Многоканальная смо с неограниченной очередью. Смо с отказами определения и формулы

1) одноканальная СМО

В предельном (стационарном) режиме система уравнений Колмогорова:

Учитывая нормировочное условие p 0 + p 1 = 1, найдем:

которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы q и вероятность отказа P отк:

Абсолютная пропускная способность: .

Задача 1. Известно, что заявки в ателье поступают с интенсивностью?=90 (заявок в час), а средняя продолжительность разговора по телефону t об = 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение.

Интенсивность потока обслуживания?= 1/ t об =1/2 = 0,5(1/мин) = 30 (1/ч).

Относительная пропускная способность СМО q = 30/(30+90) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P отк = 0,75. Абсолютная пропускная способность СМО: Q = 90*0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки.

Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

2) многоканальная СМО

Система уравнений Колмогорова имеет вид:


В стационарном режиме:

Разрешим систему (1) относительно неизвестных p 0 , p 1 ,..., p m . Из первого уравнения:

Из второго с учетом (2):

Аналогично из третьего, с учетом (2) и (3):

и вообще, для любого k ? m:

Введем обозначение:

Определяет среднее число требований, поступающих в СМО за среднее время обслуживания одной заявки (приведенная плотность потока заявок).

Формула (6) выражает все вероятности p k через p 0 . Воспользуемся условием:

Подставляя (7) в (6), получим, 0 ? k ? m. (8)

Формулы (7) и (8) называют формулами Эрланга. Полагая в формуле (8) k = m, получим вероятность отказа

Относительная пропускная способность (вероятность того, что заявка будет обслужена):

Формулы Эрланга и их следствия (9), (10) выведены для случая показательного закона распределения времени обслуживания. Но исследования последних лет показали, что эти формулы остаются справедливыми при любом законе распределения времени обслуживания, лишь бы входной поток был простейшим. Также формулами Эрланга можно пользоваться (с известным приближением) и в случае, когда поток заявок отличается от простейшего (например, является стационарным потоком с ограниченным последействием). Наконец, формулами Эрланга можно приближенно пользоваться и в случае, когда СМО допускает ожидание заявки в очереди, но когда срок ожидания мал по сравнению со средним временем обслуживания одной заявки.

Абсолютная пропускная способность:

Среднее число занятых каналов есть математическое ожидание числа занятых каналов:

или или, учитывая (11) и (5)

При большом числе каналов обслуживания применяют следующие формулы, которые также называются формулами Эрланга:

При больших значениях i:

функция Лапласа.

Вероятность отказа: (9")

Относительная пропускная способность

Среднее число занятых каналов:

Задача 2. В условиях предыдущей задачи определить оптимальное число телефонных номеров в ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (5) ? = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора t об = 2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n = 2, 3, 4,... и определим по формулам (7), (10), (11) для получаемой n-канальной СМО характеристики обслуживания. Например, при n = 2

Значения характеристик СМО представим в таблице:

По условию оптимальности q ? 0,9, следовательно, в ателье необходимо установить 5 телефонных номеров (в этом случае q = 0,9). При этом в час будут обслуживаться в среднем 80 заявок (Q = 80,1), а среднее число занятых телефонных номеров (каналов)

Задача 3. Автоматическая телефонная станция обеспечивает не более 120 переговоров одновременно. Средняя продолжительность разговора 60 секунд, а вызовы поступают в среднем через 0,5 секунды. Рассматривая такую станцию как многоканальную систему обслуживания с отказами и простейшим входным потоком, определить: а) среднее число занятых каналов, б) относительную пропускную способность, в) среднее время пребывания вызова на станции с учетом того, что разговор может и не состояться.

Решение. Имеем: m = 120; ? = 1/0,5 = 2; ? = 1/60; ? = ?/? = 120.

Используя таблицы функции Лапласа, получаем:

так как? есть интенсивность входного потока (число заявок в единицу времени), то?t ср = и.

2 . СМО с ожиданием и ограниченным временем ожидания.

Имеется m каналов обслуживания, входной поток - простейший с интенсивностью?, время обслуживания и время ожидания - СВ, распределенные по экспоненциальному закону с параметрами? и? соответственно.

Если занято i каналов и i ? m, то в силу независимости их функционирования интенсивность обслуживания возрастает в i раз: ? i,i-1 = i?. При возникновении очереди каждое состояние рассматриваемой СМО характеризуется занятостью каналов обслуживания. Поэтому интенсивность освобождения каналов становится постоянной u = m?.

Закон распределения времени ожидания определяется интенсивностью? ухода из очереди при наличии в ней одной заявки. В силу независимости поступления заявок (см. определение простейшего потока) интенсивность, с которой заявки отказываются от обслуживания и уходят из очереди, равна r? (для очереди длины r ? 1). Т.о., плотность вероятности перехода системы из состояния S m+r в состояние S m+r-1 равна сумме интенсивностей освобождения каналов обслуживания и отказа от обслуживания: ? m+r,m+r-1 = m? + r?.

Составим уравнения Колмогорова:


i=1,..., m-1, r ? 0.

Если на длину очереди не накладывать ограничений, то система обыкновенных дифференциальных уравнений (1) является бесконечной.

Если в начальный момент времени t = 0 рассматриваемая система находилась в одном из своих возможных состояний S j , то начальные условия для нее выглядят следующим образом.

На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза «На станцию» говорит об единственном устройстве обслуживания, т.е. для решения используем формулы для одноканальной СМО.
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.

Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:

  1. Интенсивность потока обслуживания:
  1. Интенсивность нагрузки .

ρ = λ t обс = 0.5 2 = 1

Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

  1. Доля заявок, получивших отказ .

Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

  1. Относительная пропускная способность .

Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1

Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

Абсолютная пропускная способность – среднее число заявок, которое может быть обслужено в единицу времени. p 0 - вероятность того, что канал свободен, Q - относительная пропускная способность

Интенсивность нагрузки ρ=3 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
2. Время обслуживания .
мин.

Следовательно, 3% в течение часа канал будет не занят, время простоя равно t пр = 1.7 мин.

занят 1 канал:
p 1 = ρ 1 /1! p 0 = 3 1 /1! 0.0282 = 0.0845
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 3 2 /2! 0.0282 = 0.13
заняты 3 канала:
p 3 = ρ 3 /3! p 0 = 3 3 /3! 0.0282 = 0.13
.

Значит, 13% из числа поступивших заявок не принимаются к обслуживанию.
.

p отк + p обс = 1

p обс = 1 - p отк = 1 - 0.13 = 0.87
Следовательно, 87% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
.
n з = ρ p обс = 3 0.87 = 2.6 каналов
.
n пр = n - n з = 3 - 2.6 = 0.4 каналов
.

Следовательно, система на 90% занята обслуживанием.
8. Абсолютная пропускная способность для многоканальной СМО .

A = p обс λ = 0.87 6 = 5.2 заявок/мин.
9. Среднее время простоя СМО .
t пр = p отк ∙ t обс = 0.13∙ 0.5 = 0.06 мин.
.

ед.
мин.
.
L обс = ρ Q = 3 0.87 = 2.62 ед.
.
L CMO = L оч + L обс = 1.9 + 2.62 = 4.52 ед.
.
мин.
Число заявок, получивших отказ в течение часа: λ p 1 = 0.78 заявок в мин.
Номинальная производительность СМО: 3 / 0.5 = 6 заявок в мин.
Фактическая производительность СМО: 5.2 / 6 = 87% от номинальной производительности.

Пример №2 . Универсам получает ранние овощи и зелень из теплиц пригородного совхоза. Машины с товаром прибывают в универсам в неопределенное время. В среднем прибывает λ автомашин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обработать и хранить товар объемом не более m автомашин одновременно. В универсаме работают n фасовщиков, каждый из которых в среднем может обработать товар с одной машины в течение t обсл дня. Определить вероятность обслуживания приходящей автомашины P обс. Какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. Pобс.> P*обс.
λ = 3; t обс = 0,5; n = 2; m = 2, P* обс = 0,92.
Решение .

Исчисляем показатели обслуживания многоканальной СМО:
Переводим интенсивность потока заявок в часы: λ = 3/24 = 0.13
Интенсивность потока обслуживания:
μ = 1/12 = 0.0833
1. Интенсивность нагрузки .
ρ = λ t обс = 0.13 12 = 1.56
Интенсивность нагрузки ρ=1.56 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
Поскольку 1.56<2, то процесс обслуживания будет стабилен.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 18% в течение часа канал будет не занят, время простоя равно t пр = 11 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p 1 = ρ 1 /1! p 0 = 1.56 1 /1! 0.18 = 0.29
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 1.56 2 /2! 0.18 = 0.22
4. Доля заявок, получивших отказ .

Значит, 14% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок .
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
p отк + p обс = 1
Относительная пропускная способность: Q = p обс.
p обс = 1 - p отк = 1 - 0.14 = 0.86
Следовательно, 86% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число каналов, занятых обслуживанием .
n з = ρ p обс = 1.56 0.86 = 1.35 канала.
Среднее число простаивающих каналов .
n пр = n - n з = 2 - 1.35 = 0.7 канала.
7. Коэффициент занятости каналов обслуживанием .
K 3 = n 3 /n = 1.35/2 = 0.7
Следовательно, система на 70% занята обслуживанием.
8. Находим абсолютную пропускную способность .
A = p обс λ = 0.86 0.13 = 0.11 заявок/час.
9. Среднее время простоя СМО .
t пр = p отк t обс = 0.14 12 = 1.62 час.
Вероятность образования очереди .


10. Среднее число заявок, находящихся в очереди .

ед.
11. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
T оч = L оч /A = 0.44/0.11 = 3.96 час.
12. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1.56 0.86 = 1.35 ед.
13. Среднее число заявок в системе .
L CMO = L оч + L обс = 0.44 + 1.35 = 1.79 ед.
13. Среднее время пребывания заявки в СМО .
T CMO = L CMO /A = 1.79/0.11 = 16.01 час.

Теперь ответим на вопрос: какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. P обс. > 0.92. Расчет производим исходя из условия:

где
Для наших данных:

Далее необходимо подобрать такое k (см. п.3 "доля времени простоя каналов"), при котором p отк 0.92.
например, при k = m 1 = 4, p отк = 0.07 или p обс = 0.93.

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S 0 – канал свободен; S 1 – канал занят. Переход из S 0 в S 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S 1 в S 0 осуществляется, как только очередное обслуживание завершится (рис.9).

Рис.9. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

(среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - ); – интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания ).

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и .

N – канальная СМО с отказами (задача Эрланга). Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

· S 0 – в СМО нет ни одной заявки;

· S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

· S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

· S n – в СМО находится n – заявок (все n – каналов заняты).

Граф состояний СМО представлен на рис. 10.

Рис.10. Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояние S 1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S 0 в S 1). Если система находилась в состоянии S 1 и пришла еще одна заявка, то она переходит в состояние S 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производит обслуживаний в единицу времени. Поэтому дуга перехода из состояния S 1 в состояние S 0 нагружена интенсивностью . Пусть теперь система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО; – вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Для того, чтобы написать формулу для определения , рассмотрим рис.11.

Рис.11. Граф состояний для схемы «гибели и размножения»

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

Вероятность того, что СМО находится в состоянии S 1 , когда один канал занят.

СМО с отказами (одно - и многоканальная)

Простейшей одноканальной моделью с вероятностным входным потоком и процедурой обслуживания является модель, которая «может характеризоваться показательным распределением длительностей интервалов между поступлениями заявок и распределением длительностей обслуживания». При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид:

f 1 (t) = л*e (-л*t) , (1)

где л - интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени). Плотность распределения длительности обслуживания:

f 2 (t)=µ*e -µ*t , µ=1/t об, (2)

где µ-интенсивность обслуживания, t об -среднее время обслуживания одного клиента. Относительная пропускная способность обслуженных заявок относительно всех поступающих вычисляется по формуле:

Эта величина равна вероятности, что канал обслуживания свободен. Абсолютная пропускная способность (А) -- среднее число заявок, которое может обслужить система массового обслуживания в единицу времени:

Данная величина Р может быть интерпретирована как средняя доля необслуженных заявок.

Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания для мойки автомобилей. Заявка -- автомобиль, прибывший в момент, когда пост занят, -- получает отказ в обслуживании. Интенсивность потока автомобилей л =1,0 (автомобиль в час). Средняя продолжительность обслуживания t об =1,8 часа. Требуется определить в установившемся режиме предельные значения: относительной пропускной способности q;

  • - абсолютной пропускной способности А;
  • - вероятности отказа Р.

Определим интенсивность потока обслуживания по формуле 2: .Вычислим относительную пропускную способность: q =.Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост автомобилей. Абсолютную пропускную способность определим по формуле: А=лЧq=1Ч0,356=0,356. Это говорит о том, что система способна осуществить в среднем 0,356 обслуживания автомобилей в час. Вероятность отказа: Р отк =1-q=1-0,356=0,644. Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании. Определим номинальную пропускную способность данной системы А ном: А ном = (автомобилей в час).

Однако в подавляющем большинстве случаев система массового обслуживания является многоканальной, то есть параллельно может обслуживаться несколько заявок. Процесс СМО, описываемый данной моделью, характеризуется интенсивностью входного потока л, при этом параллельно может обслуживаться не более n клиентов. Средняя продолжительность обслуживания одной заявки равняется 1/м. «Режим функционирования обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель использования параллельно включенных обслуживающих каналов - повышение скорости обслуживания заявок за счет обслуживания одновременно n клиентов.» Решение такой системы имеет вид:

Формулы для вычисления вероятностей называются формулами Эрланга. Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме. Вероятность отказа P отк равна:

P отк =P n =*P 0 . (7)

Заявка получает отказ, если приходит в момент, когда все каналов заняты. Величина Р отк характеризует полноту обслуживания входящего потока; вероятность того, что заявка будет принята к обслуживанию (она же - относительная пропускная способность системы) дополняет Р отк до единицы:

Абсолютная пропускная способность

Среднее число каналов, занятых обслуживанием () следующее:

Величина характеризует степень загрузки системы массового обслуживания. Пример. Пусть n-канальная СМО представляет собой вычислительный центр с тремя (n=3) взаимозаменяемыми компьютерами для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность л=1 задача в час. Средняя продолжительность обслуживания t об =1,8 час.

Требуется вычислить значения:

  • - вероятности числа занятых каналов ВЦ;
  • - вероятности отказа в обслуживании заявки;
  • - относительной пропускной способности ВЦ;
  • - абсолютной пропускной способности ВЦ;
  • - среднего числа занятых ПЭВМ на ВЦ.

Определим параметр м потока обслуживаний:

Приведенная интенсивность потока заявок:

Предельные вероятности состояний найдем по формулам Эрланга:

Вероятность отказа в обслуживании заявки:

Относительная пропускная способность ВЦ:

Абсолютная пропускная способность ВЦ:

Среднее число занятых каналов - ПЭВМ:

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех - остальные полтора будут простаивать. Пропускную способность ВЦ при данных л и м можно увеличить только за счет увеличения числа ПЭВМ.



Открытие бизнеса