Коэффициенты важности в линейных свертках. Методы многокритериального выбора. Выделение множества Парето

Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.

Метод свертывания критериев предполагает преобразование набора имеющихся частных критериев в один суперкритерий.

Т.е. мы получаем новый суперкритерий F, который является функцийот частных критериев. В общем случае, функциюназывают сверткой частных критериев .

К основным этапом свертывания относятся:

1. Обоснование допустимости свертки

При обосновании допустимости свертки, мы в первую очередь должны подтвердить, что критерии, которые мы сворачиваем, должны быть однородными. Выделяют такие группы показателей эффективности;

Показатели результативности;

Показатели ресурсоемкости;

Показатели оперативности.

Критерии, которые мы сворачиваем, должны относиться к одной и той же группе, нельзя сворачивать критерии, которые относятся, например, один из них к показателям оперативности, а другой к показателям результативности. Т.е. для каждой группы свертывание частных критериев следует выполнять отдельно. При нарушении этого принципа теряется смысл критерия .

2. Нормировка критериев

Правила нормализации критериев, мы рассматривали ранее в предыдущем разделе.

3. Учет приоритетов критериев

Учет приоритетов обычно задается некоторым векторам весовых коэффициентов, которые отображают важность того или иного критерия для решаемой задачи.

4. Построение функции свертки

Для свертывания критериев, используют такие основные типы функций:

Аддитивные функции свертки;

Мультипликативные;

Агрегированные, а также могут быть другие варианты сверток.

Аддитивная свертка

Аддитивную свертку критериев можно рассматривать как реализацию принципа справедливой компенсации абсолютных значений нормированных частных критериев . В этом случае, суперкритерий обычно строятся как взвешенная сумма частных критериев

(2.9)

Весовые коэффициенты выбираются такими, чтобы их сумма была равна единицы. В методе равномерной оптимизации, который является частным случаем аддитивной свертке, весовые коэффициенты берутся равными друг другу. Иногда оказывается более удобным другой подход к определению весовых коэффициентов, их определяет соответствие с такой таблицей:

таблица 2.1.

Таблица относительной важности критериев

Мультипликативная свертка

Мультипликативная свертка базируется на принципе справедливой компенсации относительных изменений частных критериев. При этом, суперкритерий имеет вид: , произведение частных критериев, каждый из которых возведен в степень. При этом сумма весовых коэффициентовдолжна быть равна единицы, а каждый из весовых коэффициентов должен быть не отрицательной величиной.

При использовании мультипликативных критериев не требуется нормировка частных критериев, и это является их преимуществом .

Выбор между аддитивными и мультипликативными критериями определяется важностью учета абсолютных или относительных изменений значений частных критериев.

Агрегирование частных критериев используют также различные варианты агрегирование. В частности, если компенсация значений одних показателей эффективности другими недопустима, то используют функции агрегирования вида:

Для каждого частного критерия, находится его нормированное значение и умножается на весовой коэффициент. А потом из всех полученных величин выбирается либо максимальное, либо минимальное значение.

Если первые mпоказателей надо увеличить, а остальные – уменьшить, то используют функцию агрегирования вида:

(2.11)

В числители находятся произведение тех критериев, значение которых нам надо максимизировать, а в знаменателе находятся произведение тех критериев, значение которых нам надо минимизировать. И поэтому мы получаем новый критерий, который нам надо будет максимизировать .

Методы свертывания критериев широко используются в решение задач многокритериальной оптимизации. Однако они имеют также проблемы и недостатки. В частности трудно обосновать выбор метода свертывания критериев, а от выбора метода часто зависит получаемый результат. Другим недостатком является трудность обоснование выбора весовых коэффициентов, часто для этого привлекается эксперты, проводятся опросы, потом обрабатываются полученные результаты, однако это требует много времени и затраты других ресурсов. Еще одна проблема связана с тем, что эти методы, как правила дает возможность компенсировать малые значения одних критериев большими значениями других, что часто бывает неприемлемо для конкретных решений .

Рассмотрим в качестве примера такую задачу:

Перед тем как преобразовывать эти критерии в 1, мы должны привести их в однородном состоянии. Т.е. в данном случае нужно максимизировать f2→ f2" = -f2. И тогда получим: . После этого суммируем частных критериевв один, и можем дальше решить задачу обычным путем.

Также нужно учитывать и весовые коэффициенты, при этом их сумма должна быть = 1, и каждый из весовых коэффициентов должен быть неотрицательной величиной. Весовые коэффициенты распределяется по важности этих самих частных критериев . В данном случае, весовые коэффициенты будут распределяться следующим образом: 0,5; 0,2; 0,3.

После подсчета вместе с весовыми коэффициентами, мы получим целевую функцию такого вида: или.

Открываем электронную книгу Excel и, как и для решения однокритериальной задачи определяем ячейки под переменные . Для этого в ячейку А3 вводим подпись «Переменные», а соседние три ячейки В2, С2 и D2 вводим значения переменных. Это могут быть произвольные числа, например единицы или нули, далее они будут оптимизироваться. В нашем случае это единицы.

рис.2.11. Определение переменных, целевых и ограничений

В четвертой строке задаем целевую функцию. В А4 вводим подпись «Целевая», а в В4, С4, D4 наши значения.

В ячейку F6,F7и F8 вводим формулы «=B6*$B$3+C6*$C$3+D6*$D$3», «=B7*$B$3+C7*$C$3+D7*$D$3»,«=B8*$B$3+C8*$C$3+D8*$D$3» соответственно.

После открытия окна «Поиск решения» в поле «Оптимизировать целевую функцию» ставим курсор и делаем ссылку на ячейку «F4». В окне появится $F$4. В связи с тем, что целевая функция максимизируется, далее нужно проверить, что флажок ниже поля стоит напротив надписи «Максимум».

После ставим курсор в поле «Изменяя ячейки переменных» и обводим ячейки с переменными В3, С3 и D3, выделяя ячейки с переменными. В поле появиться $B$3:$D$3.

В нижней части окна находится поле «Ограничения». Добавляем все необходимые ограничения, «F6» «» «F6», «F7:F8» «≤» и «G7:G8».

Вводим дополнительное ограничение, и получим следующую формулу «B3:D3», «», «0».

рис.2.12. Параметры поиска решения

Далее выбираем метод решения «Поиск решения линейных задач симплекс-методом». Для запуска вычислений нажимаем кнопку «Найти решение». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и «ОК» видим результат.

рис.2.13. Окончательный результат решения по методу свертывания критериев

Существующие методы предназначены в основном для сравнения заданных альтернатив и выбора лучшей из них. Довольно часто критерии, по которым оцениваются альтернативы, противоречивы, для них используются разные методы и шкалы оценок.

С математической точки зрения не существует идеального способа или метода решения многокритериальных задач оптимизации. Тем не менее, эти методы помогают подготовить всю необходимую для принятия решения информацию таким образом, чтобы помочь лицам принимающее решение максимально точно разобраться в ситуации и принять наиболее обоснованное решение.

Столкнувшись с необходимостью учета многокритериальности, исследователи стали искать возможные подходы к решению задач оптимального выбора при многих критериях.

Простейшим способом устранения многокритериальности це­лей является перевод задачи выбора в русло однокритериальности, например, путем объединения всех частных (локальных) показателей эффективности fj(x) в один общий (глобальный) критерий качества f(x)= F(f 1 (x) , f 2 (x) ,… f h (x)). Подобный прием носит название свертки критериев.

Каждый частный критерий отражает какое-то отдельное ка­чество варианта решения. Наилучший вариант должен характеризоваться наиболее удачным сочетанием всех этих отдельных качеств. Таким образом, поиск лучшего варианта решения сводится к отысканию экстремума единственной функции f(x)

x* arg max f(x) (3.11)

Остается только установить, как глобальное качество решения зависит от локальных качеств. Вид функции f(x) опреде­ляется тем, каким образом можно представить вклад каждого частного критерия f j (x) в общий критерий качества. Заметим, что для этого должна существовать возможность содержатель­ного сопоставления критериев.

Достаточно популярным способом служит запись глобального критерия в виде суммы локальных критериев (так называемая аддитивная свертка)

или в виде их произведения (мультипликативная свертка)

Формула (3.12) выражает принцип равномерной оптимальности. Им обычно пользуются, когда частные критерии эффективности имеют одинаковую размерность, например, выражены в денежных единицах. Тогда глобальный критерий качества решения будет представлять собой общую ценность варианта, которая слагается из ценностей его отдельных составляющих.

Формула (3.13) отражает принцип справедливого компромисса, в соответствии с которым общее качество решения должно равняться нулю, если хотя бы один из частных критериев эффективности принимает нулевое значение. Подобный подход применяется, например, для оценки общей надежности функциони­рования сложной системы, состоящей из многих частей, узлов и блоков. Интересно, что принцип справедливого компромисса был сформулирован еще английским математиком Ч. Доджсоном (более известным как английский писатель Льюис Кэрролл) в книге «История с узелками».

Существенным недостатком указанных способов свертки кри­териев является равная важность или значимость критериев для ЛПР, при которой низкие оценки по одним критериям можно компенсировать только за счет высоких оценок по другим кри­териям. Вследствие этого лучшим может оказаться вариант решения, сочетающий не самые лучшие критериальные оценки.

Чтобы избежать такого несоответствия, часто используют взвешенные свертки частных критериев эффективности вида

, (3.15),

,

где w j ≥ 0 - вес частного критерия f j (x) . Способ свертки частных критериев и значения их весов задаются ЛПР и отражают его предпочтения.

Некоторым промежуточным вариантом между крайне пессимистическими вариантами и крайне оптимистическими является критерии пессимизма-оптимизма (критерий Гурвица):

где 0≤β≤- «коэффициент пессимизма» или, если хотите, «коэффициент оптимизма». При β=1 оценка превращается в минимальную, а при β=0 она максимально оптимистична. Необходимо подчеркнуть, что определение значения β – это прерогатива руководителя, и с этой точки зрения, оценка чрезвычайно субъективна. А также

где a i – коэффициенты важности критериев (весовые коэффициенты), определяемые в большинстве случае субъективно; ; с – некоторое фиксированное значение критерия f(x i), например, некоторое его усредненное значение; f(x i) - частный i- й показатель (критерий) эффективности; f j (x i) – частный i- й показатель (критерий) эффективности j -й альтернативы (проекта).

Выбор того или иного вида свертки определяется характером взаимосвязей составляющих ее критериев (равнозначные, доминирующие и т.п.), а также некоторыми специальными ограничениями на область значений свертки, вытекающими из специфики конкретной задачи и предпочтений руководителя. Если частные показатели неоднородные, то они либо сводятся к однородным, либо коэффициенты a i учитывают не только важность, но и физическую размерность показателя.

Основная трудность, возникающая при формировании и использовании обобщенных критериев, заключается в сложности определения весовых коэффициентов, на которые возложена функция адекватного отражения степени важности критерия, его физической размерности и иногда других факторов. К недостаткам обобщенных критериев следует также отнести и то, что при оценке они не позволяют учитывать часто встречающуюся иерархическую зависимость результирующего показателя от значений частных показателей.

Однако это не означает, что СППР не должна использовать этот подход к оценке эффективности управляющих решений. Система предлагает его руководителю как один из возможных вариантов.

Многокритериальная оценка альтернатив решения может быть выполнена также на основе правил выбора по Парето . Здесь предпочтительным считается такой проект, для которого не существует другого проекта лучше данного хотя бы по одному показателю и не хуже него по всем остальным.

Описанные правила отбора не позволяют учесть относительную важность критериев оценки. Они нечувствительны к степени отличия значений критериальных показателей, и вероятность ошибки существенно повышается с ростом числа критериев.

Ряд методов анализа и отбора проектов основан на том, что критерий оценки формируется на основе характеристик того или иного выделенного аспекта реализации решения (главного критерия) -затраты, время, риски, вероятности успеха и т.п. В конечном итоге такой подход приводит к постановке и решению той или иной задачи математического программирования, в которой выделенный показатель выступает в качестве критерия, а к значениям остальных показателей предъявляются определенные требования, порождающие область ограничений.

В общем случае это приводит к решению многокритериальной задачи методом последовательных уступок, когда последовательно находится оптимальное решение по каждому из упорядоченных по важности критериев с назначением руководителем на каждом шаге решения задачи уступки величины по каждому из критериев, оптимизируемых на предыдущем шаге.

Пример . Требуется выбрать лучший вариант строительства предприятия из пяти предложенных вариантов A 1 – A 5 . Проект предварительно оценивается по четырем частным показателям эффективности:

f 1 – величина ожидаемой прибыли, которую будет давать предприятие;

f 2 – стоимость строительства предприятия;

f 3 – величина экологического ущерба от строительства;

f 4 – заинтересованность жителей района в строительстве.

Для простоты будем считать, что оценки по каждому из четырех критериев даются по шкале: 5, 4, 3, 2, 1, 0 баллов. Поскольку оценки по второму и третьему критериям необходимо минимизировать, а не максимизировать, как по остальным, то вместо них введем критерии f’ 2 =5- f 2 и f’ 3 =5- f 3 . По результатам экспертизы были получены следующие оценки качества проектов:

y 1 = (4; 3; 4; 3),

y 2 = (5; 3; 3; 3),

y 3 = (2; 4; 2; 4),

y 4 = (5; 3; 2; 3),

y 5 = (4; 4; 3; 4).

Сравним вектор y 1 с остальными векторами по отношению доминирования ≥ на множестве достижимости Y а. В данном случае пары векторов y 1 - у 2 , y 1 – y 3 , y 1 – y 4 , y 1 – y 5 несравнимы по отношению доминирования. Вектор y 1 запоминается как эффективный. Далее сравнивается вектор у 2 с векторами y 3 , y 4 , y 5 . Пары векторов у 2 - y 3 , у 2 - y 5 несравнимы. Так как у 2 > y 4 , вектор у 4 удаляется из рассмотрения как доминируемый, а вектор у 2 запоминается как эффективный. Для сравнения остаются векторы y 3 и y 5 . Поскольку y 5 > y 3 , то вектор y 3 удаляется из рассмотрения как доминируемый. В итоге остаются три вектора y 1 , y 2 и y 5 , образующие паретову границу Y* С Y a исоответствующие эффективные варианты А 1 , А 2 , А 5 , среди которых и следует сделать окончательный выбор.

Чтобы еще больше сузить паретово множество Y* и выделить единственный наилучший вариант решения, необходима еще какая-то дополнительная информация, которую может дать только ЛПР.

Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где j - нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он - несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где j - нормирующие множители,

вj - весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 - альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве? называется произвольное подмножество R множества? Х? , где? Х? - это множество всех упорядоченных пар (ai ;aj) , где ai , aj ? . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки - это вершины графа, стрелки между точками - это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е - непустое конечное множество элементов (вершин), е - конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества? по бинарному отношению R называется такой элемент х? , что у? выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент - это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества? по бинарному отношению R называется такой элемент х? , что у? для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества - это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент - это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 - в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 - из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 - из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 - в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа - это квадратная матрица размера m x m (m - это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето - одно удовольствие! Максимальные элементы - это те, чьи строки состоят из всех единиц (кроме себя самих - там может быть как нуль, так и единица). А оптимальные по Парето элементы - это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа - это матрица, строки которой соответствуют вершинам, а столбцы - дугам. При этом предполагается, что граф не должен иметь петель.

Элементы матрицы инцидентности будут такими:

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов - нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы - это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы - это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Метод (последовательных) уступок заключается в анализе точек на границе Парето и выбора одной из них - компромиссной.

Назначение сервиса . Сервис предназначен для онлайн решения многокритериальных задач оптимизации методом последовательных уступок .

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10
Количество целевых функций 2 3 4 5 6
При этом ограничения типа x i ≥ 0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом .

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП

Решение транспортной задачи

Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.

Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

Алгоритм метода последовательных уступок (компромиссов)

Вначале производится качественный анализ относительной важности критериев. На основании такого анализа критерии нумеруются в порядке убывания важности.
Ищем максимальное значение f 1 * первого критерия f=f 1 (x) на всем множестве допустимых решений. Затем назначаем величину «допустимого» снижения (уступки ) Δ 1 критерия f 1 (x) и определяем наибольшее значение f 2 * второго критерия f=f 2 (x) при условии, что значение первого критерия должно быть не меньше, чем f 1 (x)-Δ 1 . Затем назначаем величину «допустимого» снижения (уступки ) Δ 2 критерия f 2 (x) и определяем наибольшее значение f 3 * третьего критерия f=f 3 (x) при условии, что значение второго критерия должно быть не меньше, чем f 2 * - Δ 2 и т. д. Таким образом, оптимальным решением многокритериальной задачи считается всякое решение последней из задач последовательности:
1) найти max f 1 (x)=f 1 * в области x ∈ X;
2) найти max f 2 (x)=f 2 * в области, задаваемой условиями x ∈ X; f 1 (x) ≥ f 1 * -Δ 1 (6)
……………………………………………………………….
m) найти max f m (x)=f m * в области, задаваемой условиями
x ∈ X; f i (x) ≥ f i * -Δ i , i=1,...,m-1
Очевидно, что если все Δ i =0, то метод уступок находит только лексикографически оптимальные решения, которые доставляют первому по важности критерию наибольшее на Х значение. В другом крайнем случае, когда величины уступок очень велики, решения, получаемые по этому методу, доставляют последнему по важности критерию наибольшее на Х значение. Поэтому величины уступок можно рассматривать как своеобразную меру отклонения приоритета частных критериев от жесткого лексикографического.
Метод последовательных уступок не всегда приводит к получению только эффективных точек, но среди этих точек всегда существует хотя бы одна эффективная. Это следует из следующих утверждений.
Утверждение 3 . Если X ⊂ R n - множество замкнутое и ограниченное, а функции f i (x) непрерывны, то решением m-й задачи из (6) является, по крайней мере, одна эффективная точка.
Утверждение 4 . Если x * - единственная (с точностью до эквивалентности) точка, являющаяся решением m-й задачи из (6), то она эффективна.

Примеры решения многокритериальной задачи методом последовательных уступок

Пример №1 . Решить методом последовательных уступок многокритериальную задачу.
f 1 (x)=7x 1 +2x 3 -x 4 +x 5 → max ,

при ограничениях
-x 1 +x 2 +x 3 =2 ;
3x 1 -x 2 +x 4 =3 ;
5x 1 +2x 2 +x 3 +x 4 +x 5 =11;
x i ≥ 0 для i=1,2,...,5.
Упорядочим критерии согласно их нумерации, то есть будем в начале работать с критерием f 1 (x), а затем с критерием f 2 (x).
При решении примера методом искусственного базиса была получена симплекс-таблица (табл.). Возьмем ее в качестве начальной, вычислив относительные оценки для функции f=f 1 (x). Получим таблицу 10. Таблица 11 определяет точку, доставляющую функции f1(x) наибольшее значение f 1 * , равное 16.
Таблица 10. Таблица 11.




7

0







c в


X 1

x 2




x 4

x 2


2

x 3

-1

1

2


x 3

1/3

2/3

3

-1

x 4

3

-1

3


x 1

1/3

-1/3

1

1

x 5

3

2

6


x 5

-1

3

3


f 1

-9

5

7


f 1

3

2

16

Далее переходим к решению задачи
f 2 (x)=x 1 -5x 2 -4x 3 +x 4 → max
при ограничениях задачи, к которым добавлено новое ограничение f 1 (x)≥f 1 * -Δ:
-x 1 +x 2 +x 3 =2,
3x 1 -x 2 +x 4 =3 , (7)
5x 1 +2x 2 +x 3 +x 4 +x 5 =11,
7x 1 +2x 3 - x 4 +x 5 ³16-Δ,
x i ≥ 0 для i=1,2,...,5.
Новое ограничение преобразуем в равенство и заменим переменные x 1 , x 3, x 5 , используя таблицу 11, выражениями
x 1 =1/3x 2 -1/3x 4 +1, x 3 =-2/3x 2 -1/3x 4 +3, x 5 =-3x 2 +x 4 +3.
В результате этих преобразований дополнительно введенное ограничение примет вид -2x 2 -x 4 +x 6 =-16+Δ. Итак, получили задачу параметрического программирования с параметром в правой части ограничений.
В качестве начальной таблицы для задачи (7) можно использовать таблицу 12, которая получена из таблицы 11 в результате пополнения ее еще одной строкой и пересчета строки относительных оценок. Решим задачу (7) для произвольного параметра Δ≥0. Для этого столбец правых частей ограничений в таблице 12 представим в виде двух столбцов z′, z″: z i 0 =z i ′+z i ″Δ. При выборе главной строки в таблице 12 следует использовать значения из столбца z′. Полученная далее таблица 13 является оптимальной при Δ=0 и при всех значениях Δ, удовлетворяющих условиям
3+(-1/9) Δ ≥ 0, 1+(-1/9) Δ ≥ 0, 3+1/3 Δ ≥ 0, 0+1/3 Δ ≥ 0.
Из этой системы неравенств получаем 0 ≤ Δ ≤ 9. При этих значениях параметра решением задачи является точка x*=(1+(-1/9)Δ, 0, 3+(-1/9)Δ, 0+1/3Δ, 3+1/3Δ).
Таблица 12. Таблица 13.



1

-5








с в


x 4

x 2

z′

z″



x 6

x 2

z′

z″

-4

x 3

1/3

2/3

3

0


x 3

-1/9

4/9

3

-1/9

1

x 1

1/3

-1/3

1

0


x 1

-1/9

-5/9

1

-1/9

0

x 5

-1

3

3

0


x 5

1/3

11/3

3

1/3

0

x 6

3

2

0

1


x 4

1/3

2/3

0

1/3


f 2

-2

2

-11

0


f 2

2/3

10/3

-11

2/3

При Δ > 9 таблица 13 не является оптимальной, и нужно выполнить шаг двойственного симплекс-метода с главным элементом, стоящим на пересечение второй строки и первого или второго столбцов. Получим таблицу 14, из которой видно, что при Δ > 9 решениями являются точки, доставляющие функции f 2 (x) значение –5. Таблица 14 определяет опорное решение x ** =(0,0,2,3,6).
Таблица 14.



x 1

x 2

z′

z″

x 3

-1

1

2

0

x 6

-9

5

-9

1

x 5

3

2

6

0

x 4

3

-1

3

0

f 2

6

0

-5

0

Найдем эти решения. Выберем главным столбец с 0-оценкой. В зависимости от Δ главной строкой будет первая или вторая строка. Если
(-9+Δ)/5 > 2, то главной строкой будет выбрана 1-я. А значит, следующей будет таблица 15. Она определяет опорное решение X=(0,2,0,5,2) , если
–19+Δ≥0. Итак, если D≥19, оптимальными решениями будут все точки выпуклой комбинации
ax ** +(1-a)x * =(0, 2-2a, 2a,5-2a,2+4a), где a∈.
Таблица 15.



x 1

x 3

z′

z″

x 2

-1

1

2

0

x 6

-4

-5

-19

1

x 5

5

-2

2

0

x 4

2

1

5

0

f 2

6

0

-5

0

Если (-9+Δ)/5 > 2, то главной строкой будет выбрана 2-я. А значит, следующей после таблицы 14 будет таблица 16. Таблица 16 определяет решение X=(0, (-9+Δ)/5, (19-Δ)/5, (6+Δ)/5, (48-2Δ)/5), если –19+Δ≤0. Итак, если Δ≤19, оптимальными решениями будут все точки выпуклой комбинации
ax**+(1-a)x*=(0, (1-a)(-9+Δ)/5, (19-Δ)/5+a(-9+Δ)/5, (6+Δ)/5+a(9-Δ)/5, (48-2Δ)/5+a(-18+2Δ)/5), где a∈.
Таблица 16.



x 1

x 6

z′

z″

x 3

4/5

-1/5

19/5

-1/5

x 2

-9/5

1/5

-9/5

1/5

x 5

33/5

-2/5

48/5

-2/5

x 4

6/5

1/5

6/5

1/5

f 2

6

0

-5

0

Окончательный результат формулируется следующим образом: решением многокритериальной задачи являются:
точки x*=(1+(-1/9)Δ, 0, 3+(-1/9)Δ, 0+1/3Δ, 3+1/3Δ), если 0 ≤ Δ ≤ 9,
точки x**=(0, (1-a)(-9+Δ)/5, (19-Δ)/5+a(-9+Δ)/5,
(6+Δ)/5+a(9-Δ)/5,(48-2Δ)/5+a(-18+2Δ)/5), если 9 < Δ ≤ 19,
точки x *** =(0, 2-2a, 2a,5-2a,2+4a), если Δ ≥ 19,
где a∈.

Пример №2 . Методом последовательных уступок найти решение задачи, считая, что критерии упорядочены по важности в последовательности {f 2 ,f 1 }, и Δ 2 =1.
f 1 =-x 1 +3x 2 → max,
f 2 (x)=4x 1 -x 2 → max ,
Первая задача из последовательности (6) в данном случае имеет вид:
f 2 (x)=4x 1 -x 2 → max ,
при ограничениях
-x 1 +x 2 ≤1, x 1 +x 2 ≥3, x 1 -2x 2 ≤0 , x 1 ≤4 , x 2 ≤3.
Решение этой задачи можно найти графически. Из рисунка 14 видно, что максимум критерия f 2 (x) на множестве X достигается в вершине x 5 =(4,2) и f 2 * =f 2 (x 5)=14.
Графическое решение примера №2.

Рис.
Добавим к ограничениям задачи условие f 2 ≥f 2 * -Δ и сформулируем вто­рую задачу последовательности (6):
f 1 =-x 1 +3x 2 → max,
-x 1 +x 2 1 , x 1 +x 2 3, x 1 -2x 2 0 , x 1 4 , x 2 3,
4x 1 -x 2 13
Ее решением (рис.) будет вершина x 4 =(4,3) и f 1 * =f 1 (x 4)=5. Так как, оптимальное решение последней задачи единственно, то в силу утверждения 5, x 4 принадлежит множеству Парето.
Отметим, что при Δ∈ методом последовательных уступок будет найдена одна из точек отрезка , а при Δ>1, одна из точек отрезка . Все эти точки и только они принадлежит множеству Парето.



Отчетность за сотрудников