Критерий вальда теория игр. Статистические игры и принятие решений в условиях неопределенности

Выбор наилучшего решения в условиях неопределенности существенно зависит от того, какова степень этой неопределенности, т.е. от того, какой информацией располагает ЛПР.

Предположения субъективны, поэтому и степени неопределенности со стороны ЛПР должны различаться. Практикуются два основных подхода к принятию решения в условиях неопределенности. Лицо, принимающее решение, может использовать имеющуюся у него информацию и свои собственные личные суждения, а также опыт для идентификации и определения субъективных вероятностей возможных внешних условий, оценки возможных последствий альтернатив в различных условиях внешней среды. Это, в сущности, делает условия неопределенности аналогичными условиям риска, а процедура принятия решения, обсуждавшаяся ранее для условий риска, выполняется и в этом случае.

Если степень неопределенности слишком высока, то ЛПР предпочитает не делать допущений относительно вероятностей различных внешних условий, т.е. это лицо может или не учитывать вероятности, или рассматривать их как равные, что практически одно и то же. Если применяется данный подход, то для оценки предполагаемых стратегий имеются четыре критерия решения:

  • 1) критерий решения Вальда, называемый также максимином;
  • 2) альфа-критерий решения Гурвица;
  • 3) критерий решений Сэвиджа, называемый также критерием отказа от минимакса;
  • 4) критерий решений Лапласа, называемый также критерием решения Бэйеса.

Пожалуй, наиболее трудная задача для ЛПР заключается в выборе конкретного критерия, наиболее подходящего для решения предложенной задачи. Выбор критерия должен быть логичным при данных обстоятельствах. Кроме того, при выборе критерия должны учитываться философия, темперамент и взгляды нынешнего руководства фирмы (оптимистические или пессимистические, консервативные или прогрессивные).

Рассмотрим эти утверждения на конкретном примере. Элементами модели выбора альтернатив в условиях неопределенности являются матрица принятия решений i, Sj| и целевая функция Е {A i, w (S j)} (рис. 6.9).

Рис. 6.9.

А i, – альтернативы действий; Sj – состояние внешней среды; w (S j) – вероятности наступления состояния S j, причем Σmj= 1w(S j) = 1; e ij – результат, который будет достигнут, если выбрана альтернатива А i и наступит состояние внешней среды S j

В качестве иллюстрационного примера возьмем матрицу решений (рис. 6.10), включающую в себя пять альтернатив (A i; i = 1, ..., 5) и четыре состояния внешней среды (S j; j = 1,4). Последствия принимаемых решений приведены на пересечении строк и столбцов (e ij).

Рис. 6.10.

В условиях определенности, т.е. когда принятие решений происходит после наступления событий во внешней среде (апостериори), должно приниматься решение, максимизирующее целевую функцию (рис. 6.11). Так, при наступлении события S 1 необходимо принимать альтернативу A2, при S2 → A4, при S3 → A5, при S4 → A1.

Рис. 6.11.

В условиях риска необходимо принимать решение (выбирать альтернативу Ai) до наступления события Sj во внешней среде (априори), что требует учета вероятности w (Sj) наступления этого события. Это можно сделать путем умножения вероятности наступления этого события w (S j) на результат e ij, получаемый от принятия того или иного решения, и выбрать наибольшее значение Ai (рис. 6.12).

Рис. 6.12.

В случае если степень неопределенности слишком высока, то ЛПР может присваивать значениям вероятности свои субъективные значения, сводя задачу к принятию решений в условиях риска, либо не делать допущений относительно вероятностей различных внешних условий, т.е. может или не учитывать вероятности, или рассматривать их как равные, применяя различные критерии для выбора.

Критерий решения Вальда

Критерием Вальда "рассчитывай на худшее" (критерий крайнего пессимизма, или максимин) называют критерий, предписывающий обеспечить значение параметра эффекта, равного а:

Этот критерий ориентирует ЛПР на наихудшие условия и рекомендует выбрать ту стратегию, для которой выигрыш максимален. В других, более благоприятных условиях использование этого критерия приводит к потере эффективности системы или операции.

В рассматриваемом случае (рис. 6.13) в соответствии с критерием "крайнего пессимизма" наилучшей альтернативой будет A1.

Другим предельным случаем критерия Вальда является критерий "необузданного оптимизма", или максимакс:

В соответствии с этим критерием необходимо выбрать альтернативу А 2.

Рис. 6.13.

Альфа-критерий решения Гурвица

Этот критерий рекомендует при выборе решения в условиях неопределенности не руководствоваться крайним пессимизмом (всегда "рассчитывай на худшее", α = 0) или крайним оптимизмом ("все будет наилучшим образом", а = 1). Рекомендуется некое среднее решение (0 ≤ α ≤ 1). Этот критерий имеет следующий вид:

где α – некий коэффициент, выбираемый экспериментально из интервала между 0 и 1.

Использование этого коэффициента вносит дополнительный субъективизм в принятие решений с использованием критерия Гурвица.

В рассматриваемом примере (рис. 6.14) для случая а = 0,7 предпочтительной альтернативой становится А3.

Рис. 6.14.

Здесь приняты следующие обозначения:

Критерий решения Сэвиджа

В соответствии с этим минимаксным критерием, если требуется в любых условиях избежать большого риска, то оптимальным будет то решение, для которого риск, максимальный при различных вариантах условий, окажется минимальным.

При использовании критерия Сэвиджа обеспечивается наименьшее значение максимальной величины риска:

где риск r ij определяется выражением r ij = β – e ij, β – максимально возможный выигрыш.

Критерий Сэвиджа, как и критерий Вальда, – это критерий крайнего пессимизма, но только пессимизм здесь проявляется в том, что минимизируется максимальная потеря в выигрыше по сравнению с тем, чего можно было бы достичь в данных условиях.

Для рассматриваемого примера результаты выбора альтернативы приведены на рис. 6.15.

Рис. 6.15.

В рассматриваемом примере альтернатива А 4 минимизирует максимальное "наказание" за неверно определенное состояние внешней среды.

Критерий решения Лапласа

Критерий Лапласа, или байесов критерий, гласит, что если вероятности состояния среды неизвестны, то они должны приниматься как равные. В этом случае выбирается стратегия, характеризующаяся самой предполагаемой стоимостью при условии равных вероятностей. Критерий Лапласа позволяет сводить условие неопределенности к условиям риска. Критерий Лапласа называют критерием рациональности, и он подходит для стратегических долгосрочных решений, как и все названные выше критерии.

В рассматриваемом примере наилучшей альтернативой по критерию Лапласа (рис. 6.16) является А 5.

Рис. 6.16.

Кроме названных выше четырех критериев для принятия решений в условиях неопределенности существуют неколичественные методы, такие как приобретение дополнительной информации, хеджирование, гибкое инвестирование и др.

Близкой по идеям и методам к теории игр является теория статистических решений. От теории игр она отличается тем, что ситуация неопределенности не имеет конфликтной окраски – никто ни кому не противодействует, но налицо элемент неопределенности. В задачах теории статистических решений неизвестные условия операции зависят не от сознательно действующего противника, а от объективной действительности, которую в теории статистических решений принято называть “природой”. Соответствующие ситуации часто называют играми с природой (статистическими играми).

Часто эти ситуации вообще относят к теории игр, оговариваясь в определении игры, что одним из участников может быть среда (природа), действующая как сумма дезорганизующих обстоятельств, весь комплекс внешних условий, в которых игроку приходится принимать решение. Назовем этого игрока – статистиком.

Природа безразлична к выигрышу и не стремится обратить в свою пользу промахи статистика. Пусть статистик имеет m стратегий, а природа может реализовать n своих состояний. Если статистик имеет возможность оценить численно последствия каждой своей чистой стратегии при любом состоянии природы, то игру можно задать платежной матрицей. При упрощении платежной матрицы имеется специфика: нельзя отбрасывать те или иные стратегии “природы”, так как она может реализовать их вне зависимости от того, выгодны они статистику или нет.

При решении таких игр могут быть 2 ситуации:

· игроку А неизвестны вероятности pj , с которыми природа реализует свои состояния;

· вероятности pj известны.

Для принятия решения в таких играх используют различные критерии.

Если вероятности pj состояний природы неизвестны, то можно пользоваться критериями Вальда, Лапласа, Сэвиджа, Гурвица и пр. Основное различие между названными критериями определяется стратегией поведения лица, принимающего решение в условиях неопределенности. Например, критерий Лапласа основан на более оптимистичных предположениях, чем критерий Вальда. Критерий Гурвица можно использовать при различных подходах: от наиболее оптимистичного до наиболее пессимистичного. Таким образом, перечисленные критерии, несмотря на их количественную природу, отражают субъективную оценку ситуации, в которой статистику приходится принимать решение. К сожаленью, не существует общих правил оценки применимости того или иного критерия, так как поведение лица, принимающего решение, по всей видимости, является наиболее важным фактором при выборе подходящего критерия. Сформулируем эти критерии.

1. Критерий Лапласа

Этот критерий опирается на принцип недостаточного обоснования , по которому считается, что наступление всех состояний природы равновероятно, то есть p 1 = p 2 =...= p n =1/ n , а оптимальной считается стратегия Ai , обеспечивающая

. (5.1)

2. Критерий Вальда (минимаксный или максминный критерий )

Этот критерий является наиболее осторожным, поскольку основан на выборе наилучшей из наихудших возможностей:

– в случае нахождения выигрыша;

– в случае нахождения потерь.

Это пессимистические критерии.

3. Критерий Сэвиджа (минимаксного риска)

Критерий Вальда настолько пессимистичен, что может привести к нелогичным выводам. Рассмотрим следующую матрицу потерь, которая обычно приводится в качестве классического примера для обоснования “менее пессимистичного” критерия Сэвиджа.

11000

10000

10000

Применение минимаксного критерия приводит к выбору стратегии А2, хотя интуитивно можно выбрать А1, так как при этом выборе можно надеется проиграть 90, тогда как выбор А2 всегда приводит к потерям в 10000 единиц при любом состоянии погоды..

Критерий Сэвиджа “исправляет” положение введением новой матрицы потерь, в которой заменяются на font-size:14.0pt;line-height: 150%">, определяемые следующим образом:

Это означает, что есть разность между наилучшим значением в столбце j и значением .

По существу, выражает сожаление лица, принимающего решение, по поводу того, что он не выбрал наилучшего действия относительно состояния j . Матрица R =() ê называется матрицей сожаления или матрицей риска.

Найдем оптимальную стратегию предыдущей задачи по этому критерию:

.

Применим к матрице “сожаления” R минимаксный критерий. Получим, что оптимальной стратегией будет– А1.

Отметим, что независимо от того, – доход или потери, – всегда потери. Поэтому к матрице “сожаления” всегда применяется минимаксный критерий.

4. Критерий Гурвица (пессимизма-оптимизма)

Этот критерий охватывает ряд различных подходов к принятию решений: от наиболее оптимистичного до наиболее пессимистичного.

При оптимистичном подходе выбирают стратегию, дающую :

, если – выигрыш, и

, если – потери.

Аналогично при наиболее пессимистичных предположениях выбираемое решение соответствует : , если – выигрыш, и

font-size:14.0pt;line-height: 150%">, если – потери.

Критерий Гурвица устанавливает баланс между случаями крайнего оптимизма и пессимизма взвешиванием обоих способов поведения с соответствующими весами a и 1- a , где 0 £ a £ 1.

Если – прибыль, то выбирается стратегия по правилу:

Если – затраты, критерий выбирает стратегию, дающую

Параметр a интерпретируется как показатель оптимизма; при a =1 критерий слишком оптимистичный, при a =0 он слишком пессимистичный. Значение a между 0 и 1 может определяться в зависимости от склонности лица, принимающего решение, к пессимизму или оптимизму. a =0,5 представляется наиболее разумным.

Анализ практических ситуаций обычно проводится на основе нескольких критериев, что позволяет глубже исследовать суть явления.

Пример.

Одно из предприятий должно определить уровень предложения услуг так, чтобы удовлетворить потребности клиентов. Точное число клиентов не известно, но ожидается, что оно может принимать одно из следующих значений: 200, 250, 300, 350. Для каждого из этих возможных значений существует наилучший уровень предложения (с точки зрения возможных затрат). Отклонения от этих уровней приводят к дополнительным затратам либо из-за превышения предложения над спросом, либо из-за неполного удовлетворения спроса.

Потери в зависимости от ситуации приведены в следующей таблице:


Клиенты

Предложен.

a 1

a 2

a 3

a 4

· Критерий Вальда . Так как – потери, применяем минимаксный критерий.

Оптимальной стратегией будет А3.

· Критерий Лапласа . Пусть стратегии 2-го игрока равновероятны. Следовательно . Тогда:

EN-US">EN-US">EN-US">font-size:14.0pt;line-height:150%">Таким образом, наилучшим уровнем предложения в соответствии с критерием Лапласа будет стратегия А2.

· Критерий Сэвиджа . Построим матрицу риска:

position:absolute; z-index:2;left:0px;margin-left:68px;margin-top:21px;width:213px;height:2px">

Лучшая стратегия А2.

· Критерий Гурвица. Пусть a =1 / 2.

5/2+25/2=15

7/2+23/2=15

12/2+21/2=16,5

15/2+30/2=22,5

Лучшие стратегии А1 и А2.

Если находить решение методами теории игр, то сначала ищем наличие седловой точки:

Эта игра имеет седловую точку и оптимальной будет стратегия А3.

5. Критерий Байеса

Если вероятности состояний природы – pj известны, то можно пользоваться критерием Байеса, согласно которому:

оптимальной считается чистая стратегия, соответствующая максимальному среднему выигрышу: , если – выигрыш и минимальным средним потерям: , если –потери.

Если в предыдущем примере известны вероятности спроса font-size:14.0pt;line-height: 150%">, то для нахождения оптимальной стратегии необходимо найти средние потери для каждой чистой стратегии предприятия и выбрать ту, которая обеспечивает минимум средних потерь: font-size:14.0pt;line-height: 150%;font-family:Symbol">® стратегия А2.

Можно показать, что та стратегия, которая обращает в максимум средний выигрыш, обращает в минимум и средний риск.

Все рассмотренные критерии были сформулированы для чистых стратегий, но каждый из них может быть распространен и на смешанные стратегии, подобно тому, как это делается в теории игр. В теории статистических решений смешанные стратегии имеют смысл при многократном повторении игры.

Но многократно повторяя игру, можно определить частоты повторений той или иной ситуации и в дальнейшем применять стохастический подход к задаче принятия решений.

Если использовать смешанные стратегии, то критерий Вальда формулируется следующим образом: оптимальной будет смешанная стратегия , обеспечивающая , т. е. максимизирующая средний выигрыш (если –выигрыш)

Критерий Сэвиджа для смешанных стратегий : оптимальной считается та смешанная стратегия, при которой максимальный средний риск статистика минимален, то есть стратегия , найденная из условия .

Оптимальные смешенные стратегии в этом случае находятся также, как в обычной матричной игре.

Краткая теория

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под природой будем понимать совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Управление любым объектом осуществляется путем принятия последовательности управленческих решений. Для принятия решения необходима информация (совокупность сведений о состоянии объекта управления и условиях его работы). В тех случаях когда отсутствует достаточно полная информация, возникает неопределенность в принятии решения. Причины этого могут быть различны: требующаяся для полного обоснования решения информация принципиально не может быть получена (неустранимая неопределенность); информация не может быть получена своевременно, к моменту принятия решения; затраты, связанные с получением информации, слишком высоки. По мере совершенствования средств сбора, передачи и обработки информации неопределенность управленческих решении будет уменьшаться. К этому нужно стремиться. Существование неустранимой неопределенности связано со случайным характером многих явлений. Например, в торговле, случайный характер изменения спроса делает невозможным его точное прогнозирование, a, следовательно, и формирование идеально точного заказа на поставку товара. Принятие решения в этом случае связано с риском. Приемка партии товара на основании выборочного контроля также связана с риском принятия решения в условиях неопределенности. Неопределенность может быть снята путем полного контроля всей партии, однако это может оказаться слишком дорогостоящим мероприятием. В сельском хозяйстве, например, с целью получения урожая человек предпринимает ряд действии (пашет землю, вносит удобрения, борется с сорняками и т. п.). Окончательный результат (урожай) зависит от действий не только человека, но и природы (дождь, засуха, вечер и т. п.). Из приведенных примеров видно, что полностью исключить неопределенность в управлении экономической системой нельзя, хотя, повторим, к этому нужно стремиться. В каждом конкретном случае следует принимать во внимание степень риска при принятии управленческих решений, по возможности максимально учитывать имеющуюся информацию с целью уменьшения неблагоприятных последствий, которые могут возникнуть из-за ошибочных решений.

Две стороны, участвующие в игре, будем называть игрок I и игрок II. Каждый из игроков располагает конечным набором действий (чистых стратегий), которые он может применять в процессе игры. Игра имеет повторяющийся, циклический характер. о каждом цикле игроки выбирают одну из своих стратегии, что однозначно определяет платеж . Интересы игроков противоположны. Игрок I старается вести игру так, чтобы платежи были как можно большими. Для игрока II желательны как можно меньшие значения платежей (с учетом знака). Причем в каждом цикле выигрыш одного из игроков в точности совпадает с проигрышем другого. Игры такого типа называются играми с нулевой суммой.

Решить игру - значит определить оптимальное поведение игроков. Решение игр является предметом теории игр. Оптимальное поведение игрока инвариантно относительно изменения всех элементов платежной матрицы на некоторую величину.

В общем случае определение оптимального поведения игроков связано с решением двойственной пары задач линейного программирования. В отдельных случаях могут быть использованы более простые методы. Часто платежную матрицу удается упростить путем удаления из нее строк и столбцов, соответствующих доминируемым стратегиям игроков, доминируемой называется стратегия, все платежи которой не лучше соответствующих платежей некоторой другой стратегии и хотя бы один из платежей хуже соответствующего платежа этой другой стратегии, называемой доминирующей.

В обычной стратегической игре принимают участие «разумные и антагонистические» противники (противоборствующие стороны). В таких играх каждая из сторон предпринимает именно те действия, которые наиболее выгодны ей и менее выгодны противнику. Однако очень часто неопределенность, сопровождающая некоторую операцию, не связана с сознательным противодействием противника, а зависит от некой, не известной игроку I объективной действительности (природы). Такого рода ситуации принято называть играми с природой. Игрок II - природа - в теории статистических игр не является разумным игроком, так как рассматривается как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Возможные состояния природы (ее стратегии) реализуются случайным образом. В исследовании операций оперирующую сторону (игрока I) часто называют статистиком, а сами операции - играми статистика с природой или статистическими играми.

Рассмотрим игровую постановку задачи принятия решения в условиях неопределенности. Пусть оперирующей стороне необходимо выполнить операцию в недостаточно известной обстановке относительно состояний которой можно сделать предположений. Эти предположения будем рассматривать как стратегии природы. Оперирующая сторона в своем распоряжении имеет возможных стратегий - . Выигрыши игрока I при каждой паре стратегий и - предполагаются известными и заданы платежной матрицей .

Задача заключается в определении такой стратегии (чистой или смешанной), которая лри ее применении обеспечила бы оперирующей стороне наибольший выигрыш.

Выше уже говорилось, что хозяйственная деятельность человека может рассматриваться как игра с природой. Основной особенностью природы как игрока является ее не заинтересованность в выигрыше.

Анализ матрицы выигрышей игры с природой начинается с выявления и отбрасывания дублирующих и заведомо невыгодных стратегий лица, играющего с природой. Что касается стратегий природы, то ни одну из них отбросить нельзя, так как каждое из состояний природы может наступить случайным образом, независимо от действий игрока I. Ввиду того что природа не противодействует игроку I, может показаться, что игра с природой проще стратегической игры. На самом деле это не так. Противоположность интересов игроков в стратегической игре в некотором смысле как бы снимает неопределенность, чего нельзя сказать о статистической игре. Оперирующей стороне в игре с природой легче в том отношении, что она скорее.всего выиграет больше, чем в игре против сознательного противника. Однако ей труднее принять обоснованное решение, так как в игре с природой неопределенность ситуации сказывается в гораздо более сильной степени.

После упрощения платежной матрицы игры с природой целесообразно не только оценить выигрыш при той или иной игровой ситуации, но и определить разность между максимально возможным выигрышем при данном состоянии природы и выигрышем, который будет получен при применении стратегии в тех же условиях. Эта разность в теории игр называется риском.

Природа меняет состояние стихийно, совершенно не заботясь о результате игры. В антагонистической игре мы предполагали, что игроки пользуются оптимальными (в определенном выше смысле) смешанными стратегиями. Можно предположить, что природа применяет наверняка не оптимальную стратегию. Тогда какую? Если бы существовал ответ на этот вопрос, то принятие решения лицом, принимающим решения (ЛПР) сводилось бы к детерминированной задаче.

Если вероятности состояний природы известны, то пользуются критерием Байеса, в соответствии с которым оптимальной считается чистая стратегия , при которой максимизируется средний выигрыш:

Критерий Байеса предполагает, что нам хотя и неизвестны условиях выполнения операций (состояния природы) , но известны их вероятности .

С помощью такого приема задача о выборе решения в условиях неопределенности превращается в задачу о выборе решения в условиях определенности, только принятое решение является оптимальным не в каждом отдельном случае, а в среднем.

Если игроку представляются в равной мере правдоподобными все состояния природы, то иногда полагают и, учитывая, «принцип недостаточного основания» Лапласа, оптимальной считают чистую стратегию , обеспечивающую:

Если же смешанная стратегия природы неизвестна, то в зависимости от гипотезы о поведении природы можно предложить ряд подходов для обоснования выбора решения ЛПР. Свою оценку характера поведения природы будем характеризовать числом , которое можно связывать со степенью активного «противодействия» природы как игрока Значение соответствует наиболее пессимистичному отношению ЛПР в смысле «содействия» природы в достижении им наилучших хозяйственных результатов. Значение соответствует наибольшему оптимизму ЛПР. Как известно, в хозяйственной деятельности указанные крайности опасны. Скорее всего, целесообразно исходить из некоторого промежуточного значения . В этом случае используется критерий Гурвица, согласно которому наилучшим решением ЛПР является чистая стратегия , соответствующая условию:

Критерий Гурвица (критерий «оптимизма-пессимизма») позволяет руководствоваться при выборе рискового решения в условиях неопределенности некоторым средним результатом эффективности, находящимся в поле между значениями по критериям «максимакса» и «максимина» (поле между этими значениями связано посредством выпуклой линейной функции).

В случае крайнего пессимизма ЛПР указанный критерий называется критерием Вальда. Согласно этому критерию, наилучшей считается максиминная стратегия. Это критерий крайнего пессимизма. По этому критерию ЛПР выбирает ту стратегию, которая гарантирует в наихудших условиях максимальный выигрыш:

Такой выбор соответствует наиболее робкому поведению ЛПР, когда он предполагает наиболее, неблагоприятное поведение природы, боится больших потерь. Можно предположить, что он не получит больших выигрышей. Согласно критерию Сэвиджа, следует выбирать чистую стратегию соответствующую условию:

где риск .

Критерий Сэвиджа (критерий потерь от «минимакса») предполагает, что из всех возможных вариантов «матрицы решений» выбирается та альтернатива, которая минимизирует размеры максимальных потерь по каждому из возможных решений. При использовании этого критерия «матрица решения» преобразуется в «матрицу риска», в которой вместо значений эффективности проставляются размеры потерь при различных вариантах развития событий.

Недостатком критериев Вальда, Сэвиджа и Гурвица является субъективная оценка поведения природы. Хотя указанные критерии и дают некоторую логическую схему принятия решений, резонно все же задать вопрос: «А почему сразу не выбрать субъективное решение, вместо того чтобы иметь дело с разными критериями?» Несомненно, определение решения по различным критериям помогает ЛПР оценить принимаемое решение с различных позиций и избежать грубых ошибок в хозяйственной деятельности.

Пример решения задачи

Условие задачи

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

  1. требуется профилактический ремонт;
  2. требуется замена отдельных деталей и узлов;
  3. требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

Требуется найти оптимальное решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

a 4 6 9 b 5 3 7 c 20 15 6 q 0.4 0.45 0.15

Решение задачи

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по методам оптимальных решений с контрольными или экзаменами.

Игра парная, статистическая. В игре участвуют 2 игрока: руководство предприятия и природа.

Под природой в данном случае понимаем совокупность внешних факторов, которые определяют состояние оборудования.

Стратегия руководства:

Отремонтировать оборудование своими силами

Вызвать бригаду специалистов

Заменить оборудование новым

Стратегия природы - 3 возможных состояния оборудования.

Требуется профилактический ремонт;

Следует заменить отдельные детали и узлы;

Требуется капитальный ремонт.

Расчет платежной матрицы и матрицы рисков

Поскольку элементы матрицы - затраты, то будем считать их выигрышными но со знаком минус. Платежная матрица:

-4 -6 -9 -9 -5 -3 -7 -7 -20 -15 -6 -20 0.4 0.45 0.15

Составляем матрицу рисков:

-4-(-20)=16 -6-(-15)=9 -9-(-9)=0 16 -5-(-20)=15 -3-(-15)=12 -7-(-9)=2 15 -20-(-20)=0 -15-(-15)=0 -6-(-9)=3 3

Критерий Байеса

Определяем средние выигрыши:

По критерию Байеса оптимальной является стратегия - вызвать бригаду специалистов

Критерий Лапласа

Определим средние выигрыши:

По критерию Лапласа оптимальной является стратегия - вызвать бригаду специалистов

Критерий Вальда

По критерию Вальда оптимальной является стратегия - вызвать бригаду специалистов

Критерий Сэвиджа

По критерию Сэвиджа оптимальной является стратегия - заменить оборудование новым

Критерий Гурвица

По критерию Гурвица оптимальной является стратегия - вызвать бригаду специалистов

Ответ

По всем критериям, за исключением критерия Сэвиджа, оптимальной является стратегия «Вызвать бригаду специалистов». По критерию Сэвиджа, который минимизирует риски, оптимальной является стратегия «Заменить оборудование новым».


Содержит изложенные в краткой и доступной форме теоретические сведения о матричной игре без седловой точки и способе сведения такой задачи к задаче линейного программирования, для отыскания ее решения в смешанных стратегиях. Приведен пример решения задачи.

Многоканальная СМО с неограниченной очередью
Приведены необходимые теоретические сведения и образец решения задачи по теме "Многоканальная система массового обслуживания с неограниченной очередью", подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с ожиданием обслуживания - среднее число каналов, занятых обслуживанием заявки, длина очереди, вероятность образования очереди, вероятность свободного состояния системы, среднее время ожидания в очереди.

Критический путь, критическое время и другие параметры сетевого графика работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.

Глава 2. Принятие решений в условиях неопределенности

2.7. Критерий Вальда

Критерий Вальда является самым "осторожным". Согласно ему, оптимальной альтернативой будет та, которая обеспечивает наилучший исход среди всех возможных альтернатив при самом плохом стечении обстоятельств.

Если исходы отражают подлежащие минимизации показатели (убытки, расходы, потери и т.д.), то критерий Вальда ориентируется на "минимакс" (минимум среди максимальных значений потерь всех альтернатив).

Если в качестве исходов альтернатив фигурируют показатели прибыли, дохода и других показателей, которые надо максимизировать (по принципу "чем больше, тем лучше"), то ищется "максимин" выигрыша (максимум среди минимальных выигрышей). Здесь и далее для всех критериев в тексте мы будем рассматривать именно такой случай, когда исход показывает некий выигрыш.

По критерию Вальда оценкой i -й альтернативы является ее наименьший выигрыш:

W i = min (x ij ) , j = 1..M

Оптимальной признается альтернатива с максимальным наихудшим выигрышем:

Х* = Х k , W k = max (W i ) , i = 1..N

Пример применения критерия Вальда

Есть два проекта Х 1 и Х 2 , которые при трех возможных сценариях развития региона (j=1..3) обеспечивают разную прибыль. Значения прибыли приведены в таблице 2.2. Необходимо выбрать проект для реализации.

Среди возможных проектов нет доминирующих ни абсолютно, ни по состояниям. Поэтому решение придется принимать по критериям.

Если выбор оптимального проекта осуществляется по критерию Вальда, то ЛПР должен выполнить следующие действия:

1. Найти минимальные исходы для каждой альтернативы. Это и будут значения критерия Вальда:

W 1 = min (x 1j), j = 1..3 => W 1 = min (45, 25, 50) = 25

W 2 = min (x 2j), j = 1..3 => W 2 = min (20, 60, 25) = 20

2. Сравнить значения критерия Вальда и найти наибольшую величину. Альтернатива с максимальным значением критерия будет считаться оптимальной:

25 > 20 => W 1 > W 2 => X* = X 1

Если бы решение принималось только по критерию Вальда, ЛПР выбрал для реализации проект Х 1 , поскольку прибыль, которую обеспечит данный проект при самом плохом развитии ситуации, выше.

Выбрав оптимальную альтернативу по критерию Вальда, ЛПР гарантирует себе, что при самом плохом стечении обстоятельств он не получит меньше, чем значение критерия. Поэтому данный показатель еще называют критерием гарантированного результата .

Основной проблемой критерия Вальда является его излишняя пессимистичность, и, как следствие, не всегда логичный результат. Так, например, при выборе по данному критерию между альтернативами А{100; 500} и В{90; 1000} следует остановиться на варианте А . Однако в жизни логичнее было бы выбрать В , так как в худшем случае В лишь немного хуже А , тогда как при хорошем стечении обстоятельств В обеспечивает гораздо больший выигрыш.

Критерий Сэвиджа один из критериев принятия решений в условиях неопределённости. Условиями неопределённости считается ситуация, когда последствия принимаемых решений неизвестны, и можно лишь приблизительно их оценить. Для принятия решения… … Википедия

Критерий согласия Колмогорова - или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

Вальда критерий - , другое написание критерий Уолда см. Максимин … Экономико-математический словарь

Критерий согласия Пирсона - Критерий Пирсона, или критерий χ² (Хи квадрат) наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая… … Википедия

Критерий Краскела - Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

Критерий Кохрена - Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма. Расхождение между дисперсиями считается случайным при выбранном уровне значимости, если: где квантиль случайной величины при числе суммируемых… … Википедия

Критерий Лиллиефорса - статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка… … Википедия

Критерий Уилкоксона - Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации. Т Крит … Википедия

Последовательный статистический критерий - Последовательный статистический критерий последовательная статистическая процедура, используемая для проверки статистических гипотез в последовательном анализе. Пусть наблюдению в статистическом эксперименте доступна случайная величина с… … Википедия

Тест Вальда - (англ. Wald test) статистический тест, используемый для проверки ограничений на параметры статистических моделей, оцененных на основе выборочных данных. Является одним из трех базовых тестов проверки ограничений наряду с тестом… … Википедия

Книги

  • Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к… Купить за 443 руб
  • Теория вероятностей и математическая статистика в задачах. Более 360 задач и упражнений , Борзых Д.А.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…


Енвд