Диоксид циркония: свойства и области применения. Цирконий металл. Описание и свойства циркония


В настоящее время определились следующие области промышленного использования циркония:
1) керамика и огнеупоры,
2) производство эмалей и стекла,
3) производство сталей и сплавов с цветными металлами.
4) пиротехника и электровакуумная техника.
Керамика и огнеупоры. Значительная доля мирового производства циркониевых концентратов используется для изготовления огнеупорных изделий и в производстве специального фарфора. В качестве огнеупорного материала применяют чистую двуокись циркония и бадделеитовые и цирконовые рудные концентраты.
Двуокись циркония плавится при температуре 2700-2900°, минерал циркон - при 2430°. Однако примеси, особенно Fe2O3, снижают температуру плавления этих соединений. Недостатком чистой двуокиси циркония как огнеупорного материала является термическая неустойчивость, проявляющаяся в растрескивании нагретых до высокой температуры изделий из двуокиси циркония при их охлаждении. Это явление обусловлено наличием у двуокиси циркония полиморфных превращений. Переход одной модификации в другую связан с объемными изменениями, которые являются причиной растрескивания. Явление растрескивания устраняется добавками к двуокиси циркония стабилизаторов - окислов магния или кальция. Последние, растворяясь в двуокиси циркония, образуют твердый раствор с кубической кристаллической решеткой, которая сохраняется как при высокой, так и низкой температуре. Этим устраняется растрескивание. Для образования твердого раствора с кубической решеткой достаточно к двуокиси циркония добавить 4% MgO.
Из двуокиси циркония или минералов бадделеита и циркона изготовляют огнеупорный кирпич для металлургических печей, тигли для плавки металлов и сплавов, огнеупорные трубы и другие изделия.
Циркониевые минералы или двуокись циркония добавляют в некоторые сорта фарфора, применяемого для изготовления изоляторов на линиях электропередач высокого напряжения, в высокочастотных установках, запальных свечах двигателей внутреннего сгорания. Циркониевый фарфор обладает высокой диэлектрической постоянной и малым коэффициентом расширения.
Эмали и стекло. Двуокись циркония и циркон (очищенный от примеси железа) нашли широкое применение в качестве составной части эмалей. Они сообщают эмали белый цвет и кислотоустойчивость и вполне заменяют применяемую для этих целей дефицитную окись олова. Циркон и двуокись циркония вводят также в состав некоторых сортов стекла. Добавки ZrO2 повышают устойчивость стекла против действия растворов щелочей.
Стали и сплавы с цветными металлами. Высокое сродство циркония к кислороду и азоту обусловливает применение его как активного раскислителя и деазотизатора стали. Очистка стали от кислорода и азота приводит к получению мелкозернистой структуры, обладающей повышенными механическими свойствами Кроме того, цирконий связывает серу, устраняя красноломкость стали. Цирконий является также ценным легирующим элементом V, входит в состав некоторых сортов броневых никельциркониевых сталей (вместе с 2% Ki вводят 0,3 Zr), сталей для орудийных поковок, нержавеющих, жароупорных и некоторых других. В нeкоторых сортах хромистых сталей содержание циркония достигает 2%.
Цирконий вводят в расплавленную сталь в виде ферроциркония и ферросиликоциркония. Ферроцирконий содержит до 40% Zr, около 10% Si и 8-10% Al. Ферросиликоцирконий содержит от 20 до 50% Zr и от 20 до 50% Si.
Имеют также практическое значение добавки циркония к меди: сплавы меди с цирконием, содержащие от 0,1 до 5% Zr, способны к упрочнению, которое достигается термической обработкой (закалка и упрочняющий отпуск). Предел прочности при растяжении достигает 50 кг/мм2, что на 5% выше прочности неотожженной меди. При нагревании изделий из чистой меди (проволоки, листов, труб) до 200° их прочность сильно падает вследствие снятия наклепа. Добавки циркония повышают температуру отжига меди до 500°. Небольшие добавки циркония к меди, повышая ее прочность, снижают лишь в незначительной степени электропроводность.
Цирконий вводится в медь в виде лигатурного сплава, содержащего 12-14% Zr, остальное медь.
Сплавы меди с цирконием применяют для изготовления электродов точечной сварки, для электропроводов в тех случаях, где требуется высокая их прочность.
В последние годы получили распространение сплавы магния, легированные цирконием. Небольшие добавки циркония способствуют получению мелкозернистых магниевых отливок, что приводит к повышению прочности металла.
Высокой прочностью обладают магниевые сплавы, легированные цирконием и цинком. Прочность сплава магния с 4-5% Zn и 0,6-0,7% Zr вдвое выше, чем обычного сплава Сплавы этого типа не проявляют ползучести до 200° и рекомендованы как конструкционные материалы для реактивных двигателей.
Цирконий добавляется (в виде кремнециркониевого сплава) в свинцовистые бронзы Он обеспечивает дисперсное распределение свинца и полностью предотвращает сегрегацию свинца в сплаве. Высокой прочностью и электропроводностью обладают меднокадмиевые сплавы, содержащие до 0,35% Zr.
Добавки 0,02-0,1% Zr в медноникелевые сплавы устраняют вредное влияние свинца на свойства этих сплавов.
Рекомендуется добавление циркония в марганцовистую латунь, алюминиевые бронзы и бронзы, содержащие никель.
Сплав циркония со свинцом и титаном (33% Zr, 53% Pb, 11% Ti) обладает хорошими пирофорными свойствами.
Цирконий входит в состав некоторых антикоррозионных сплавов. Так, сплав, состоящий из 54% Nb, 40% Ta и 6-7% Zr, предложен как заменитель платины.
Применение металлического циркония. Металлический цирконий до последнего времени применяли преимущественно в виде порошка и, в более ограниченном масштабе, в виде компактного металла.
Высокое сродство циркония к кислороду, низкая температура воспламенения (180-285°) и большая скорость сгорания позволили применить тонкий порошок циркония в качестве воспламенителя в смесях для капсулей-детонаторов, а также для фотовспышек. В смеси с окислителями он образует бездымный порох.
В электровакуумной технике используют прежде всего геттерирующие свойства циркония (способность поглощать газы - О2, N2, Н2, CO, H2O). Для этих целей применяют ковкий цирконий или используют порошкообразный цирконий, который наносят на детали горячей арматуры (аноды, сетки и др.).
Цирконий применяют также как подавитель эмиссии сетки в радиолампе. С этой целью суспензия из тонкого порошка гидрида циркония в смеси с ксиленом, амилацетатом или другим органическим веществом намазывают на сетку. Органическое вещество затем испаряется. При нагревании сетки до 1100°в вакууме гидрид разлагается и цирконий остается на поверхности сетки.
Циркониевые листы применяют в рентгеновских трубках с молибденовыми антикатодами. Они служат здесь в качестве фильтра для повышения монохроматичности рентгеновского излучения.
Возможности использования металлического циркония далеко не исчерпаны и ограничивались до последнего времени лишь малым количеством и высокой стоимостью ковкого металла.
В связи с промышленным освоением производства ковкого циркония намечаются следующие области его использования: в химическом машиностроении (детали центрифуг, насосов, конденсаторов и др.); в общем машиностроении (поршни, шатуны, тяги и другие детали); в турбостроении (лопасти турбин и другие детали) и в производстве медицинского инструмента,
В последние годы привлечено внимание к использованию чистого циркония (свободного также и от примеси гафния) в качестве конструкционного материала в установках по производству атомной энергии Наряду с высокой температурой плавления к высокими антикоррозионными свойствами чистый цирконий имеет малое поперечное сечение захвата тепловых нейтронов (0,22-0,4 барна), что выгодно отличает его от других тугоплавких и коррозионноустойчивых металлов, в том числе и гафния
В связи с этим ведутся исследования по разработке производственных способов получения чистого циркония, свободного от примеси гафния.

Имеющий желтоватый оттенок. Его получают переплавкой циркониевых отходов, а также рудного концентрата.

Цирконий: цены, ГОСТ, описание

Обозначение - ГОСТ 21907-76. Это пластичный и ковкий (практически как золото) коррозионностойкий, парамагнитный, жаростойкий металл. Цирконий устойчив к действию морской и хлорированной воды, аммиака, щелочей, кислот, свои качества не теряет в условиях низких и высоких температур. В основном применяется в сплаве с другими металлами. Это не только придает ему уникальные свойства, но и повышает технологичность. Стоимость - от 5500 рублей за килограмм в зависимости от марки и фирмы-изготовителя.

На сегодняшний момент цирконий относится к самоцветам. В Средневековье его алмаза, но присущая алмазам твердость в нем отсутствует.

Геология

Цирконий - металл, который в рудных месторождениях буквально рассыпан в различных уголках планеты. Он встречается в форме солей, аморфных окислов и монокристаллов, как в США (в Северной Каролине). В месторождениях Нигерии периодически находят кристаллы весом в килограмм. Самые богатые залежи находятся на территории Австралии, ЮАР, Индии и Северной Америки.

Цирконий (металл) часто встречается в руде вместе с гафнием, который больше всего близок к нему по свойствам. В России его природные запасы оцениваются в 10% от общемировых. Этот металл в 1799 году был впервые выделен в форме двуокиси Клапротом (немецким химиком) из минерала циркона. Выплавляется он из обогащенного рудного концентрата, в котором содержание составляет 60-65%.

Цирконий (металл): применение

Сплавы рассматриваемого вещества используют в различных сферах промышленности: самолето- и ракетостроении, литейном деле, приборостроении, военном производстве.

За счет повышенной стойкости к воздействию разных сред он отыскал применение в медицинском протезировании, создании В данной сфере цирконий смог обогнать титан, поскольку его устойчивость является вечной.

Ювелирное дело

Цирконий (металл) в ювелирных изделиях используется издавна. Анодированный материал способен приобретать любой оттенок, тем самым предоставляя широкие возможности для воплощения смелых художественных замыслов. Если хотите чего-либо необычного и оригинального, вам нужно обратить внимание на различные украшения из циркония. Такие изделия элегантны и интересны своей завершённостью. Из-за этого на мировом рынке они оцениваются очень высоко.

Лечебные свойства

Нужно отметить, что его прямого биологического воздействия на человеческий организм не обнаружено, хотя в определенных сферах очень важен цирконий. Металл, лечебные свойства которого описаны в этой статье, начал применяться в медицине из-за особых химических и физических свойств:

  • применяется для изготовления инструментов, так как совершенно нейтрален к воздействию кислот, щелочей, аммиака, воды;
  • стимулирует скорое заживление ран, при этом препятствуя образованию гноя и проникновению инфекций, поскольку оказывает противомикробное действие;
  • считается прекрасным антисептиком;
  • облегчает аллергические реакции, при этом сам не является аллергеном;
  • радиационное излучение не пропускает.

Пластичность данного металла дает возможность сохранить структуру костей при сложнейших переломах, они при этом быстрее срастаются. Для изготовления нитей для швов также начали использовать цирконий (металл).

Изделия с ним могут оказывать целебное воздействие при гипертонических болезнях, кожных недугах, артритах и артрозах, хотя от официальной медицины подтверждений этого еще не поступало.

Цирконий активно используется в ортопедическом протезировании и стоматологии. Большинство сплавов металлов вызывает побочные эффекты и аллергии в ротовой полости. Цирконий абсолютно устойчив к коррозии, а также нейтрален к различным средам. Сам он при этом на ткани организма не оказывает раздражающего действия.

Суточная норма

Необходимо отметить, что ежедневная норма данного макроэлемента точно не определена, поскольку наш организм может обходиться и без него. Каждый день с едой нам поступает по 0,05 мг данного металла, но он пассивен для того, чтобы вступать в химические реакции. Вещество самостоятельно не синтезируется, хотя может накапливаться в органах.

Избыток циркония в организме

Медики до сих пор не имеют данных о летальной дозе данного элемента для человеческого организма, хотя его передозировка может вызвать негативные последствия. Избыток вызывается при работе на соответствующих производствах, использовании средств индивидуальной гигиены или при проживании около источников, которые загрязняют окружающую среду.

Нужно отметить, что проявлениями передозировки являются следующие симптомы: пневмония и раздражение покровов кожи. Цирконий - металл, который может накапливаться в органах, при этом оседая на тканях. Из продуктов получить такую большую дозу нереально.

Недостаток в организме

Недостаток такого макроэлемента, как цирконий (металл), свойства которого подробно описаны в этой статье, не приведет к каким-то нежелательным последствиям, поскольку его нет в составе клеток. При этом исследования ведутся до сих пор, и металл еще может открыть для нас множество своих качеств.

Источники

Цирконий - металл, который содержится в продуктах питания в минимальных количествах, поэтому вызвать какие-то негативные последствия не может. Ниже приведен список продуктов, с которыми мы можем получить этот элемент:

  • баранина;
  • овсянка, рис, пшеница;
  • мускатный орех, фисташки;
  • растительные масла;
  • бобовые;
  • жгучий красный перец.

Когда необходимо использовать?

Показания к использованию для лечения циркония еще не установлены, хотя в качестве отличного материала для медицинских инструментов и имплантатов он незаменим.

Указанный металл используют в химическом машиностроении в качестве стойкого к коррозии материала. Его присадки раскисляют сталь, а также удаляют из неё серу и азот. Порошкообразный цирконий используется в производстве боеприпасов и в пиротехнике. Сульфат циркония представляет собой дубитель, который активно применяется в кожевенной промышленности.

В промышленности цирконий и гафний выпускают, как в форме металла (ковкий и порошки), сплавов, так и в форме различных их соединений, в зависимости от того, где в дальнейшем будут использовать циркониевую продукцию.

Области применения циркония, его сплавов и химических соединений достаточно разнообразны. Основные области в настоящее время:

1) атомная энергетика;
2) электроника;
3) пиротехника и производство боеприпасов;
4) машиностроение;
5) производство сталей и сплавов с цветными металлами;
6) производство огнеупоров, керамики, эмалей и стекла;
7) литейное производство.

В первых четырех областях используют металлический цирконий или сплавы на его основе.

Примерное распределение циркония по областям потребления: литейное производство – 42%, огнеупоры – 30%, керамика – 12%, металл и сплавы с цветными металлами – 12%.

Литейное производство. В этой области используют цирконовые концентраты (ZrSiO 4) для изготовления литейных форм и присыпок, с целью получения хорошей поверхности отливок.

Производство огнеупоров, фарфора, эмалей, глазурей и стекла . В этой области, используют минералы (циркон и бадделеит) и химические соединения циркония (диоксид циркония, цирконаты, диборид циркония).
Недостаток чистого диоксида циркония как огнеупорного материала - термическая неустойчивость, проявляющаяся в растрескивании нагретых до высокой температуры изделий из него при охлаждении. Это явление обусловлено полиморфными превращениями диоксида циркония. Растрескивание устраняют, добавляя стабилизаторы - оксиды магния или кальция, которые, растворяясь в диоксиде циркония, образуют твердый раствор с кубической кристаллической решеткой, сохраняющейся и при высоких и при низких температурах.
Из диоксида циркония или минералов бадделеита и циркона изготовляют огнеупорный кирпич для металлургических печей, тигли для плавки металлов и сплавов, огнеупорные трубы и другие изделия.
Циркониевые минералы или диоксид циркония добавляют в некоторые сорта фарфора, идущего на изготовление изоляторов в линиях электропередач высокого напряжения, высокочастотных установках, запальных свечах двигателей внутреннего сгорания. Циркониевый фарфор обладает высокой диэлектрической постоянной и малым коэффициентом расширения.
Диоксид циркония и циркон (очищенный от примеси железа) нашли широкое применение в качестве составной части эмалей. Они сообщают эмали белый цвет и кислотостойкость и вполне заменяют используемый для этих целей дефицитный оксид олова. Циркон и диоксид циркония вводят также в состав некоторых сортов стекла. Добавки Zr0 2 повышают устойчивость стекла против действия растворов щелочей.



Конструкционная керамика. Это наиболее перспективная область использования диоксида циркония. В Японии организована программа по конструкционной керамике: высокопрочная – для высокотемпературных двигателей; коррозионностойкая – для использования в активных высокотемпературных средах; износостойкая – при высоких температурах и больших скоростях. Керамические материалы на основе диоксида циркония используют в деталях автомобилей и автомобильных двигателей. Создан дизельный двигатель с керамическими поршнями и лопатками турбин. Он не требует водяного охлаждения, потребляет вдвое меньше топлива, а выходная мощность у него выше на 30%.

Производство сталей и сплавов с цветными металлами. Присадки циркония широко используют в производстве сталей с целью раскисления, очистки стали от азота, а также связывания серы. Цирконий, кроме того, - ценный, легирующий элемент; его вводят в некоторые сорта броневых сталей, сталей для орудийных поковок, нержавеющих и жаропрочных сталей. Для введения в стали используют ферросиликоцирконий (40- 45% Zr, 20-24% Si, остальное железо).

Цирконий входит в состав ряда сплавов на основе цветных металлов (меди, магния, свинца, никеля). Сплавы меди с цирконием, содержащие от 0,1 до 5% Zr, способны к упрочнению, которое достигается термической обработкой. Предел прочности при растяжении возрастает до 50 кг/мм 2 , что на 50% выше прочности неотожженной меди. Добавки циркония повышают температуру отжига изделий из меди (проволока, листы) до 500° С. Небольшие добавки циркония к меди, повышая ее прочность, лишь в незначительной степени снижают электропроводность. Цирконий вводят в медь в виде лигатурного сплава, содержащего 12-14% Zr, остальное медь. Из сплавов меди с цирконием изготовляют электроды точечной сварки и электропроводы в тех случаях, где требуется высокая их прочность.
Получили распространение сплавы магния, легированные цирконием. Небольшие добавки циркония способствуют получению мелкозернистых магниевых отливок, что приводит к повышению прочности металла. Высокой прочностью обладают магниевые сплавы, легированные цирконием и цинком (4-5% Zn и 0,6-0,7% Zr). Они рекомендованы как конструкционные материалы для реактивных двигателей.
Цирконий добавляют (в виде кремнециркониевого сплава) в свинцовистые бронзы. Он обеспечивает дисперсное распределение свинца и полностью предотвращает сегрегацию свинца в сплаве. Высокой прочностью и электропроводностью отличаются меднокадмиевые сплавы, содержащие до 0,35% Zr.
Цирконий входит в состав некоторых антикоррозионных сплавов. Так, сплав, состоящий из 54% Nb, 40% Та и 6-7% Zr, предложен как заменитель платины.

В последние годы разработаны сверхпроводящие сплавы, содержащие цирконий. Их используют для электромагнитов с высоким напряжением магнитного поля. Один из таких сплавов, содержащий 75% Nb и 25% Zr, при 4,2° К выдерживает нагрузку до 100 000 а/см 2 .

Атомная энергетика. В 1950 г. в связи с развитием атомной энергетики цирконий привлек к себе внимание как конструкционный материал для энергетических ядерных реакторов. Это вызвало организацию промышленного производства пластичного циркония и сплавов на его основе. Ценность циркония как конструкционного материала для атомной техники определяется тем, что цирконий имеет малое сечение захвата тепловых нейтронов (~0,18 барн), высокую антикоррозионную стойкость, хорошие механические свойства.
Для использования циркония в атомной технике потребовалось решить сложную задачу очистки циркония от его химического аналога - гафния, который обладает высоким сечением захвата нейтронов - 115 барн. Из циркония и сплавов на его основе изготовляют защитные оболочки для урановых тепловыделяющих элементов, каналы, в которых циркулирует теплопередающая жидкость, и другие детали конструкций ядерных реакторов. Жаропрочность циркония и стойкость его против действия воды и пара можно повысить добавками олова (1,4-1,6%), а также малыми присадками железа (0,1- 0,15%), хрома (0,08-0,12%), никеля (0,04-0,06%). Сплав, содержащий перечисленные выше легирующие добавки, носит название циркаллой-2.

Подобно молибдену, цирконий применяют для легирования урана с целью повышения его механической прочности и стойкости против коррозии.

Электроника. В производстве электровакуумных приборов используют свойство циркония поглощать газы, что позволяет поддерживать высокий вакуум в электронных приборах. Для этой цели порошок циркония наносят на поверхность анодов, сеток и других нагреваемых деталей электровакуумного прибора или плакируют детали циркониевой фольгой. Нанесение циркония на поверхность сетки в радиолампах способствует подавлению эмиссии сетки.

Циркониевую фольгу применяют в рентгеновских трубках с молибденовыми антикатодами. Фольга служит здесь фильтром для повышения монохроматичности излучения.

Пиротехника и производство боеприпасов. В этой области используют порошкообразный цирконий, отличающийся низкой температурой воспламенения и высокой скоростью сгорания. Порошки циркония служат воспламенителем в смесях для капсюлей-детонаторов, а также в смесях для фотовспышек. В смеси с окислителями (нитратом бария или бертолетовой солью) порошки циркония образуют бездымный порох.

Машиностроение. До последнего времени пластичный цирконий и сплавы на его основе применялись преимущественно в атомной технике. Однако с дальнейшим расширением его производства и снижением стоимости цирконий может быть эффективно использован в химическом машиностроении как кислотостойкий материал, для изготовления деталей центрифуг, насосов, конденсаторов, испарителей; в общем машиностроении (поршни, шатуны, тяги и др.); в турбостроении (лопасти турбин и другие детали).

Прочие области применения . Среди других областей следует упомянуть использование сульфатов циркония (двойного сульфата циркония с сульфатом аммония и др.) в качестве дубителя в кожевенной промышленности; применение хлорида и оксихлорида циркония для приготовления катализаторов, используемых в синтезе органических соединений.

Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Атомная энергетика. Начало промышленного производства гафния и его соединений относится к 1950-1951 гг. Интерес к его применению возник в первую очередь в атомной технике, поскольку в отличие от циркония гафний, хотя и является его химическим аналогам, имеет его высокое сечение захвата тепловых нейтронов – 115 барн. Это дает возможность использования гафния и его соединений (HfO 2 , HfB 2) в качестве материалов регулирующих стержней ядерных реакторов.

Производство тугоплавких и жаропрочных материалов. В этой области используют карбид гафния (t° пл 3890°С), твердый раствор карбидов гафния и тантала (75% карбида тантала) плавящейся при температуре 4200°С. Высокой жаропрочностью характеризуются некоторые сплавы гафния с другими тугоплавкими металлами. Так, сплав ниобия и тантала, содержащий 2-10% Hf и 8-10% W, сохраняет высокую прочность до 2000°С, хорошо обрабатывается и коррозионностоек. Эти свойства материалов позволяют использовать их для изготовления деталей реактивных двигателей, а также тиглей для плавки тугоплавких металлов.

Таким образом, основные соединения циркония, которые нашли широкое применение это цирконовый концентрат и диоксид циркония.

Цирконовый концентрат.

Мировое потребление цирконового концентрата постепенно растет, так в середине 90-х гг. оно оценивалось в 920 тыс. т. , а в 2001 г. составило уже 1,07 млн т. Основные потребители цирконового концентрата - страны Западной Европы (Италия, Испания, Германия и др.) - 366 тыс. т в 2001 г., а также Китай - 150–170 тыс. т, США - 120–130 тыс. т, Япония - 110–120 тыс. т и страны Юго-Восточной Азии.

Большая часть цирконового концентрата используется в керамике (500 тыс. т/год), литейном производстве (170 тыс. т/год) и огнеупорах (155 тыс. т/год), а также в производстве диоксида циркония и других химических соединений (94 тыс. т). Структура потребления цирконового концентрата в различных странах неодинакова. В США наибольшее его количество используют в производстве литейных смесей, в Японии - огнеупоров, в Италии, Испании и Китае - строительной и сантехнической керамики.

В последнее время потребление огнеупоров из циркона сократилось, что связано с ростом спроса на высококачественные легированные стали, производство которых не требует использования цирконовых огнеупоров. Постепенно уменьшается и потребление циркона в литейном производстве из-за появления более экономичных заменителей.

Однако в мире в целом это сокращение с лихвой было компенсировано ростом спроса на циркон в производстве керамики и общим ростом потребления в Китае (с 10 до 160 тыс. т в период 1989–2001 гг.). На производство керамических изделий теперь приходится около половины мирового потребления циркона (в 1980 г. всего 25 %).

Прирост потребления циркона в производстве керамики в 2001 г. составил 9 %, тогда как в целом его использование увеличилось на 5 %. Интенсивно росло потребление в производстве экранов мониторов и телевизоров (8 %), а также химических соединений циркония (7 %).

Диоксид циркония.

Потребление диоксида циркония постоянно растет. В конце 90-х гг. оно составляло 36 тыс. т, из которых половина использовалась в производстве огнеупоров, по 6 тыс. т - керамических пигментов, металла и химических соединений, остальное - в абразивах, электронике, катализаторах, конструкционной керамике и других областях. В 2000–2001 гг. наблюдался значительный рост потребления стабилизированного диоксида циркония, а также порошка оксида циркония для электронной промышленности. Стабилизированный диоксид циркония – уникальный материал, имеющий очень широкий спектр промышленных применений: инженерная (промышленная) керамика, термобарьерные покрытия, электрокерамика, высокотемпературные магнитогидродинамические электроды, топливные элементы, сенсоры на кислород и многое другое. Это разнообразие областей применения базируется на использовании комбинации механических, электрических, термических и других свойств материалов на основе на основе диоксида циркония.

Значительно меньше используют металлический цирконий.

Металлический цирконий.

Потребление металлического циркония в мире стабильно и составляет 4–5 тыс. т.

Цены на цирконий постоянно растут, т.к. растет спрос на эти металлы. Так цены в США на циркониевую губку в 1990 году составляли 19,8 – 26,4$/кг, а на гафниевую губку - 165 – 300$/кг. На циркониевый концентрат: в 1986 году – 209$ /т, в 1989 году – 468$ /т. Поскольку диоксид циркония в различных областях необходим различного качества, то и цены на него должны различаться. Ниже приведены цены на диоксид циркония различного качества. Таблица 4.

Динамка цен на диоксид циркония (долл/т)

(ЕС, США, Япония)

Основные производители циркония и его соединений.

В настоящее время крупными производителями ядерно-чистого циркония в мире являются такие компании: AREVA NP (CEZUS + Zircotube, которые находятся в ее составе), (Франция); АО ТВЭЛ (Россия); Westinghouse (США); GNF (США + Япония); NFC (Индия). Кроме этих компаний циркониевую продукцию выпускают также: Sandvik Steel (Швеция + отделение в США (Sandvik Special Metals) и отделение в Великобритании (Sandvik Steel UK) Nu Tech (Канада, есть отделение в США); Zircatec (Канада); Franco Corradi (Италия); General Electric Canada (Канада); FAESA (Fabrica de Aleaciones Ecpeciales), находящаяся в собственности компании Combustibles Nucleares Argentonos SA,Аргентина)

Полный металлургический цикл от цирконового концентрата до готовых изделий имеют четыре крупных компании: AREVA NP, объем производства примерно 2200 т циркониевой губки в год; АО ТВЭЛ, объем производства примерно 900 т циркония в год; Westinghouse, объем производства примерно 800 т циркония в год, Teledyne Wah Chang, США, объем производства примерно 1000 т циркония в год.
Государственная компания NFC (Индия) также имеет полный металлургический цикл с объемом производства около 250 т циркония в год.

Китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) имеет мощности по производству рафинированного тетрахлорида циркония, что позволяет ей выпускать циркониевой губки (150 т для ядерной энергетики).

В настоящее время в Китае идет строительство еще одного завода по выпуску циркония, которое осуществляет совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Основными продуктами гафниевого производства являются кристаллический гафний и оксид гафния. Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Цены на гафний (99 %) в 2011 году составляли в среднем $900 за килограмм. За последние полгода из-за финансового кризиса произошло некоторое снижение стоимости.

Самыми крупными производителями гафния являются США, Франция и Германия (предприятия компании CEZUS). В США выпуск гафния осуществляют два предприятия - Wah Chang Albany (компания Allegheny Technologies Inc.) и Western Zirconium (компания Westinghouse Electric, которая в настоящее время контролируется японской корпорацией Toshiba).

Кроме этого гафний производится в Украине Государственным научно-производственным предприятием «Цирконий» г.Днепродзержинск. Предприятие производит следующую гафниевую продукцию: гафний металлический ядерночистый и гафний кальциетермический (КТГ-НР) лигатуру гафний-никель (ГФН-10), гидроксид гафния; оксид гафния.

Так как потенциально гафний является сопутствующим продуктом при выпуске циркония, то он может производиться в различных формах в Индии и Китае. Это такие компании как: NFC (производственная единица Департамента атомной энергии Индии в Хайдерабаде); китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) и строящееся совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Сырьевые источники циркония и гафния.

Известно около 20 циркониевых и цирконийсодержащих минералов, однако промышленное значение имеют только два: циркон и бадделеит . На долю первого приходится не менее 97% общего производства циркониевого сырья.

Циркон – наиболее распространенный минерал циркония, представляющий собой ортосиликат циркония – ZrSiO 4 . Содержание гафния в цирконе колеблется от 0,5 до 4%. Кроме этого циркон содержит железо, титан, алюминий, кальций, магний, РЗЭ(0,8%), скандий (0,02-0,08%).

Бадделит – представляет собой практически чистый диоксид циркония (ZrO 2). Всегда содержат гафний (от 0,5% до 2-5%), очень часто торий (0,2%), иногда уран (до 1%), скандий (до 0,06%).

Исследуются возможности промышленного использования таких циркониевых минералов, как эвдиалит – сложный силикат циркония и редких земель иттриевой подгруппы, содержащего 10-16% ZrO 2 и в эвколите ((Na, Ca, Fe) 6 Zr(Si 3 O 9) 2).

Для гафния единственным минеральным источником его получения являются циркониевые концентраты, который содержат от 0,5 до 2,0% HfO 2 .

Циркон и бадделеит накапливаются в корах выветривания и продуктах их переотложения – россыпях ближнего сноса, тесно ассоциирующих с первичными коренными источниками, и в россыпях дальнего переноса, не имеющих прямой связи с коренными источниками. К числу коренных источников относятся современные и древние россыпи прибрежно-морского типа (пляжные, шельфовые, дюнные и др.), с которыми связаны крупные месторождения циркона (совместно с рутилом, ильменитом, монацитом и другими минералами).

Цирконий практически не образует собственных крупных и богатых месторождений, а заключён в коренных рудах и россыпях вместе с титаном, железом, медью, танталом, ниобием, редкими землями, где является одним из основных или попутным полезным компонентом. Добыча циркония из недр всегда тесно связана с титаном и оценивается по отношению к нему как 1:5.

Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется, хотя имеются значительные запасы месторождений. Чепецкий механический завод (ЧМЗ), г. Глазов. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину.

По оценке Геологической службы США (USGS) общие мировые запасы циркония (в пересчёте на ZrO 2) составляют около 33,5 млн т (без учёта России и стран СНГ) (табл.5). Цирконий в рудах и россыпях представлен в основном цирконом, бадделеитом, калдаситом и эвдиалитом. Месторождения руд и россыпей, содержащих цирконий, разведаны в Австралии, США, Южно-Африканской Республике, Бразилии, Индии, Китае и других странах.

Исходя из данных по запасам, можно отметить, что разведанные запасы циркония в мире распределяются следующим образом (в %): Австралия - 45, ЮАР - 21, Бразилия - 7, США - 8, Китай - 5,6, Индия-5,7. Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину. Украина по запасам циркониевых песков занимает одно из ведущих мест в мире и первое среди стран СНГ.
Разведанные запасы циркона в Украине сосредоточены на действующем Малышевском месторождении в Вольногорске Днепропетровской области. Руда перерабатывается на Верхнеднепровском горно-металлургическом комбинате, производственные мощности которого по переработке составляют 30 тыс. т концентрата в год.

Таблица 5.

Мировые запасы циркония по оценке Геологической службы США (без учета России и стран СНГ)

Отличительной чертой структуры мировых запасов является превалирующая доля титано-циркониевых россыпных месторождений. Основные промышленные мировые запасы циркония (свыше 95%) заключены в прибрежно-морских россыпях (ПМР), где циркон находится вместе с титановыми (ильменит, рутил) и редкоземельными минералами. Среднее содержание циркона в песках ПМР варьирует в широких пределах – от сотых долей процента до трёх процентов (редко достигая 8%). Запасы и ресурсы циркона прибрежно-морских россыпей характеризуются крупными масштабами - до нескольких миллионов тонн двуокиси циркония в отдельных месторождениях.

На долю бадделеитсодержащих руд приходится около 5% мировых промышленных запасов циркония. Его запасы исчисляются первыми сотнями тысяч тонн. По данным "Mining Annual Review", в настоящее время единственным в мире источником бадделеита остается комплексное Ковдорское месторождение, расположенное на юго-западе Кольского п-ова в России. Годовое производство бадделеита здесь превышает 6,5 тыс. т.

Таким образом в настоящее время мировое производство цирконий содержащих концентратов превысило 1,4 млн т. и обеспеченность стран-производителей достоверными запасами циркониевого сырья, рассчитанная по уровню действующих мощностей по добыче, в целом превышает 80 лет.


Переработка циркона.

Поскольку основным сырьевым источником циркония и гафния является циркон, то и технологию производства циркония и его соединений целесообразно начинать с переработки циркона.

Первой стадией переработки циркона, как и для большинства редкометального сырья является обогащение. Обычно руды, содержащие циркон, обогащают гравитационными методами, а для отделения минералов железа применяют магнитную сепарацию. После обогащения цирконовые концентраты содержат ~65% ZrO 2 (концентрат 1-го сорта). Концентраты поступают на стадию разложения.

Применение циркония и гафния

Иодиды циркония и гафния

ZrI 4 и HfI 4 - желто-оранжевые кристаллические вещества; плавятся под давлением и довольно летучи. Наиболее существенно отличаются от тетрахлоридов и тетрабромидов термической неустойчивостью. Константа (75)

Zr(Hf)I 4 ↔ Zr(Hf) + I 2

быстро увеличивается с повышением температуры. Термическая диссоциация в вакууме начинается при 1100 °C; при 1500 °C ZrI 4 полностью разлагается. HfI 4 более прочное соединение, что следует из сопоставления свободной энергии образования. При 1500 °C степень термической диссоциации Hfl4 ~ 90%.

Обычный метод получения ZrI 4 и HfI 4 - прямой синтез из элементов в интервале 200-400°C. В качестве исходных материалов также можно использовать гидриды (иодируются при 500 °C), карбиды и карбо-нитриды (800-1100 °C).

Цирконий – единственный редкий металл, потребление которого исчисляется сотнями тысяч тонн. Более 85 % (рис. 39) производимого циркониевого сырья используется в минеральной форме в виде циркона или бадделеита (ZrO 2). Цирконовый кониентрат (98-99 % циркона) широко применяется в производстве строительной и сантехнической керамики, огнеупоров, абразивов, литейном производстве.

Рис. 38. Мировая структура запасов, производства и потребления циркония

Электроплавленые бадделеито-корундовыа (бакоровые) и спеченные огнеупоры, керамику, глезури, змали, стекла, ебразивы получают на основе таких полезных свойств диоксида циркония, как высокая температура плавления, химическая стойкость, твердость, высокий показатель преломления. В производстве керамических пигментов используют окрешенные соединения с кристаллическое структурой циркона, гранате, шпинели.

В производстве керамики, эмелей, глазурей наряду с двуокисью применяют в кечестве полуфебрикатов: титанат циркония, цирконаты бария, кельция, магния, стронция, свинца, висмута, церия, цирконосиликаты бария, кальция, магния, цинка и натрия.

Около 10 % циркона подвергается переработке для получения диоксида циркония и различных его соединений, 5 % приходится на металл и сплавы. Диоксид циркония широко используется при получении высокоогнеупорных изделий, жаростойких эмалей, тугоплавких стекол, различных видов керамики, керамических пигментов, твердых электролитов, термозашитных покрытий, катализаторов, искусственных драгоценных камней, режуших инструментов и абразивных материалов. В последние годы диоксид циркония начал широко применяться в волоконной оптике и производстве керамики, используемой в электронике и медицине.

Стабилизированный диоксид циркония, структура которого стабилизирована добавле оксидов иттрия, используют в кечестве твердого электролита. Эти твердые растворы хорошо проводят электрический ток при высокой температуре и могут быть применены для изготовления устойчивых в окислительной среде нагревателей. Их электропроводность зависит от парциального девления кислорода в газовой фазе, что позволяет использоветь их в качестве датчиков содержения кислорода в различных средах. Высокотемпературная конструкционная керамика обладает ионной проводимостью при температуре 300°С и одновременно характеризуется высокой радиационной стойкостью, повышенной прочностью, износостойкостью.



Соли циркония применяются для дубления кожи, изготовления цветных типографских красок, специальных лаков, пластмасс.

Сульфатоцирконаты натрия основного херактера, способные к взаимодействию активными аминными или пептидными, а также карбоксильными группами белке применяют для дубления кожи. Соединениями циркония обрабатывают ткани, чтобы придать им водоотталкивающие, противогнилостные или огнезащитные свойства. Для водоотталкивающей обработки используют ацетат циркония (приготавливаемый часто из основного карбоната) или кербонетоцирконет аммония. Из растворов этих соединений на ткань осаждают гидрофобные циркониевые мыла, непример стеараты, атом циркония в которых прочно связен через кислород с целлюлозой или аминными группами в волокна. Огнезещитные свойстве придают фторидные комплексы циркония пропитанные фтороцирконатом ткени становятся негорючими.

Соединения циркония основного харектере ускоряют полимеризацию применяемых для гидрофобизирующай обреботки ткеней силоксанов.

В производстве кресителей в качестве сиккетивов (вещества, ускоряющие высыхание олифы) используют циркониевые соли органических кислот.

Соединения циркония применяют также в фармацевтической промышленности для соосаждения лекарственных компонентов, в парфюмерной - в качестве дезодорантов.

Некоторые соединения циркония - хлорид, основной кербонат, гидрат оксихлорида, гидрооксид, сульфат производят как исходные продукты для получения других его соединений. При полировке стекла вместе с диоксидом циркония применяют гидроксосульфатоцирконат натрия или фторосульфат циркония, химически взаимодействующие с поверхностью стекла.

Металлический цирконий применяют в качестве раскислителя для легирования чугуна и стали. Для этих целей производят силикоцирконий и ферросиликоцирконий, в которых содержание циркония изменяется от 7 до 40%. Цирконий является также компонентом других сплавов, содержащих алюминий, мерганец, хром, титан или бор и предназнеченных для легирования стелей. Влияние циркония на свойства стали обусловлено тем, что он энергично взеимодействует с кислородом, азотом, серой, образуя прочные химические соединения. Сталь не стареет, когда азот, присутствующий в ней, соединяется с цирконием. Цирконий замедляет рост зерен и является более сильным рескислителем, чем бор, кремний, титан, ванадий или мерганец. Цирконий получил промышленное применение главным образом в качестве добавки в низколегированные конструкционные стали.

Кроме того, цирконий как легирующий элемент входит в состав специальных сталей (броневых, орудийных, нержавеющих, жаропрочных). Сплавы, содержещие цирконий, применяют в качестве модификаторов серого чугуна; они также способствуют получению серого чугуна при присадке их в белый чугун, который для превращения в ковкий обычно подвергают отжигу. Присадка циркониевых сплавов в высокосернистый и маломарганцовистый литейный чугун устраняет образование свободных кербидов и нейтрализует влияние серы.

В цветной метеллургии цирконий применяют для получения сплавов на титановой, магниевой, алюминиевой и медной основах. Сравнительно небольшие добавки циркония существенно уменьшают резмер зерна магния и тем самым улучшеют механические свойстве материала. Введение циркония в многокомпонентные магниевые сплавы значительно улучшеет их структуру и коррозионную стойкость при температурех 330-350 °С. Сплавы меди с цирконием, содержащие от 0.1 до 5.0% Zr, способны к упрочнению, которое достигается термической обработкой. Небольшие добавки циркония к меди, повышают ее прочность, лишь в незначительной степени снижеют ее электропроводность. Из сплева меди с цирконием изготавливают электроды для точечной сварки.

В некоторых никелевых или молибденовых сплавех цирконий содержится в виде оксидной или карбидной фазы, которая обеспечивает упрочнение сплава. Из сплавов циркония изготовляют медицинское оборудование, а также имплантанты и нити для нейрохирургии. Высокочистый цирконий широко используют в машиностроении - в качестве компонента новых конструкционных материалов – суперсплавов – сплавов с уникальным набором механических и коррозионных свойств

Металлический цирконий используется в ядерных реакторах как конструкционный материал тепловыделительных элементов (ТВЭЛов). энергетике. Высокая коррозионная стойкость циркония и малое сечение захвата тепловых нейтронов позволяют применять его для защитных оболочек в энергетических атомных реакторах с повышенной рабочей температурой. Активные зоны этих реакторов, в частности оболочки ТВЗЛов, каналы, кассеты и другие детали, изготавливают из цирконий-ниобиевых сплавов. В реакторе ВВЭР-1000 общее число цирконийсодержащих деталей превышает 540 тыс. шт. Активная зона ВВЭР-1000 набирается из 151 ТВС, в каждой из которых по 317 ТВЭЛов. Оболочка ТВЭЛов ВВЭР-1000 выполнена из сплава Н1 диаметром 9.1 мм толщиной 0.65 мм. Из сплава Н1 изготовлены пробки-заглушки, а из Н2.5 - канальные трубы, кожухи кассет, прутки и трубки крепления ТВС. На 1 реактор необходимо более 14 тонн циркония

Таким образом, области применения циркона и получаемых из него материалов крайне разнообразны и связаны как с отраслями высоких технологий, так и с производством самых обычных потребительских товаров.

Циркониевые минералы, руды и рудные концентраты

Содержание циркония в земной коре относительно высокое - 0,025 % (по массе). По распространенности он превосхо­дит медь, цинк, олово, никель и свинец. Известно около 20 минералов циркония. Они концентрируются главным образом в гранитных и щелочных (нефелин-сиенитовых) пегматитах. Ос­новными промышленными источниками в настоящее время слу­жат минералы бедделеит и циркон. Сырьем могут служить также минералы эвдиалит и эвколит, но они значительно бедней по содержанию циркония.

Бадделеит. По составу представляет собой почти чистый диоксид циркония. В наиболее чистых образцах до 98 % ZrOa. Обычно содержит примесь гафния (до нескольких про­центов), изредка уран (до 1 %) и торий (до 0,2 %). Место­рождения редки. Плотность минерала 5,5-6. Наиболее круп­ное месторождение найдено в Бразилии.

Основные методы обогащения руд - гравитационные. Для отделения минералов железа и ильменита используют элек­тромагнитное обогащение.

Циркон - ортосиликат циркония ZrSi04 (67,2 % Zr02, 32,8 % Si02). Это наиболее распространенный минерал цир­кония. Концентрируется главным образом в пегматитах гра­нитной и особенно щелочной магмы. Часто встречается в россыпях, образующихся при разрушении коренных пород. Циркон большей частью имеет коричневый цвет, плотность минерала 4,4-4.7 г/см3, твердость 7,5 по минералогической шкале. Минерал обычно содержит гафний (0,5-4 %). Основные запасы циркона сосредоточены в прибрежно-морских россы­пях. Здесь циркон накапливается вместе с ильменитом, ру­тилом, монацитом и рядом других минералов.

Выпускаемые в СССР цирконовые концентраты первого сор­та должны содержать не менее 65% Zr02. В них лимитирует­ся содержание следующих примесей, % (не 6onee):FeO 0,1; Ті02 0,4; А1203 2,0; СаО и MgO 0,1; P2Os 0,15. Концентра­ты второго сорта должны содержать не менее 60 % Zr02, примеси не лимитируются.

Наиболее крупные месторождения циркона за рубежом рас­положены в Австралии, Индии, Бразилии, ЮАР, США. В СССР циркон найден на Урале, Украине и в других районах страны.

Эвдиалит и эвколит. Состав эвдиалита может быть выра­жен общей эмпирической формулой: (Na, Ca)6Zr [ОН, С1]2.

Эвколит - разновидность эвдиалита, содержащего ионы Fe2+. Химический состав эвдиалита, %: Na20 11,6-17,3; Zr02 12-14,5; FeO 3,1-7,1; Si02 47,2-51,2; СІ 0,7-1,6. Цвет минерала - розовый или малиновый. Минерал легко раз­лагается кислотами.

Эвдиалит и эвколит встречаются в магматических щелоч­ных породах (нефелиновых сиенитах). Известны месторожде­ния в СССР (на Кольском полуострове), Португалии, Грен­ландии, Трансваале, Бразилии и других странах.

В капиталистических странах в 1986 г. было добыто 830 тыс. т цирконовых концентратов, в том числе в Австра­лии - 470, ЮАР - 150, США - 85.

Продукты переработки цирконовых концентратов

Цирконовые концентраты служат исходным материалом для производства ферросиликоциркония, ферроциркония и химиче­ских соединений циркония: диоксида циркония, фтороцирко - ната калия и тетрахлорида циркония, . а также соединений гафния.

Ферросиликоцирконий непосредственно выплавляют из цир­коновых концентратов. Технический диоксид циркония служит исходным материалом для получения ферроциркония и исполь­зуется в производстве огнеупоров и керамики. Диоксид цир­кония высокой чистоты применяют для высоко­качественных огнеупорных изделий и порошкообразного цир­кония. Фтороцирконат калия и тетрахлорид циркония исполь­зуют главным образом для производства металлического цир­кония. Ниже рассмотрены основные способы производства со­единений циркония.

Производство диоксида циркония

Разложение концентрата

Циркон практически не разлагается соляной, серной и азотной кислотами. Для его разложения с целью перевода циркония в раствор используют большей частью спекание (или сплавление) с содой или спекание с карбонатом каль­ция (мелом). Образующиеся цирконаты натрия или кальция растворяются в кислотах, из раствора затем выделяют гид­роксид или основные соли циркония. Последние термически разлагают, получая диоксид циркония.

Разложение циркона спеканием с карбонатом натрия. При 1100-1200 С со­да реагирует с цирконом с образованием метацирконата и ортосиликата натрия:

ZrSi04 + 3 Na2C03 = Na2Zr03 + Na4Si04 + 2 C02. (4.23)

Процесс можно проводить в барабанных печах непрерывно­го действия, питая печь гранулированной шихтой (размер гранул 5-10 мм). Грануляцию проводят на чашевом грануля­торе при увлажнении шихты. Измельченный спек первоначаль­но выщелачивают водой для извлечения в раствор большей части ортосиликата натрия. Осадки после водного выщелачи­вания обрабатывают соляной или серной кислотой. В первом случае получают солянокислый раствор, содержащий основной хлорид цирконила ZrOCl2, во втором случае - растворы, со­держащие основной сульфат циркония Zr(0H)2S04. При кисло­тной обработке образуется кремниевая кислота, для коагу­ляции которой в пульпу добавляют флокулянт полиакриламид. Осадки отделяют от цирконийсодержащих растворов фильтра­цией.

Разложение циркона спеканием с карбонатом кальция. Процесс основан на взаимодействии циркона с СаС03:

ZrSi04 + 3 СаС03 = CaZr03 + Ca2Si04 + З С02. (4.24)

Эта реакция протекает с достаточной скоростью лишь при 1400-1500 С. Однако добавки в шихту небольшого количест­ва хлорида кальция (~5 % от массы цирконового концентра­та) позволяют снизить температуру спекания до 1100- 1200 °С. Ускорение процесса в присутствии малых добавок СаС12 объясняется, вероятно, частичным образованием жид­кой фазы (температура плавления СаС12 774 С), а также

Цирконовий концентрат CaCOj I СаС1г

Вь/щелачиВание на холоду

„ І Раствор в сброс

Ршс.45. Технологическая схема переработки цирконового концентрата по способу спекания с карбонатом кальция

Увеличением структурных дефектов в кристаллах компонентов шихты под действием хлористого кальция.

Обработку спеков соляной кислотой ведут в две стадии. Первоначально при обработке на холоду 5-10 %-ной соляной кислотой растворяется избыточный оксид кальция и разлага­ется ортосиликат кальция. Образующаяся коллоидная кремни­евая кислота удаляется вместе с раствором. Нерастворив - шийся остаток, содержащий цирконат кальция, выщелачивают 25-30 %-ной НСІ при нагревании до 70-80 С, получая раст­воры, содержащие основной хлорид циркония. Примерно по тем же режимам можно выщелачивать известковые спеки азот­ной кислотой, получая растворы, содержащие Zr(0H)2(N03)2. Преимущества последней состоят в возможности утилизации азотнокислых маточных растворов после извлечения из них циркония и получения азотнокислых солей.

В случае применения серной кислоты можно выщелачивать известковый спек в одну стадию без существенных затрудне­ний в отношении отделения раствора от осадка кремниевой кислоты. Обработку спека проводят раствором 300-400 г/л HjSC^ при температуре не выше 80-90 С. В этих условиях осадки содержат гидратированные сульфаты кальция - CaS04 2 Н20 и CaS04-0,5 Н20, что обеспечивает хорошую фи­льтрацию осадков. С целью снижения потерь циркония суль­фатный кек, количество которого велико (~6 т на 1 т Zr02) многократно промывают водой. В некоторых производственных схемах рационально сочетается выщелачивание известковых спеков соляной и серной кислотами, что обеспечивает полу­чение различных соединений циркония (рис. 45).

Выделение циркония из раство­ров и получение ZrOj

Растворы, полученные в результате выщелачивания содо­вых или известковых спеков, содержат цирконий (100-200 г/л) и примеси железа, титана, алюминия, кремния и др. В промышленной практике применяют четыре способа

Выделения циркония из растворов:

Выделение основного хлорида Zr(OH)2Cl2 7 HjO.

Выделение основных сульфатов циркония.

Осаждение кристаллогидрата сульфата циркония Zr(S04)2-4 Н20.

Кристаллизация сульфато-цирконатов натрия или аммо­ния (дубитель для кожевенной промышленности).

Ниже рассмотрены наиболее распространенные первые два способа.

Выделение основного хлорида. Способ основан на малой растворимости кристаллогидрата Zr(OH)2Cl2-7 Н20 в концентрированной соляной кислоте, в то время как в воде и разбавленной НС1 растворимость вы­сокая:

Концентрация

НС1, г/л 7,2 135,6 231,5 318 370

Растворимость при 20 °С Zr(OH)2 * 7 Н20,

Г/л 567,5 164,9 20,5 10,8 17,8

Растворимость основного хлорида в концентрированной НСІ при 70°С примерно в 5 раз выше, чем при 20 С. Выпа­риванием нельзя достигнуть концентрации НС1 выше ~220 г/л, так как образуется азеотропная смесь. Однако в кис­лоте такой концентрации растворимость Zr(OH)2Cl2-7 Н20 невысокая (~25г/л), что позволяет после охлаждения рас­твора выделить в кристаллы 70-80 % циркония, содержащего­ся в растворе. Основной хлорид выделяется в виде крупных кристаллов, имеющих форму тетрагональных призм, легко от­деляемых от маточного раствора.

Способ дает возможность получить соединения циркония высокой чистоты, так как большинство примесей остается в солянокислом маточном растворе.

Из основного хлорида легко можно получить другие сое­динения циркония. Для получения Zr02 основной хлорид рас­творяют в воде и осаждают добавлением раствора аммиака гидроксид циркония. Прокаливанием последнего при 600-700 С получают диоксид с содержанием Zr02 99,6-99,8 %. Для получения других соединений (нитрата, фторидов) гидроксид растворяют в соответствующей кислоте.

Выделение основных сульфатов. Малорастворимые основные сульфаты, состав которых можно

Выразить общей формулой х ZrO2-у S03-z Н20 (дг>_у), выделя­ются из растворов при рН = 2-5-3 и мольном отношении S03: Zr02 в исходном растворе в пределах 0,55-0,9.

При нейтрализации сернокислого раствора, содержащего значительный избыток кислоты, содой или аммиаком, гидро­литическое выделение основного сульфата циркония не про­исходит. Это объясняется тем, что в таких растворах цир­коний находится в составе прочных анионов 2-, образующих с катионами натрия и аммония хорошо раствори­мые соли. Гидролиз наступает лишь в случае вывода части ионов SOf" из растворов, например добавлением ВаС12 или СаС12, что усложняет технологию.

Значительно проще гидролитическое выделение основных сульфатов из солянокислых или азотнокислых растворов, так как в этом случае в раствор вводится дозированное количе­ство сульфат-ионов (добавляют HjS04 или Na2S04).

Для осаждения основного сульфата в солянокислый рас­твор, содержащий 40-60 г/л циркония, добавляют H2S04

(0,5-0,7 моля на 1 моль Zr02), нейтрализацией и разбавле­нием доводят кислотность до 1-1,5 г/л по НС1, а затем на­гревают раствор до 70-80 С. В осадок выделяется 97-98 % циркония, его состав примерно соответствует формуле 2 Zr02 S03 5 HjO.

Осадок основного сульфата после промывки, фильтрации и сушки прокаливают для удаления S03 при 850-900 °С в муфе­льных печах, футерованных высокоглиноземистым огнеупором. Получаемый технический диоксид циркония содержит 97-98 % Zr02. Основные примеси следующие, %: Ті02 0,25-0,5; Si02 0,2-0,5; Fe203 0,05-0,15; CaO 0,2-0,5; S03 0,3-0,4.



Отчетность