тем следует иметь в виду, что всякое изменение химического состава породы приводит к изменению ее физических свойств.

Физическое выветривание - это механическое разрушение горных пород без изменения химического состава. Главный фактор физического выветривания - колебание суточных и сезонных температур. При нагревании происходит расширение минералов, входящих в горную породу. Поскольку различные минералы имеют разные коэффициенты объемного и линейного расширения, возникает местное давление, разрушающее породу. Этот процесс происходит в местах контакта различных минералов и пород. При чередовании нагревания и охлаждения между кристаллами образуются трещины. Проникая в мелкие трещины, вода создает такое капиллярное давление, при котором даже самые твердые породы разрушаются. При замерзании воды эти трещины увеличиваются. В условиях жаркого климата в трещины попадает вода вместе с растворенными солями, кристаллы которых также разрушающе действуют на породу. Таким образом, в течение длительного времени образуется множество трещин, приводящих к полному механическому разрушению горной породы. Разрушенные породы приобретают способность пропускать и удерживать воду. В результате раздробления массивных пород сильно увеличивается общая поверхность, с которой соприкасаются вода и газы, что обусловливает протекание химических процессов.

Химическое выветривание приводит к образованию новых соединений и минералов, отличающихся по химическому составу от первичных минералов. Оно осуществляется под воздействием воды с растворенными в ней солями и диоксидом углерода, а также кислорода воздуха. Химическое выветривание включает следующие процессы: растворение, гидролиз, гидратацию, окисление. Растворяющее действие воды усиливается с повышением температуры. При повышении ее на каждые 10 °С скорость химических реакций увеличивается в 2,0...2,5 раза. Если в воде содержится диоксид углерода, то в кислой среде минералы разрушаются быстрее.

Так, растворимость известняка резко усиливается вследствие перехода СаСО 3 в более растворимый гидрокарбонат:

СаСO 3 + СO 2 + Н 2 O = Са(НСO 3) 2 .

Гидролиз - основная химическая реакция минералов магматических пород с водой. При этом катионы калия, натрия, кальция и магния в кристаллической решетке алюмосиликатов замещаются водородными катионами воды.

Гидратация - процесс присоединения молекул воды к минералам.

При гидратации происходит разрыхление поверхности минералов, благодаря чему усиливается воздействие на них водных растворов и газов.

Окисление - процесс, связанный с действием атмосферного кислорода на минералы, содержащие оксид железа (II) или другие элементы, способные к окислению, например:

4FeCO 3 + ЗН 2 O + O 2 = 2Fe 2 O 3 ЗН 2 O + 4СO 2 .

В результате выветривания магматических пород образуются оксиды, переотложенные осадки и растворимые соли.

Биологическое выветривание - это механическое разрушение и химическое изменение горных пород под воздействием живых организмов и продуктов их жизнедеятельности. Этот вид выветривания связан с почвообразованием. Если при физическом и химическом выветривании происходит только превращение магматических горных пород в осадочные, то при биологическом выветривании образуется почва, в ней накапливаются элементы питания растений и органическое вещество.

В почвообразовательном процессе участвуют бактерии, грибы, актиномицеты, зеленые растения, а также различные животные (дождевые черви, землеройные животные, насекомые и др.). Горные породы разлагают и многочисленные микроорганизмы. Так, нитрифицирующие бактерии образуют сильную азотную кислоту, а серобактерии - серную кислоту, которые энергично разлагают алюмосиликаты и другие минералы. Силикатные бактерии, выделяя органические кислоты и диоксид углерода, разрушают полевые шпаты, фосфориты и переводят калий и фосфор в форму, доступную для растений.

Водоросли (диатомовые, сине-зеленые, зеленые и др.) также разрушают горные породы. Особенно велика роль диатомовых водорослей, которые для построения своего скелета извлекают из алюмосиликатов кремниевую кислоту.

Лишайники, поселившиеся на горных породах, разрушают их посредством выделения специфических лишайниковых кислот и диоксида углерода. Кроме того, гифы лишайника способны проникать в тончайшие поры горных пород, что приводит к их физическому разрушению. Под лишайниками происходит некоторое накопление фосфора, калия, серы и других элементов, наличие которых обусловливает поселение на их месте мхов, а затем и высших растений. Мхи задерживают много влаги, что еще усиливает разрушение пород.

Зеленые растения выделяют органические кислоты и другие биогенные вещества, которые взаимодействуют с минеральной частью, образуя сложные органо-минеральные соединения. Корневые системы избирательно усваивают зольные элементы. После отмирания растений в верхних почвенных горизонтах происходит накопление азота, фосфора, калия, кальция, серы и других биогенных элементов. Кроме того, корни растений, особенно древесных, проникая в глубь горных пород по трещинам, оказывают давление на породы и разрушают их механически.

Таким образом, под влиянием физического, химического и биологического выветривания горные породы, разрушаясь, обогащаются мелкоземом, глинистыми и коллоидными частицами, приобретают поглотительную способность, становятся влагоемкими, водо- и воздухопроницаемыми; в них накапливаются элементы питания растений и органическое вещество. Это приводит к возникновению существенного свойства почвы - плодородия, которого не имеют горные породы.

Оно относится к экзогенным (внешним) силам, влияющим на . Выветривание бывает разных видов:

Разновидностью физического является морозное выветривание, характерное для и субарктических климатических зон. Здесь вода замерзает не только в трещинах, но и в капиллярах, разрывая горную породу до рыхлого состояния.

Химическое выветривание . Это разрушение горных пород при взаимодействии их с химически активными элементами (кислородом, углекислым газом, органическими кислотами). Этот тип выветривания особенно заметен в породах, содержащих железо, - они покрываются бурой коркой. Главными районами земного шара, где происходит подобный процесс, являются и тропические широты. Здесь горные породы разрушаются дождевой водой с растворенными в ней химически активными элементами.

Для этого типа выветривания характерно накопление в озерах и : бокситов, фосфоритов, кобальта, осадочного железа.

Органическое выветивание . Оно протекает под действием живых организмов, которые дробят горные породы корнями растений и кислотой при разложении растительных и животных остатков. Животные, делая ходы и норы в , разрыхляют ее. Некоторые морские моллюски просверливают себе норы в прочных прибрежных скалах. Мхи и лишайники выделяют кислоты, растворяющие горные породы. Главный результат органического выветривания - образование почв.

Толща горных пород, которая подверглась разрушению, образует кору выветривания - рыхлый слой, создающийся в зоне просачивания воды. В жарком и , где условия наиболее благоприятны для его образования, кора выветривания достигает 100-200 м и более, хотя обычно толщина ее 30-60 м. В зависимости от различна не только мощность коры выветривания, но и ее состав.

Невидимые, неприметные силы выветривания, работающие изо дня в день, разрушают скалы, возле которых накапливаются крупные и мелкие обломки размером от глыб до песка. Они скатываются, сползают, скользят по склону, образуя осыпи. Обычно они имеют форму конуса, прислоненного к склону. Постепенно осыпь растет в ширину и высоту, стыкуется с соседними, образуя шлейф осыпей. Горы как бы «тонут» в грудах обломков. Осыпи образуются чаще весной, при таянии снега, или в тихую морозную .

ВЫВЕТРИВАНИЕ, процессы механического разрушения и химического изменения горных пород на поверхности суши или небольшой глубине (атмосферное выветривание) и на дне водоёмов (смотри Гальмиролиз). Основными факторами, воздействующими на горные породы, являются сезонные и суточные колебания температуры, химические и механические воздействия атмосферного и грунтового воздуха (в том числе О 2 , СО 2 и водяных паров), жидкой воды (атмосферной и грунтовой), замерзающей воды, кристаллизующихся солей, макро- и микроорганизмов. Скорость, степень и вид выветривания, мощность чехла продуктов выветривания, их гранулометрический и минералогический составы зависят от климата, рельефа, геологического строения, состава и структуры материнских горных пород. По виду воздействия выделяют два основных типа выветривания - физическое и химическое. Биологическое (органическое) выветривание сводится к биомеханическому и биохимическому изменению горной породы. Обычно типы выветривания действуют одновременно, но в зависимости от климата тот или иной из них преобладает.

Физическое выветривание приводит к механическому распаду исходной монолитной горной породы на обломки без заметного преобразования её минерального состава. В чистом виде оно наблюдается в условиях дефицита влаги или при её низких температурах. В аридных областях происходит быстрое изменение объёма горных пород под воздействием резких суточных колебаний температуры при нагревании солнечными лучами и последующем ночном охлаждении (ингаляционное, температурное выветривание). Особенно эффективно такое выветривание в полиминеральных кристаллических породах, частицы которых имеют различную теплопроводность. Растрескивание породы способствует расклинивающему действию плёночной воды, расширению трещин за счёт роста кристаллов из высыхающих растворов. Существенно также растрескивание при усыхании ранее набухших увлажнённых рыхлых грунтов. В высокоширотных и высокогорных областях с частыми колебаниями температуры около 0°С механическое разрушение пород связано с замерзанием воды, проникшей в уже имеющиеся трещины (морозное выветривание). Разрушение поверхности горных пород за счёт расширения разнонаправленных пересекающихся трещин приводит к выкалыванию многогранников породы различных размеров и формы. Для фракций < 20 мм типична форма обломка в виде неправильной гранулы. Разрушение породы происходит при наличии скрытых трещин и дефектов в строении кристаллической решётки минералов. Попеременное сильное промерзание и оттаивание пород (криогенное выветривание) могут сопровождаться накоплением тонких пылеватых продуктов.

Химическое выветривание приводит к изменению химического состава породы, обычно с удалением относительно подвижных ионов и с образованием минералов, стойких в условиях земной поверхности. Характерно для областей с тёплым, умеренно или избыточно влажным климатом. Особенно интенсивно оно происходит при высокой дисперсности и водопроницаемости пород, подготовленных физическим выветриванием. Энергичным окислителем является О 2 воздуха и грунтовых вод, растворённый СО 2 повышает химическую активность вод. Нагретая солнечными лучами вода действует на породу путём непосредственного растворения, гидратации и гидролиза. При химическом выветривании из пород в растворах выносятся преимущественно Са, Mg, К, Na и присоединяются Н 2 О, О 2 , СО 2 . Все образовавшиеся вторичные минералы содержат сорбционную и кристаллизационную воду. Окисление характерно для выветривания пород, богатых сульфидами или обогащённых двухвалентными ионами Fe и Mg. В восстановительных условиях происходит оглеение пород, приводящее к выносу из них Fe, Мn, Со, Ni, Zn. Окисление, сорбция, гидратация осуществляются с выделением энергии. При гидролизе алюмосиликатов первичные породообразующие минералы превращаются во вторичные глинистые. Процесс сопровождается частичным или полным выносом ионов Ca, Na и К из кристаллической решётки полевых шпатов - наиболее распространённых минералов магматической и метаморфической пород. При этом происходит перегруппировка исходной каркасной решётки в слоистую, свойственную глинам.

Биологическое выветривание связано с воздействием на горные породы растительных и животных организмов. Характерно для областей с влажным климатом. Большую механическую работу, сопровождающуюся многообразными химическими процессами, производят корни растений. Микроорганизмы участвуют в круговороте N, S, Р, Fe и других элементов. Выделяющиеся в ходе разложения органических остатков СО 2 и гуминовые кислоты резко усиливают растворяющую способность почвенных вод. За счёт биохимической деятельности лишайников даже в пустынях появляются глинистые продукты выветривания. При разрушении горных пород возникают растворы и минеральные новообразования, находящиеся в физико-химическом равновесии с поверхностной средой. Взаимодействие организмов и продуктов их распада с выветрелыми породами является сущностью почвообразования.

В результате выветривания появляется несортированный рыхлый материал - элювий, сохраняющий структурные признаки исходных горных пород. Физическое выветривание формирует обломочный элювий, химическое выветривание - глинистый. Накапливаясь на горизонтальных и слабонаклонных поверхностях, элювий образует кору выветривания, в которой прослеживается зональность, отражающая стадийность процесса. С выветриванием связан определённый генетический тип месторождений полезных ископаемых (смотри Выветривания месторождения).

Выветривание является самым постоянным и мощным фактором дезинтеграции горных пород. Оно готовит рыхлый материал, который становится доступным для перемещения другими экзогенными агентами (например, вода, ветер) или перемещается на более низкие гипсометрические уровни под действием силы тяжести. В тех случаях, когда продукты выветривания не остаются на месте своего образования, нередко за счёт избирательной денудации возникают своеобразные формы рельефа, зависящие как от характера выветривания, так и от свойств горных пород. Для магматических пород (граниты, диабазы и др.) характерны массивные округлённые формы выветривания; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков к выветриванию ведут к образованию останцов в виде изолированных гор, столбов, башен и тому подобное.

Лит.: Выветривание и литогенез. М., 1969; Оллиер К. Выветривание. М., 1987; Симонов Ю. Г. Процессы выветривания и образования элювия // Динамическая геоморфология. М., 1992; Перельман А. И., Касимов Н. С. Геохимия ландшафта. 3-е изд. М., 1999.



Енвд