Искажение изображений в оптических системах. Аберрация оптической системы – характеристика и основные виды. S V – дисторсия

Аберра́ция оптической системы - ошибка или погрешность изображения в оптической системе , вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе . Аберрацию характеризуют различного вида нарушения гомоцентричности в структуре пучков лучей, выходящих из оптической системы.

Величина аберрации может быть получена как сравнением координат лучей путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо - с помощью формул теории аберраций.

При этом возможно характеризовать аберрацию как критериями лучевой оптики , так и на основе представлений волновой оптики . В первом случае отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние и различаются лишь формой описания.

Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.

Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и .

Энциклопедичный YouTube

  • 1 / 5

    Такие погрешности изображений присущи всякой реальной оптической системе, и принципиально неустранимы. Их возникновение объясняется тем, что преломляющие поверхности неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами.

    Эти аберрации приводят к тому, что изображением точки является некоторая размытая фигура (фигура рассеяния), а не точка, что, в свою очередь, отрицательно влияет на чёткость изображения и нарушает подобие изображения и предмета.

    Теория аберраций

    Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы - от радиусов её поверхностей, толщин, показателей преломления линз и т. д.

    Монохроматические аберрации третьего порядка

    Теория аберраций ограничивается приближённым представлением составляющих аберраций ( δ g ′ {\displaystyle \delta g"} и δ G ′ {\displaystyle \delta G"} ) в виде ряда, члены которого содержат некие коэффициенты (суммы переменных) a 1 , a 2 , … , a k {\displaystyle a_{1},a_{2},\dots ,a_{k}} , зависящие только от конструктивных элементов оптической системы и от положения плоскостей объекта и входного зрачка, но не зависящие от координат луча. Так например, меридиональная составляющая аберрации третьего порядка может быть представлена формулой:

    δ g ′ = a 1 ′ m 3 + a 2 ′ l m 2 + a 3 ′ l 2 m + a 4 ′ l 3 {\displaystyle \delta g"=a"_{1}m^{3}+a"_{2}lm^{2}+a"_{3}l^{2}m+a"_{4}l^{3}} ,

    где l {\displaystyle l} и m {\displaystyle m} - координаты луча, входящие в качестве сомножителей членов ряда.

    Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами S I , S II , S III , S IV , S V .

    Причём, в целях упрощения анализа, предполагают, что в формулах только один из коэффициентов не равен нулю, и определяет соответствующую аберрацию.

    Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя :

    В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) - не более чем искусственный приём, облегчающий анализ явления.

    Монохроматические аберрации высших порядков

    Как правило, картину распределения лучей в фигурах рассеяния заметно осложняет то, что на комбинацию всех аберраций третьего порядка налагаются аберрации высших порядков. Это распределение заметно меняется с изменением положения точки объекта и отверстия системы. Так например, сферическая аберрация пятого порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси, но при этом растёт пропорционально квадрату удаления от неё.

    Влияние аберраций высших порядков возрастает, по мере роста относительного отверстия объектива, причём настолько быстро, что, на практике, оптические свойства светосильных объективов определяются именно высшими порядками аберраций.

    Величины аберраций высших порядков учитываются на основании точного расчёта хода лучей через оптическую систему (трассировки). Как правило, с применением специализированных программ для оптического моделирования (Code V, OSLO, ZEMAX и пр.)

    Хроматические аберрации

    хроматическая аберрация (хроматизм) увеличения .

    Так же к хроматическим аберрациям принято относить хроматические разности геометрических аберраций , в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм»), и хроматическую разность аберраций наклонных пучков.

    Дифракционная аберрация

    Дифракционная аберрация обусловлена волновой природой света, и следовательно - носит фундаментальный характер, и поэтому принципиально не устранима. Высококачественные объективы страдают ею в точно той же мере, что и дешёвые. Она может быть уменьшена лишь посредством увеличения апертуры оптической системы. Эта аберрация возникает вследствие дифракции света λ {\displaystyle \lambda } (лямбда) - длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D {\displaystyle D} - диаметр объектива (в тех же единицах, что и λ {\displaystyle \lambda } ).

    В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.

    Статья описывает базовые понятия аберраций, классификацию аберраций, а также возможные методики устранения аберраций применительно к микроскопным объективам. В статье описана методика выбора микроскопных объективов исходя из задач исследователя.

    Аберрации в оптических системах - погрешность изображения, вызванная любым отклонением реальных лучей от геометрических направлений по которым они должны были бы идти в идеальной оптической системе. Аберрации можно классифицировать на монохроматические (то есть присущие монохроматическим лучам – лучам одной длины волны) и хроматические.

    Монохроматические аберрации

    Монохроматические аберрации – погрешности, присущие любой реальной оптической системе. Возникновение связано с тем, что поверхности, преломляющие лучи неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами. Монохроматические аберрации приводят к искажению изображения точки в некоторую фигуру рассеяния, что снижает четкость изображения и нарушает подобие изображения и предмета.

    Монохроматические аберрации классифицируют пятью аберрациями Зейделя:

    S I - сферическая аберрация


    Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке, а в перетяжке.

    Сферическая аберрация оптических систем из-за несовпадения фокусов для лучей света проходящих на разных расстояниях от оптической оси. Нарушает гомоцентричность пучка света, но не нарушает симметричность.
    Существует несколько путей исправления сферической аберрации:

    Во-первых, снижение кривизны линзы (использование стекла с большим показателем преломления в совокупности с увеличением радиусов поверхностей линзы, сохраняя, тем самым, ее оптическую силу).
    Во-вторых, применением комбинации из положительных и отрицательных линз. Обычно параллельно с исправлением сферической аберрации исправляют также хроматические аберрации.
    В-третьих, применяют диафрагмирование – отсечение краевых лучей широкого пучка. Способ позволяет снизить значение рассеяния, но непригоден для оптических систем требующих высокой светосилы.
    Полностью избавиться от сферической аберрации невозможно, но способы снизить ее эффективно применяются в микроскопии.

    S II – кома


    Аберрация Кома обусловлена тем, что лучи, приходящие под углом к оптической оси, собираются не в одной точке. Методика исправления Комы схожа с методикой исправления сферических аберраций и, в основном, строится на использовании комбинаций положительных и отрицательных линз.

    S III – астигматизм

    Астигматизм оптической системыАберрация, при которой изображение точки, лежащей вне оси и сформированное узким пучком лучей представляет собой два перпендикулярных отрезка расположенных на разном расстоянии плоскости Гаусса (плоскости безаберрационного фокуса).

    Астигматизм не может быть исправлен диафрагмированием, т.к. проявляется и на узких пучках. Для коррекции астигматизма применяют дуплеты положительных и отрицательных линз.

    S IV – кривизна поля изображения


    Аберрация, при которой изображение плоского объекта, перпендикулярного оси оптической системы лежит на выпуклой или вогнутой (обычно сферической в случае симметричной оптики) поверхности относительно объектива.

    Погрешность вносимая аберрацией, очень сильно сказывается в микроскопии, так как получаемое изображение плоского объекта не находится полностью в фокальной плоскости и, таким образом, на нескорректированной системе мы не можем наблюдать полностью резкое изображение объекта по всему полю.

    Кривизна поля корректируется при помощи расчета системы содержащей две и более отрицательных линз, а также использующей воздушное пространство между линзами.

    S V – дисторсия


    Дисторсия – изменение коэффициента линейного увеличения оптической системы по полю зрения. Дисторсия не приемлема в микроскопии, так как система, подверженная дисторсии, не обеспечивает геометрическое подобие наблюдаемого объекта и его изображения. Дисторсия исправляется подбором линз на этапе проектировки объектива. Также возможно исправление дисторсии на этапе компьютерной обработки изображения.

    Хроматические аберрации (ХА)


    Хроматические аберрации – погрешности вносимые в изображение разницей коэффициента преломления для пучков с различными длинами волн.
    При прохождении света через оптические материалы наблюдается дисперсия – разложение белого света на спектр. Именно явление дисперсии запечатлено на самой знаменитой обложке музыкального альбома 20 века - Pink Floyd – The Dark Side of the Moon.

    Для любой оптической линзы коэффициент преломления синих лучей, как правило, больше, чем красных, поэтому точка фокуса синих лучей F blue расположена ближе к задней главной точке линзы, чем точка фокуса красных лучей F red . Отсюда следует, что лучи, полученные разложением белого света, будут иметь различное фокусное расстояние. Единого фокусного расстояния у одной линзы не существует, а есть совокупность фокусных расстояний - по одному фокусу на луч каждого цвета.

    Разность F blue -F red это и есть «хроматизм положения» (или хроматической разностью положения, продольной хроматической аберрацией)

    Диафрагмирование несколько уменьшает хроматизм положения. При этом изображения предмета в лучах разного цвета будут находиться на разных расстояниях от задней главной точки. Если наводить оптическую систему на резкость по красным лучам, изображение в синих лучах будет не в фокусе, и наоборот.

    Конструкция микроскопных объективов рассчитана на устранение хроматических аберраций. Система линз, выполняющих сближение фокусов двух (например, синих и жёлтых) лучей, называется ахроматической, а при сближении фокусов трёх лучей -апохроматической системой.

    Основное правило при исправлении ХА является исправление ХА суммарно для всей системы. Нет необходимости исправлять хроматизм каждого элемента. Важно, чтобы суммарная положительная и отрицательная дисперсия элементов системы была равна нулю.

    Критерии при выборе микроскопных объективов

    Рассмотрев основные типы различных оптических аберраций мы можем описать основные критерии при выборе объективов для лабораторного микроскопа, ведь именно характеристиками объектива определяются разрешающая способность микроскопа, дисторсия, возможность проведения точных измерений, возможность качественного получения большого поля изображения при сильном увеличении путем сшивки частичных полей.
    В большинстве случаев при выборе объективов работает правило, что чем качественнее и дороже объектив – тем он лучше для решения любых задач. Но на самом деле, во-первых, это не всегда абсолютно достоверно, во-вторых – экономическую составляющую вопроса это правило не затрагивает. А ведь порой именно она играет решающую роль при выборе оборудования того или иного класса.

    Объективы для микроскопов делятся на различные классы в зависимости от коррекции монохроматических и хроматических аберраций. Каждый производитель имеет свою классификацию и свои уникальные названия для каждого из классов, что крайне усложняет прозрачность выбора той или иной линейки.

    Все производители различают три больших класса объективов: Ахроматы, Полу-апохроматы (или Флюотары) и Апохроматы. Критерием внесения объектива в тот или иной класс будет являться сходимость фокальных плоскостей для трех основных цветов: красного, зеленого и синего.

    Компания Leica Microsystems предлагает следующую оценку критериев (она может незначительно отличаться от оценки других производителей – Zeiss, Olympus, Nikon и др). Эта оценка дает максимально прозрачное представление коррекции ХА в зависимости от класса объектива.

    Класс объективов Коррекция хроматических аберраций Применение
    Ахроматы (Achromats) Между F red и F blue < 2x DoF*.
    т.е. красный и синий лучи сведены в одну область, длиной менее 2 глубин резкости. Расстояние до фокуса зеленого луча не определено.
    Рутинная микроскопия в видимом световом диапазоне
    Полу-Апохроматы (Semi-Apochromats) F red , F blue и F green <2,5x DoF*.
    т.е. фокус красного, синего и зеленого лучей сведены в одну область шириной 2,5 глубины резкости.
    Для качественной визуализации в видимом световом диапазоне, а также достижения высококонтрастного изображения.
    Апохроматы (Apochromats) F red , F blue и F green <1x DoF*.
    т.е. фокус красного, синего и зеленого лучей сведены в одну точку. (Коррекция ХА по трем цветам)
    Для решения задач сверхточной микроскопии, измерительной микроскопии при большом увеличении, а также для работы в УФ и ИК диапазонах.

    * DoF – Depth of field – глубина резко изображаемого пространства

    Каждый класс объективов делится на несколько групп в зависимости от задач применения. В основном речь идет о коррекции монохроматических аберраций, к примеру, План Ахромат и просто Ахромат будут отличаться наличием коррекции сферы, кривизны поля и дисторсии у объектива План Ахромат.

    Дополнительно некоторые объективы имеют конструктивные отличия, к примеру, LD (Long distance) объективы – объективы с увеличенным рабочим расстоянием для работы с чашками Петри в биологии, или контроля объектов со сложной топографией в материаловедении. PH – объективы для фазового контраста с установленным фазовым кольцом (могут использоваться и в светлом поле, но светопропускание таких объективов ниже). OIL-объективы с использованием иммерсионного масла и т.д.

    Аберрации оптических систем (от латинского aberratio – отклонение) – искажения, ошибки, или погрешности изображений, формируемых оптическими системами. Причина их возникновения в то, что луч отклоняется от того направления, по которому в близкой к идеалу оптической системе он должен был бы идти. Различные нарушения гомоцентричности (отчетливости, соответствия или окрашенности) в структуре выходящих из оптической системы пучков лучей характеризуют аберрации.

    Наиболее распространенными видами аберраций оптических систем можно считать:

    1. Сферическую аберрацию. Она характеризуется недостатком изображения. При нем испущенные одной точкой объекта световые лучи, проходящие вблизи оси оптической системы, и лучи, проходящие через отдаленные от оси части системы, не собираются в одной точке.

    2. Кому. Так называют аберрацию, которая возникает во время косого прохождения световых лучей через оптическую систему. В результате этого наблюдается нарушение симметрии пучка лучей относительно его оси и изображение точки (которая создается системой) принимает вид несимметричного пятна рассеяния.

    3. Астигматизм. Об этой аберрации говорят, когда световая волна испытывает деформацию во время прохождения оптической системы. В результате этого, наблюдается деформация, при которой исходящие из одной точки объекта пучки лучей не пересекаются в одной точке, а располагаются в двух взаимно перпендикулярных отрезках на некотором расстоянии друг от друга. Такие пучки получили название астигматических.

    4. Дисторсию. Так называется аберрация, характеризующаяся нарушением геометрического подобия между объектом и изображением объекта. Она обуславливается неодинаковостью линейного оптического увеличения на разных участках изображения.

    5. Кривизну поля изображения. При этой аберрации наблюдается процесс, когда изображение плоского предмета получается резким на искривленной поверхности, а не на плоскости, как должно было.

    Все вышеперечисленные виды аберраций оптических систем называются геометрическими или аберрациями Зейделя. В реальных системах отдельные виды геометрических аберраций можно встретить крайне редко. Куда чаще мы можем наблюдать симбиоз всех аберраций. А метод выделения отдельных видов аберраций является искусственным приемом, призванным облегчить анализ явления.

    В то же время существует и хроматическая аберрация. Наблюдается связь этого вида аберрации и зависимости показателя преломления оптических сред от длины волны света. Проявления этой аберрации наблюдаются в оптических системах, в которые входят элементы из преломляющих материалов. Как пример, линзы. Отметим также, что зеркалам свойственна ахроматичность.

    Проявление хроматических аберраций может наблюдаться при виде постороннего окрашивания изображения, а также, когда у изображения предмета появляются цветные контуры, которых у предмета ранее не наблюдалось. Хроматические аберрации обусловливаются дисперсией оптических сред (зависимость показателя преломления оптических материалов от длины проходящей световой волны). Именно из них образуется оптическая система

    К числу этих аберраций можно отнести хроматическую аберрацию или хроматизм положения (ее иногда называют «продольным хроматизмом») и хроматическу аберрацию или хроматизм увеличения.

    Хотите узнать больше об аберрациях оптических систем? У вас остались какие-то вопросы или появилось желание получше разобраться в отдельных нюансах? – Мы всегда готовы вам помочь. Просто зарегистрируйтесь на нашем сайте, выберите подходящий тарифный план и вперед!

    Остались вопросы? Не знаете, как сделать домашнее задание?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    1. Введение в теорию аберраций

    Когда речь идет о характеристиках объектива, очень часто приходится слышать слово аберрации . «Это отличный объектив, в нем практически исправлены все аберрации!», - тезис, который очень часто можно встретить в обсуждениях или обзорах. Гораздо реже можно услышать и диаметрально противоположное мнение, к примеру: «Это замечательный объектив, его остаточные аберрации хорошо выражены и формируют необыкновенно пластичный и красивый рисунок»…

    Почему же возникают такие разные мнения? Я попробую дать ответ на этот вопрос: насколько это явление действительно хорошо/плохо для объективов и для жанров фотографии в целом. Но для начала, давайте попробуем разобраться, что, же такое аберрации фотографического объектива. Начнем мы с теории и некоторых определений.

    В общем применении термин Аберрация (лат. ab- «от» + лат. errare «блуждать, заблуждаться») - это отклонение от нормы, ошибка, некое нарушение нормальной работы системы.

    Аберрация объектива - ошибка, или погрешность изображения в оптической системе. Она вызвана тем, что в реальной среде может возникать существенное отклонение лучей от того направления, по которому они идут в расчетной «идеальной» оптической системе.

    В итоге страдает общепринятое качество фотографического изображения: недостаточная резкость в центре, потеря контраста, сильная нерезкость по краям, искривление геометрии и пространства, цветные ореолы и т.п.

    Основные аберрации, характерные для фотографических объективов, следующие:

    1. Коматическая аберрация.
    2. Дисторсия.
    3. Астигматизм.
    4. Кривизна поля изображения.

    Перед тем как познакомиться поближе с каждой из них, давайте вспомним из статьи , как происходит прохождение через линзу лучей в идеальной оптической системе:

    Илл. 1. Прохождение лучей в идеальной оптической системе.

    Как мы видим, все лучим при этом собираются в одной точке F - главном фокусе. Но в реальности, все обстоит намного сложнее. Сущность оптических аберраций в том, что лучи, падающие на линзу из одной светящейся точки, не собираются тоже в одной точке. Итак, давайте посмотрим, какие отклонения происходят в оптической системе при воздействии различных аберраций.

    Тут еще надо сразу отметить, что и в простой линзе и в сложном объективе все далее описываемые аберрации действуют совместно.

    Действие сферической аберрации состоит в том, что лучи, падающие на края линзы, собираются ближе к линзе, чем лучи, падающие на центральную часть линзы. Вследствие этого, изображение точки на плоскости получается в виде размытого кружка или диска.

    Илл. 2. Сферическая аберрация.

    В фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах, причем объективы с большей светосилой больше подвержены этой аберрации. Если при этом сохраняется и резкость контуров, такой софт-эффект может быть весьма полезным для некоторых видов съемки, например, портретной.

    Илл.3. Софт-эффект на открытой диафрагме обусловленный действием сферической аберрации.

    В объективах построенных полностью из сферических линз практически невозможно полностью устранить этот вид аберраций. В сверхсветосильных объективах единственный эффективный способ ее существенной компенсации - использование асферических элементов в оптической схеме.

    3. Коматическая аберрация, или «Кома»

    Это частный вид сферической аберрации для боковых лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке. При этом изображение светящейся точки на краях кадра получается в виде «летящей кометы», а не в форме точки. Кома также может привести к засвечиванию участков изображения в зоне нерезкости.

    Илл. 4. Кома.

    Илл. 5. Кома на фотоизображении

    Является прямым следствием дисперсии света. Суть ее состоит в том, что луч белого света, проходя через линзу, разлагается на составляющие его цветные лучи. Коротковолновые лучи (синие, фиолетовые) преломляются в линзе сильнее и сходятся ближе к ней, чем длиннофокусные (оранжевые, красные).

    Илл. 6. Хроматическая аберрация. Ф - фокус фиолетовых лучей. К - фокус красных лучей.

    Здесь, как и в случае сферической аберрации, изображение светящейся точки на плоскости, получается в виде размытого кружка/диска.

    На фотографиях хроматическая аберрация проявляется в виде посторонних оттенков и цветных контуров у объектов съемки. Особенно заметно влияние аберрации в контрастных сюжетах. В настоящее время ХА достаточно легко исправляется в RAW-конверторах, если съемка велась в RAW-формате.

    Илл. 7. Пример проявления хроматической аберрации.

    5. Дисторсия

    Дисторсия проявляется в искривлении и искажении геометрии фотоснимка. Т.е. масштаб изображения меняется с удалением от центра поля к краям, вследствие чего прямые линии искривляются к центру или к краям.

    Различают бочкообразную или отрицательную (наиболее характерна для широкого угла) и подушкообразную или положительную дисторсию (чаще проявляется на длинном фокусе).

    Илл. 8. Подушкообразная и бочкообразная дисторсия

    Дисторсия намного сильнее обычно выражена у объективов с переменным фокусным расстоянием (зумы), чем у объективов с постоянным фокусным (фиксы). У некоторых эффектных объективов, например Fish Eye (Рыбий глаз), намеренно не исправляется и даже подчеркивается дисторсия.

    Илл. 9. Ярко-выраженная бочкообразная дисторсия объектива Zenitar 16 mm FishEye.

    В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферической линзы (или нескольких линз).

    6. Астигматизм

    Астигматизм (от греч. Stigma - точка) характеризуется в невозможности получить на краях поля изображения светящейся точки и в виде точки и даже в виде диска. При этом светящаяся точка, находящаяся на главной оптической оси, передается как точка, но если точка вне этой оси - как затемнение, скрещенные линии и т.д.

    Это явление чаще всего наблюдается по краям изображения.

    Илл. 10. Проявление астигматизма

    7. Кривизна поля изображения

    Кривизна поля изображения - это аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе, и изобразятся не резко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой.

    АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

    АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

    (от лат. aberratio - уклонение), искажения, погрешности изображений, формируемых оптич. системами. А. о. С, проявляются в том, что оптич. изображения не вполне отчётливы, не точно соответствуют объектам или оказываются окрашенными. Наиболее распространены , виды А. о. с.: сферическая аберрация - недостаток изображения, при к-ром испущенные одной точкой объекта световые лучи, прошедшие вблизи оптической оси системы, и лучи, прошедшие через отдалённые от оси части системы, не собираются в одну точку; - аберрация, возникающая при косом прохождении световых лучей через оптич. систему. Если при прохождении оптич. системы сферич. световая волна деформируется так, что пучки лучей, исходящих из одной точки объекта, не пересекаются в одной точке, а располагаются в двух взаимно перпендикулярных отрезках на нек-ром расстоянии друг от друга, то такие пучки наз. астигматическими, а сама эта аберрация - астигматизмом. Аберрация, наз. дисторсией, приводит к нарушению геом. между объектом и его изображением. К А. о. с. относится также изображения.

    Оптич. системы могут обладать одновременно неск. видами аберраций. Их устранение производят в соответствии с назначением системы; часто оно представляет собой трудную задачу. Перечисленные выше А. о. с. наз. геометрическими. Существует ещё , связанная с зависимостью показателя преломления оптич. сред от длины света. Вследствие волн, природы света, несовершенства изображений в оптич. системах возникают также в результате дифракции света на диафрагмах, оправах линз и т. п. Они принципиально неустранимы (хотя и могут быть уменьшены), но обычно влияют на кач-во изображения меньше, чем геом. и хроматич. А. о. с.

    Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

    АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

    (от лат. aberra-tio - уклонение, удаление) - искажения изображений, даваемых реальными оптич. системами, заключающиеся в том, что оптич. изображения неточно соответствуют предмету, оказываются размыты (монохроматич. геом. А. о. с.) или окрашены (хроматич. А. о. с.). В большинстве случаев аберрации обоих типов проявляются одновременно.

    В приосевой, т. н. параксиальной, области (см. Параксиальный пучок лучей )оптич. система близка к идеальной, т. е. точка изображается точкой, прямая линия - прямой и плоскость - плоскостью. Но при конечной ширине пучков и конечном удалении точки-источника от оптич. оси нарушаются правила параксиальной оптики: лучи, испускаемые точкой , пересекаются не в одной точке плоскости изображений, а образуют кружок рассеяния, т. е. изображение искажается - возникают аберрации.

    Геом. А. о. с. характеризуют несовершенство оп-тич. систем в монохроматич. свете. Происхождение А. о. с. можно понять, рассмотрев прохождение лучей через центрированную оптич. систему L (рис. 1). - плоскость предмета, - плоскость изображений, и - соответственно плоскости входного и выходного зрачков.

    В идеальной оптич. системе все лучи, испускаемые к.-л. точкой C(z, у )предмета, находящейся в меридиональной плоскости (z=0) на расстоянии у=l от оси, пройдя через систему, собрались бы снова в одну точку . В реальной оптич. системе эти лучи пересекают плоскость изображения в разных точках. При этом координаты точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами и точки А пересечения с плоскостью входного зрачка. Отрезок характеризует несовершенство изображения, даваемого данной оптич. системой. Проекции этого отрезка на оси координат равны и и характеризуют поперечную аберрацию. В заданной оптич. системе и являются ф-циями координат падающего луча СА: . и . Считая координаты малыми, можно разложить эти ф-ции в ряды по , и l.

    Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэфф. при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптич. системы; т. о. остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные А. о. с. наз. аберрациями 3-го порядка. После упрощений получаются след. ф-лы

    Коэфф. А, В, С, D, Е зависят от характеристик оптич. системы (радиусов кривизны, расстояний между оптич. поверхностями, показателей преломления). Обычно классификацию А. о. с. проводят, рассматривая каждое слагаемое в отдельности, полагая др. коэфф. равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса р с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрич. окружностей в плоскости входного зрачка радиусов , , и т. д. соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.

    Сферическая аберрация соответствует случаю, когда , а все др. коэфф. равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна . Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферич. аберрация - единств. геом. аберрация, остающаяся и в том случае, если точка-объект находится на гл. оптич. оси системы.

    Кома определяется выражениями при коэфф. В K0. . Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как , центры к-рых удаляются от параксиального изображения также пропорционально Огибающей этих окружностей ( каустикой )являются две прямые, составляющие угол 60°. Изображение точки при наличии комы имеет вид несимметрич. пятна, к-рого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптич. систем.

    Астигматизм и поля соответствуют случаю, когда не равны нулю коэфф. С и D. Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия. Астигматизм обусловлен неодинаковой кривизной оптич. поверхности в разных плоскостях сечения и проявляется в том, что деформируется при прохождении оптич. системы, и светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости - меридиональная и перпендикулярная ей сагиттальная, в к-рых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях наз. фокусами, а расстояние между ними является мерой астигматизма.


    Пучок параллельных лучей, падающих на оптич. систему под углом (рис. 3), в меридиональном сечении имеет фокус в точке т , а в сагиттальном - в точке s. С изменением угла положения фокусов т и s меняются, причём геом. места этих точек представляют собой вращения MOM и SOS вокруг гл. оси системы. На поверхности КОК, находящейся на равных расстояниях от MOM и SOS, искажение наименьшее, поэтому поверхность КОК наз. поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, наз. кривизной поля. В оптич. системе может отсутствовать (напр., если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК, а в фокальной плоскости FF изображение точки будет иметь вид кружка.

    Дисторсия проявляется в случае, если ; как видно из ф-л (*), она может быть в меридиональной плоскости: . Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптич. оси , поэтому изображение искажается, нарушается закон подобия. Напр., изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае Е >0 и Е <0.

    Труднее всего устранить сферич. аберрацию и кому. Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает изображения и увеличивает дифракц. ошибки.


    Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения.

    Хроматич. аберрации. Излучение обычных источников света обладает сложным спектральным составом, что приводит к возникновению хроматич. аберраций. В отличие от геометрических, хроматич. аберрации возникают и в параксиальной области. Дисперсия света порождает два вида хроматич. аберраций: хроматизм положения фокусов и хроматизм увеличения. Первая характеризуется смещением плоскости изображения для разных длин волн, вторая - изменением поперечного увеличения. Подробнее см. Хроматическая аберрация.

    Лит.: Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969; Сивухин Д. В., Общий курс физики, [т. 4] - Оптика, 2 изд., М., 1985; Теория оптических систем, 2 изд., М., 1981. Г. Г. Слюсарев.

    Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


    Смотреть что такое "АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ" в других словарях:

      У термина «аберрация» есть и другие значения, см. аберрация. Аберрации оптических систем ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в… … Википедия

      Искажения изображения оптического, вызванные неидеальностью оптических систем и применением немонохроматического света (см. Монохроматическое излучение). Проявляются в том, что изображения становятся не вполне отчетливыми, неточно соответствуют… … Астрономический словарь

      - (лат. aberratio уклонение) погрешности изображений, даваемых оптическими системами. Проявляются в том, что оптические изображения в ряде случаев не вполне отчётливы, не точно соответствуют объекту или оказываются окрашенными. Наиболее… … Большая советская энциклопедия

      - (от лат. aberratio уклонение) искажения изображений, получаемых в оптич. системах (линзах, фотообъективах, микрообъективах и т. д.). Различают геом. и хроматич. А. о. с. Геометрические А. о. с. искажения изображений, возникающие вследствие… … Большой энциклопедический политехнический словарь

      Аберрации оптических систем ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрации характеризуют различного вида… … Википедия



    Открытие бизнеса