Производство распределение и потребление электроэнергии. Производство, передача и распределение электрической энергии. Кто потребляет электричество

Производство (генерация), распределение и потребле­- ние электрической и тепловой энергии схематически пока­заны на рис. В.1,а. Электростанция производит (или гене­рирует) электрическую энергию, а теплофикационная элек­тростанция – электрическую и тепловую энергию. По виду первичного источника энергии, преобразуемого в электри­-ческую или тепловую энергию, электростанции делятся на тепловые (ТЭС), атомные (АЭС) и гидравлические (ГЭС). На ТЭС первичный источник энергии – органическое топ­ливо (уголь, газ, нефть), на АЭС–урановый концентрат, на ГЭС–вода (гидроресурсы). ТЭС делятся на конденса­-ционные тепловые станции (конденсационные электростанции – КЭС или государственные районные электростан­-ции–ГРЭС), вырабатывающие только электроэнергию, и теплофикационные (ТЭЦ), вырабатывающие и электро­-энергию, и тепло.

Схемы производства, распределения и потребления электрической и тепловой энергии

Кроме ТЭС, АЭС и ГЭС существуют и другие виды элек­тростанций (гидроаккумулирующие, дизельные, солнечные, геотермальные, приливные и ветроэлектростанции). Одна­-ко мощность их невелика.

Электрическая часть электростанции включает в себя разнообразное основное и вспомогательное оборудование. К основному оборудованию, предназначенному для произ­-водства и распределения электроэнергии, относятся: синхронные генераторы, вырабатывающие электроэнергию (на ТЭС–турбогенераторы); сборные шины, предназначен­- ные для приема электроэнергии от генераторов и распреде­-ления ее к потребителям; коммутационные аппараты – вы­-ключатели, предназначенные для включения и отключения цепей в нормальных и аварийных условиях, и разъедините­ли, предназначенные для снятия напряжения с обесточен­-ных частей электроустановок и для создания видимого раз­рыва цепи (разъединители, как правило, не предназначены для разрыва рабочего тока установки); электроприемники собственных нужд (насосы, вентиляторы, аварийное элек­-трическое освещение и т. д.). Вспомогательное оборудова­-ние предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т. д.

Энергетическая система (энергосистема) (рис. В.1,а) состоит из электрических станций, электрических сетей и потребителей электроэнергии, соединенных между собой и связанных общностью режима в непрерывном процессе производства, распределения и потребления электрической и тепловой энергии, при общем управлении этим режимом.

Электроэнергетическая (электрическая) система (рис. В.1,б)–это совокупность электрических частей элек­-тростанций, электрических сетей и потребителей электро­-энергии, связанных общностью режима и непрерывностью процесса производства, распределения и потребления элек­-троэнергии. Электрическая система–это часть энергоси­стемы, за исключением тепловых сетей и тепловых потре­-бителей. Электрическая сеть – это совокупность электро­-установок для распределения электрической энергии, состоящая из подстанций, распределительных устройств, воздушных и кабельных линий электропередачи. По элек­-трической сети осуществляется распределение электро­-энергии от электростанций к потребителям. Линия электро­передачи (воздушная или кабельная)–электроустановка, предназначенная для передачи электроэнергии.

Технологические схемы и экологические показатели производства электроэнергии на тепловых и атомных электростанциях, теплоцентралях и ветровых электростанциях. Современные тенденции развития электроэнергетики.

Электроэнергетика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Исторический экскурс : электрическая энергия долгое время была лишь объектом экспериментов и не имела практического применения. Первые попытки полезного использования электричества были предприняты во второй половине XIX века, основными направлениями использования были недавно изобретённый телеграф, гальванотехника, военная. Источниками электричества поначалу служили гальванические элементы. Существенным прорывом в массовом распространении электроэнергии стало изобретение электромашинных источников электрической энергии - генераторов. По сравнению с гальваническими элементами, генераторы обладали большей мощностью и ресурсом полезного использования, были существенно дешевле и позволяли произвольно задавать параметры вырабатываемого тока. Именно с появлением генераторов стали появляться первые электрические станции и сети - электроэнергетика становилась отдельной отраслью промышленности. Первой в истории линией электропередачи (в современном понимании) стала линия Лауфен - Франкфурт, заработавшая в 1891 году. Протяжённость линии составляла 170 км, напряжение 28,3 кВ, передаваемая мощность 220 кВт. Важным этапом стало изобретение электрического трамвая: трамвайные системы являлись крупными потребителями электрической энергии и стимулировали наращивание мощностей электрических станций. Во многих городах первые электрические станции строились вместе с трамвайными системами.

Начало XX века было отмечено так называемой «войной токов» - противостоянием промышленных производителей постоянного и переменного токов. Постоянный и переменный ток имели как достоинства, так и недостатки в использовании. Решающим фактором стала возможность передачи на большие расстояния - передача переменного тока реализовывалась проще и дешевле, что обусловило его победу в этой «войне»: в настоящее время переменный ток используется почти повсеместно. Тем не менее, в настоящее время имеются перспективы широкого использования постоянного тока для дальней передачи большой мощности.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .

o Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако у воздушных ЛЭП имеется ряд недостатков: широкая полоса отчуждения - в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную. Эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

Для воздушных линий переменного тока принята следующая шкала классов напряжений: переменное – 0.4, 6, 10, 20, 35, 110, 150, 220, 330, 400, 500, 750, 1150 кВ; постоянное – 400, 800 кВ

o Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации. Кабельные линии менее доступны для визуального наблюдения их.

Линии переменного тока.

Большая часть энергии передаётся по линиям электропередач переменного тока.

ЛЭП переменного тока обладают весьма важным преимуществом: в любом месте линии понижающий трансформатор, присоединенный к линии, передает энергию потребителям.

Недостатки линий переменного тока: наличие индуктивного сопротивления линии, которое связано с явлением электромагнитной индукции. Индуктивное сопротивление значительно ухудшает передачу электроэнергии в линии, т. к. приводит к уменьшению напряжения на пути от источника к потребителю. Индуктивность линии вызывает сдвиг по фазе между колебаниями тока и напряжения. Для уменьшения индуктивного сопротивления применяют различные методы: а) например, включают в линию батареи конденсаторы; б) расщепление одного провода на несколько, что приводит к уменьшению индуктивного сопротивления линии.

Б) Электроэнергия может передаваться и по линиям электропередач постоянного тока.


ЛЭП постоянного тока обладает преимуществами по сравнению с линиями переменного тока. Прежде всего, при прохождении постоянного тока нет индуктивного сопротивления. Кроме того, меньшая металлоемкость проводов (используется два провода вместо трех в линиях трехфазного тока); меньше потерь на коронный разряд, отсюда и меньшие радиопомехи. Наконец, главное - использование постоянного тока в линиях электропередач позволяет необычайно повысить устойчивость энергосистемы, которая в случае переменного тока требует строгой синхронности, постоянства частоты всех генераторов, входящих в общую систему. Для постоянного тока такой проблемы нет.

Атомная электростанция (АЭС)

Атомная электростанция (АЭС) - комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

· Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива

ü Реакторы на лёгкой воде

ü Реакторы на тяжёлой воде

  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

Атомные станции по виду отпускаемой энергии можно разделить на:

  • Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  • Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища. Или более простыми словами в реакторе распадается ядерное топливо, при его распаде происходит выделение тепловой энергии, которая кипятит воду, в свою очередь, появившийся пар крутит турбину, а та вращает электрогенератор, который уже и вырабатывает электричество.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ. Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Достоинства атомных станций:

Небольшой объём используемого топлива и возможность его повторного использования после переработки;

  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.
  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики.
  • При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще большее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

· Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

· Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

· Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Ветровые электростанции

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветра в электрическую.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) - полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС - высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

1. Фундамент

2. Силовой шкаф, включающий силовые контакторы и цепи управления

4. Лестница

5. Поворотный механизм

6. Гондола

7. Электрический генератор

8. Система слежения за направлением и скоростью ветра (анемометр)

9. Тормозная система

10. Трансмиссия

11. Лопасти

12. Система изменения угла атаки лопасти

13. Колпак ротора.

Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают, как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.

Каковы недостатки ветровых энергетических установок?

Прежде всего, их работа неблагоприятно влияет на работу телевизионной сети. Вот какой любопытный пример можно привести в этой связи. Несколько лет тому назад от жителей Оркнейских островов (Великобритания) стали поступать необычные жалобы. Оказалось, что при работе ветровой станции, построенной на одном их холмов, возникают такие сильные помехи в работе телевизионной сети, что на экранах телевизоров пропадает изображение. Выход нашли в строительстве рядом с ветровой установкой мощного телевизионного ретранслятора, который позволил усиливать телевизионные сигналы. По имеющимся данным, ветровая энергетическая установка мощностью 0,1 МВт может вызвать искажение телевизионных сигналов на расстоянии до 0,5 км.

Другая неожиданная особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт. Как показал опыт эксплуатации большого числа ветровых установок в США, этот шум не выдерживают ни животные, ни птицы, покидая район размещения станции, т.е. территории самой ветровой станции и примыкающие к ней становятся непригодными для жизни людей, животных и птиц.

Однако главный недостаток этого вида энергии наряду с изменчивостью скорости ветра - это низкая интенсивность, что требует значительной территории для размещения ветровой установки. Из проведенных специалистами расчетов следует, что оптимальным для ветрового колеса является диаметр 100 м. При таких геометрических размерах и плотности энергии на единицу площади ветрового колеса 500 Вт/м 2 (скорость ветра 9,2 м/с) из ветрового потока можно получить электрическую мощность, близкую к 1 МВт. На площади 1 км 2 можно разместить 2-3 установки указанной мощности с учетом того, что они должны находиться одна от, другой на расстоянии, равном трем их высотам, чтобы не мешать друг другу, и не снижать эффективности своей работы.

Примем для оценки, что на площади 1 км 2 размещено 3 установки, т.е. с 1 км 2 можно снять 3 МВт электрической мощности. Это означает, что для размещения ветровой станции электрической мощностью 1000 МВт нужна площадь, равная 330 км 2 . Если сравнивать ветровые и тепловые электростанции по энерговыработке в течение года, то полученное значение следует увеличить не менее чем в 2-3 раза. Для сравнения укажем, что площадь Курской АЭС мощностью 4000 МВт вместе с вспомогательными сооружениями, водоемом-охладителем и жилым поселком составляет 30 км2, т.е. на 1000 МВт электрической мощности приходится 7,5 км2. Другими словами, размер территории ветровой станции в расчете на 1000 МВт на 2 порядка превышает площадь, занимаемую современной АЭС.

Несмотря на это, отдельные ученые считают, что следует развивать крупномасштабную ветроэнергетику. Перед войной у нас в стране только в колхозах и совхозах работало более 8000 ветровых установок. В 1930г. на базе отдела ветродвигателей ЦАГИ был создан Центральный ветроэнергетический институт, в 1938 г. было организовано конструкторское бюро по ветровым энергетическим установкам. В предвоенные годы и после войны было разработано и выпущено довольно большое число (примерно 10 тыс.шт.) разнообразных ветровых установок. Интенсивная работа по использованию энергии ветра ведется в ряде зарубежных стран.

Итак, можно указать следующие достоинства и недостатки энергии ветра: отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и других загрязнителей, возможность преобразования в различные виды энергии (механическую, тепловую, электрическую), но при этом низкая плотность энергии, приходящейся на единицу площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Отечественный и зарубежный опыт свидетельствует о технической осуществимости и целесообразности сооружения и эксплуатации ветровых энергетических установок небольшой мощности для удаленных поселков и отгонных пастбищ, а также в аграрном секторе.

Тепловые электростанции

Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

На схеме представлена классификация тепловых электрических станций на органическом топливе.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн. кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ, оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Схема тепловой электростанции (на угле)


Тепловые электростанции работают по такому принципу: топливо сжигается в топке парового котла. Выделяющееся при горении тепло испаряет воду, циркулирующую внутри расположенных в котле труб, и перегревает образовавшийся пар. Пар, расширяясь, вращает турбину, а та, в свою очередь, - вал электрического генератора. Затем отработавший пар конденсируется; вода из конденсатора через систему подогревателей возвращается в котел.

Преимущества ТЭС:
1. Используемое топливо достаточно дешево.
2. Требуют меньших капиталовложений по сравнению с другими электростанциями.
3. Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом.
4. Занимают меньшую площадь по сравнению с гидроэлектростанциями.
5. Стоимость выработки электроэнергии меньше, чем у дизельных электростанций.

Недостатки:
1. Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти.
2. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.

ВОПРОСЫ:

1. Дайте определение отрасли электроэнергетика.

2. Какими преимуществами обладает электроэнергия по сравнению с энергией других видов?

3. С изобретением, какого прибора связывают появление первых электрических станции?

4. Что, с технической точки зрения, из себя представляет электрическая сеть?

5. Назовите типы линий электропередач с точки зрения их конструкторских особенностей. Перечислите их достоинства и недостатки.

6. Изобразите схему передачи энергии по линиям переменного тока. Достоинства и недостатки такого способа передачи.

7. Изобразите схему передачи энергии по линиям постоянного тока. Какого их преимущество по сравнению с линиями переменного тока?

8. Заполните таблицу:

9. Чем обусловлено широкое распространение тепловых электростанций


Похожая информация.


Сложно переоценить значение электричества. Скорее, мы подсознательно недооцениваем его. Ведь практически вся окружающая нас техника работает от электросети. Об элементарном освещении и говорить не приходится. А вот производство электроэнергии нас практически не интересует. Откуда берется и как сохраняется (и вообще, возможно ли сохранить) электричество? Сколько реально стоит выработка электроэнергии? И насколько это безопасно для экологии?

Экономическое значение

Со школьной скамьи нам известно, что электроэнерговооруженность – один из основных факторов получения высокой производительности труда. Электроэнергетика – стержень всей деятельности человека. Нет ни одной отрасли, которая бы обходилась без нее.

Развитость этой отрасли свидетельствует о высокой конкурентоспособности государства, характеризует темпы роста производства товаров и услуг и почти всегда оказывается проблемным сектором экономики. Затраты на производство электроэнергии зачастую складываются из значительных первоначальных инвестиций, которые будут окупаться долгие годы. Несмотря на все свои ресурсы, Россия не исключение. Ведь значительную долю экономики составляют именно энергоемкие отрасли.

Статистика говорит нам о том, что в 2014 году производство электроэнергии Россией еще не вышло на уровень советского 1990 года. По сравнению с Китаем и США РФ производит - соответственно - в 5 и в 4 раза меньше электричества. Почему так происходит? Специалисты утверждают, что это очевидно: высочайшие непроизводственные расходы.

Кто потребляет электричество

Конечно, ответ очевиден: каждый человек. Но ведь сейчас нас интересуют промышленные масштабы, а значит, те отрасли, которым в первую очередь необходима электроэнергия. Основная доля приходится на промышленность – около 36%; ТЭК (18%) и жилой сектор (чуть больше 15%). Оставшийся 31% выработанного электричества приходится на непроизводственные отрасли, железнодорожный транспорт и потери в сетях.

При этом стоит учитывать, что в зависимости от региона структура потребления существенно меняется. Так, в Сибири действительно более 60% электричества используется промышленностью и ТЭК. А вот в европейской части страны, где расположено большее количество населенных пунктов, самым мощным потребителем оказывается жилой сектор.

Электростанции – основа отрасли

Производство электроэнергии в России обеспечивается почти 600 электростанциями. Мощность каждой превышает 5 МВт. Общая мощность всех электростанций составляет 218 ГВт. Как же мы получаем электроэнергию? В России используются такие типы электростанций:

  • тепловые (их доля в общем объеме производства около 68,5%);
  • гидравлические (20,3%);
  • атомные (почти 11%);
  • альтернативные (0,2%).

Когда речь заходит об альтернативных источниках электроэнергии, на ум приходят романические картинки с ветряками и солнечными батареями. Тем не менее, в определенных условиях и местностях это наиболее выгодные виды производства электроэнергии.

Тепловые электростанции

Исторически сложилось так, что тепловые электростанции (ТЭС) занимают основное место в производственном процессе. На территории России обеспечивающие производство электроэнергии ТЭС классифицируются по таким признакам:

  • источник энергии – органическое топливо, геотермальная или солнечная энергия;
  • вид вырабатываемой энергии – теплофикационная, конденсационная.

Еще одним важнейшим показателем считается степень участия в покрытии графика электронагрузки. Здесь выделяются базовые ТЭС с минимальным временем использования в году 5000 час; полупиковые (их еще называют маневренные) – 3000-4000 час в году; пиковые (используются только в часы максимальной нагрузки) – 1500-2000 час в году.

Технология производства энергии из топлива

Конечно, в основном производство, передача и использование электроэнергии потребителями происходит за счет работающих на органическом топливе ТЭС. Их различают по технологии производства:

  • паротурбинные;
  • дизельные;
  • газотурбинные;
  • парогазовые.

Паротурбинные установки самые распространенные. Они работают на всех видах топлива, включая не только уголь и газ, но и мазут, торф, сланцы, дрова и древесные отходы, а также продукты переработки.

Органическое топливо

Самый большой объем производства электроэнергии приходится на Сургутскую ГРЭС-2, мощнейшую не только на территории РФ, но и на весь Евразийский континент. Работая на природном газе, она выдает до 5600 МВт электроэнергии. А из угольных наибольшей мощностью обладает Рефтинская ГРЭС – 3800 МВт. Более 3000 МВт могут давать еще Костромская и Сургутская ГРЭС-1. Следует отметить, что аббревиатура ГРЭС не изменилась со времен Советского Союза. Она расшифровывается, как государственная районная электростанция.

Во время реформы отрасли производство и распределение электроэнергии на ТЭС должно сопровождаться техническим перевооружением действующих станций, их реконструкцией. Также среди первоочередных задач стоит строительство новых генерирующих энергию мощностей.

Электричество из возобновляемых ресурсов

Электроэнергия, полученная с помощью ГЭС, является важнейшим элементом стабильности единой энергосистемы государства. Именно гидроэлектростанции могут за считаные часы увеличить объемы производства электроэнергии.

Большой потенциал российской гидроэнергетики заключается в том, что на территории страны расположено почти 9% мировых запасов воды. Это второе место в мире по наличию гидроресурсов. Такие страны, как Бразилия, Канада и США, остались позади. Производство электроэнергии в мире за счет ГЭС несколько осложняется тем, что наиболее благоприятные места для их строительства существенно удалены от населенных пунктов или промышленных предприятий.

Тем не менее, благодаря электроэнергии, произведенной на ГЭС, стране удается сэкономить около 50 млн тонн топлива. Если бы удалось освоить весь потенциал гидроэнергетики, Россия могла бы экономить до 250 млн тонн. А это уже серьезная инвестиция в экологию страны и гибкую мощность энергетической системы.

Гидростанции

Строительство ГЭС решает множество вопросов, не связанных с выработкой энергии. Это и создание систем водоснабжения и водоотведения целых регионов, и строительство ирригационных сетей, столь необходимых сельскому хозяйству, и контроль паводков и т. д. Последнее, кстати, имеет немаловажное значение для безопасности людей.

Производство, передача и распределение электроэнергии в настоящее время осуществляется 102 ГЭС, единичная мощность которых превышает 100 МВт. Общая же мощность гидроустановок России приближается к 46 ГВт.

Страны по производству электроэнергии регулярно составляют свои рейтинги. Так вот, Россия сейчас занимает 5-е место в мире по выработке электричества из возобновляемых ресурсов. Наиболее значимыми объектами следует считать Зейскую ГЭС (она не только первая из построенных на Дальнем Востоке, но еще и довольно мощная – 1330 МВт), каскад Волжско-Камских электростанций (общее производство и передача электроэнергии составляет более 10,5 ГВт), Бурейскую ГЭС (2010 МВт) и т. д. Отдельно хочется отметить и Кавказские ГЭС. Из нескольких десятков работающих в этом регионе наиболее выделяется новая (уже введенная в эксплуатацию) Кашхатау ГЭС мощностью более 65 МВт.

Особого внимания заслуживают и геотермальные ГЭС Камчатки. Это очень мощные и мобильные станции.

Самые мощные ГЭС

Как уже отмечалось, производство и использование электроэнергии затруднено удаленностью основных потребителей. Тем не менее, государство занято развитием этой отрасли. Не только реконструируются имеющиеся, но и строятся новые ГЭС. Они должны освоить горные реки Кавказа, многоводные уральские реки, а также ресурсы Кольского полуострова и Камчатки. Среди самых мощных отметим несколько ГЭС.

Саяно-Шушенская им. П. С. Непорожнего построена в 1985 году на реке Енисей. Ее нынешняя мощность пока не достигает расчетных 6000 МВт в связи с реконструкцией и ремонтом после аварии 2009 года.

Производство и потребление электроэнергии Красноярской ГЭС рассчитано на Красноярский алюминиевый завод. Это единственный «клиент» введенной в эксплуатацию в 1972 году ГЭС. Ее расчетная мощность - 6000 МВт. Красноярская ГЭС единственная, на которой установлен судоподъемник. Он обеспечивает регулярное судоходство по реке Енисей.

Братская ГЭС введена в эксплуатацию в далеком 1967 году. Ее плотина перекрывает реку Ангару недалеко от города Братска. Как и Красноярская ГЭС, Братская работает на нужды Братского алюминиевого завода. Ему уходят все 4500 МВт электроэнергии. А еще этой гидростанции поэт Евтушенко посвятил поэму.

На реке Ангаре расположилась еще одна ГЭС – Усть-Илимская (мощность чуть более 3800 МВт). Строительство ее началось в 1963 году, а закончилось в 1979-м. Тогда же и началось производство дешевой электроэнергии для основных потребителей: Иркутского и Братского алюминиевых заводов, Иркутского авиастроительного завода.

Волжская ГЭС расположена севернее Волгограда. Ее мощность почти 2600 МВт. Эта крупнейшая в Европе гидроэлектростанция работает с 1961 года. Неподалеку от Тольятти функционирует самая «старая» из крупных ГЭС – Жигулевская. Она введена в эксплуатацию еще в 1957 году. Мощность ГЭС в 2330 МВт покрывает потребности в электричестве Центральной части России, Урала и Средней Волги.

А вот необходимое для нужд Дальнего Востока производство электроэнергии обеспечивает Бурейская ГЭС. Можно сказать, что она совсем еще «юная» - ввод в эксплуатацию состоялся только в 2002 году. Установленная мощность этой ГЭС – 2010 МВт электроэнергии.

Экспериментальные морские ГЭС

Гидроэнергетическим потенциалом обладают и множественные океанические и морские заливы. Ведь перепад высот во время прилива в большинстве из них превышает 10 метров. А это значит, что можно вырабатывать огромное количество энергии. В 1968 году была открыта Кислогубская экспериментальная приливная станция. Ее мощность составляет 1,7 МВт.

Мирный атом

Российская атомная энергетика является технологией полного цикла: от добычи урановых руд до производства электроэнергии. Сегодня в стране работает 33 энергоблока на 10 АЭС. Общая установленная мощность составляет чуть больше 23 МВт.

Максимальное количество электроэнергии АЭС было выработано в 2011 году. Цифра составила 173 млрд кВт/ч. Производство электроэнергии на душу населения атомными станциями выросло на 1,5% по сравнению с предыдущим годом.

Конечно, приоритетным направлением развития атомной энергетики является безопасность эксплуатации. Но и в борьбе с глобальным потеплением АЭС играют значительную роль. Об этом постоянно говорят экологи, которые подчеркивают, что только в России удается сократить выброс углекислого газа в атмосферу на 210 млн тонн в год.

Атомная энергетика получила свое развитие в основном на Северо-Западе и в европейской части России. В 2012 году всеми АЭС было выработано около 17% всей произведенной электроэнергии.

Атомные электростанции России

Крупнейшая АЭС России расположена в Саратовской области. Ежегодная мощность Балаковской АЭС составляет 30 млрд кВт/ч электроэнергии. На Белоярской АЭС (Свердловская обл.) сейчас работает только 3-й блок. Но и это позволяет назвать ее одной из самых мощных. 600 МВт электроэнергии получают благодаря реактору на быстрых нейтронах. Стоит отметить, что это был первый в мире энергоблок с быстрыми нейтронами, установленный для получения электричества в промышленных масштабах.

На Чукотке установлена Билибинская АЭС, которая вырабатывает 12 МВт электроэнергии. А Калининскую АЭС можно считать недавно построенной. Ее первый блок был введен в эксплуатацию в 1984 году, а последний (четвертый) лишь в 2010-м. Суммарная мощность всех энергоблоков составляет 1000 МВт. В 2001 году была построена и введена в эксплуатацию Ростовская АЭС. С момента подключения второго энергоблока - в 2010 году - ее установленная мощность превысила 1000 МВт, а коэффициент использования мощности составил 92,4%.

Энергия ветров

Экономический потенциал ветровой энергетики России оценивается в 260 млрд кВт/ч в год. Это почти 30% всей производимой сегодня электроэнергии. Мощность всех работающих в стране ветроустановок составляет 16,5 МВт энергии.

Особенно благоприятны для развития этой отрасли такие регионы, как побережье океанов, предгорные и горные районы Урала и Кавказа.

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.



Енвд