Подводные аппараты для освоения морских глубин. Первые подводные аппараты

ПОДВОДНЫЙ АППАРАТ (а. submarine unit; н. Unterwassergerat; ф. appareil sous-marin; и. equipo submarino) — судно или техническое устройство, перемещающееся в толще воды и (или) по дну и используемое для научных исследований, поисковых и аварийно-спасательных операций, а также производственных работ под водой. В частности, подводные аппараты применяются для проведения геологических и геофизических измерений вблизи океанского дна с целью изучения геологического строения дна океана , состава слагающих его пород, поиска и разведки месторождений полезных ископаемых в Мировом океане , а также при эксплуатации месторождений, для осмотра и ремонта буровых платформ и т.п.

Подводные аппараты делятся на 3 основных класса: обитаемые нормобарические, обитаемые гипербарические и необитаемые (телеуправляемые). Подводные аппараты классифицируются также по типу выполняемых работ — на гидрофизические, геологические, поисковые, специализированные рабочие, осмотровые и др.; по характеру перемещений в водной среде — на буксируемые, плавающие, перемещающиеся (в т.ч. шагающие) по грунту; по способу подачи электропитания — на привязные, автономные и комбинированные; по глубине проведения работ — для малых глубин (до 600 м), средних глубин (до 2000 м) и глубоководные (свыше 2000 м).

К нормобарическим обитаемым подводным аппаратам относятся привязные и автономные исследовательские и транспортные средства, в герметическом корпусе которых поддерживаются параметры дыхательной смеси, близкие к нормативным атмосферным. Примером аппаратов этого типа является подводный аппарат "Пайсис", предназначенный для океанологических (в т.ч. геологических) исследований (рис. 1).

Первые геологические исследования с применением подводных аппаратов были проведены в 1962 с борта французского батискафа "Архимед" в жёлобе Пуэрто-Рико (около 9000 м). В последующие годы выполнялись обследования береговых каньонов, коралловых рифов , полей железомарганцевых конкреций и фосфоритов . С 70-х гг. было организовано несколько американских и французских геологических экспедиций по изучению океанических рифтовых зон (в 1973 — Срединно-Атлантического рифта , в 1978-79 — зоны восточно-Тихоокеанского поднятия и Галапагосского рифта).

Первые советские геологические экспедиции с использованием подводного аппарата типа "Пайсис", "Звук", "Манта" были проведены на озере Байкал (1977), в Красноморском рифте (1979-80) и рифте Рейкьянес в

""Сохранение Подводной лаборатории «Бентос-300» и создание на её основе народного музея гидронавтики в Севастополе (Балаклаве) позволит увековечить уникальную подводную лабораторию и сохранит историческую память о созданной в России подводной техники. Такой уникальный музей не позволит предать забвению славные страницы из истории гидронавтики в России и будет чрезвычайно интересен для проведения популяризаторской, образовательной и воспитательной деятельности на территории Севастополя и Крыма. Музей, стоящий на воде, станет своеобразной «визитной карточкой» Севастополя (Балаклавы). Подводная лаборатория «Бентос-300» является инженерным творением подводного судостроения России советского периода. Она представляет собой, одновременно, подводный аппарат, подводную лодку, подводный дом, водолазный комплекс и научную лабораторию. Проект предусматривает воссоздание первоначального облика Подводной лаборатории "Бентос-300", ремонт металлического легкого и прочного корпуса, насыщение отсеков прочного корпуса материалами по истории гидронавтики и создании в подводной части прочного корпуса обстановки, в которой работали и жили гидронавты-исследователи.
Посетители музея могут ознакомиться с разнообразными материалами, рассказывающими о истории гидронавтики, побывать в обстановке, в которой работали и жили гидронавты -исследователи, через иллюминаторы, расположенные под водой, смогут наблюдать жизнь подводных обитателей Черного моря, а работа аттракциона "Батискаф" создаст у посетителей ощущения реального погружения подводного аппарата под воду"

"Цель №1. 1. Создание в городе Севастополе музея гидронавтики на основе Подводной лаборатории «Бентос-300». должно стать действенным инструментом по объединению всех кто принимал участие в проектировании, строительстве и эксплуатации подводных аппаратов России. Такого рода музей не позволит стереть с нашей памяти подводные завоевания сделанные гидронавтами-исследователями с помощью подводной техники и может послужить возрождению гидронавтики в России и как следствие повысит интерес к проведению в будущем подводных исследований для открытия новых энергетических, пищевых и полезных ресурсов. "

"Задача №1. Воссоздать первоначальный облик Подводной лаборатории «Бентос-300», отремонтировать легкий и прочный корпус лаборатории и придать ей статус Музея гидронавтики.
Задача №2. Приобрести и установить оборудование, необходимое для обеспечения Подводной лаборатории "Бентос -300" электрической энергией, водой и принудительной вентиляцией.
Задача №3. Восстановить и создать внутри прочного корпуса элементы первоначальной обстановки в которой работали и жили гидронавты. Спроектировать и установить аттракцион "Батискаф",воспроизводящий обстановку реального погружения подводного аппарата под воду.
Задача №4. Произвести внутреннее насыщение отсеков прочного корпуса лаборатории экспонатами, стендами, фото и видеоматериалами, рассказывающими о истории гидронавтики в России."

"Сохранение исторической памяти подводно-технических средств созданных в России гражданского и военного назначения волнует значительную часть общества. Музей гидронавтики, являющийся объектом культуры, станет центром воспитания и дополнительного образования, профориентационной и исторической направленности. Содружество с военными и гражданскими ветеранами- гидронавтами, учащимися кадетского училища, студентами даст возможность в процессе реализации проекта задействовать не только участников проекта, но и представителей общественных групп, интересующихся подводной тематикой. Большая часть мероприятий будет проводиться на базе Подводной лаборатории «Бентос-300». Такой музей даст уникальную возможность объединить людей разных поколений увлеченных идеей покорения гидрокосмоса."

Этот термин часто используют для того, чтобы отделить подобные аппараты от субмарин. Однако в общем использовании словосочетание «подводная лодка» может применяться для описания корабля, который по техническому определению фактически является подводным аппаратом.

Существует много типов такого оборудования, включая как самодельные, так и промышленно созданные суда, которые иначе известны как машины с дистанционным управлением или ROV. Они имеют множество применений во всем мире, особенно в таких областях, как океанография, подводная археология, исследования океана, туризм, техническое обслуживание и восстановление оборудования, а также подводная видеосъемка.

История

Первое подводное судно было спроектировано и построено американским изобретателем Дэвидом Бушнелем в 1775 году в качестве средства для ввода взрывных зарядов на вражеские корабли во время американской войны за независимость. Устройство, получившее название «Черепаха Бушнелла», было овальным сосудом из дерева и меди. В нем устроены резервуары, заполненные водой (для погружения), а затем их опорожняли с помощью ручного насоса, чтобы всплыть на поверхность. Оператор использовал два гребных винта с рукояткой для перемещения по вертикали или сбоку под водой. У аппарата были маленькие стеклянные окна сверху и люминесцентная древесина, прикрепленная к корпусу, чтобы им можно было управлять в темноте.

"Черепаха Бушнелла" была впервые введена в эксплуатацию 7 сентября 1776 года в гавани Нью-Йорка, чтобы напасть на британский флагман HMS Eagle. В то время сержант Эзра Ли управлял этим подводным аппаратом. Ли успешно подвел "Черепаху" к нижней части корпуса "Орла", но не смог установить заряд из-за сильных течений воды. Однако на этом история данных видов транспорта не закончилась.

Характеристики

Помимо размера основное техническое различие между подводным аппаратом и субмариной заключается в том, что первый не является полностью автономным и может полагаться на вспомогательный объект или судно для пополнения топлива и дыхательных газов. Некоторые аппараты работают на «тросе» или «пуповине», оставаясь связанными с тендером (субмарина, надводный корабль или платформа). Они, как правило, имеют меньший радиус действия и работают в основном под водой, поскольку большинство бесполезно на поверхности. Подводные лодки (аппараты) способны погрузиться на глубину более 10 км (6 миль) ниже поверхности воды.

Субмарины могут быть относительно небольшими, содержать только небольшую команду и не иметь жилых помещений. Они часто имеют очень ловкую конструкцию, снабженную винтами пропеллера или насосами.

Технологии

Существует пять основных технологий, используемых при проектировании подводных аппаратов. Однополярные аппараты имеют корпус под завышенным давлением, а их пассажиры при этом находятся под нормальным атмосферным давлением. Они с легкостью выдерживают высокое давление воды, которое во много раз превышает внутреннее.

Другая технология, называемая давлением окружающей среды, поддерживает одинаковую нагрузку как внутри, так и снаружи сосуда. Это уменьшает давление, которое должен выдерживать корпус.

Третья технология - это «мокрая субмарина». Под термином подразумевается транспортное средство с затапливаемой внутренней частью. Как в водной, так и в атмосферной среде нет необходимости использовать оборудование SCUBA, пассажиры могут нормально дышать, не надевая ни одно дополнительное устройство.

Рекорды

За счет тросового вытяжения подводные аппараты могут погружаться на большие глубины. Батискаф "Триест" был первым достигшим самой глубокой части океана (почти на 11 км (7 миль) ниже поверхности) на дне Марианской впадины в 1960 году.

Китай с его проектом Цзяолун в 2002 году был пятой страной, которая отправила человека на 3500 метров ниже уровня моря, следуя за США, Францией, Россией и Японией. Утром 22 июня 2012 года погрузочно-разгрузочный комплекс Цзяолун установил рекорд глубокого погружения, когда три человека спустились на 22 844 фута (6 963 метра) в Тихий океан.

Среди наиболее известных и самых длинных в эксплуатации подводных аппаратов - глубоководный исследовательский корабль DSV Alvin, который укомплектован 3 людьми и способен погружаться на глубину до 4500 метров (14 800 футов). Он принадлежит флоту Соединенных Штатов, управляется системой WHOI и с 2011 года совершил более 4 400 погружений.

Джеймс Кэмерон сделал рекордное погружение на дно Глубины Челленджера, самой глубокой известной точки Марианской впадины, 26 марта 2012 года. Подводный корабль Кэмерона назывался Deepsea Challenger и достиг глубины 10 908 метров (35,787 фута).

Последние новинки

Совсем недавно частные фирмы Флориды выпустили серию аппаратов Triton Submarines. SEAmagine Hydrospace, Sub Aviator Systems (или SAS) и Нидерландская фирма Worx разработали небольшие подводные лодки для туризма и разведки.

Канадская компания, которая называется Sportsub, с 1986 года строит персональные рекреационные подводные лодки с конструкциями открытого пола (частично затопленные кокпиты).

Функциональные виды

Небольшие беспилотные подводные аппараты, называемые «морские дистанционно управляемые транспортные средства», или MROV, широко используются сегодня для работы в слишком глубокой или слишком опасной для ныряльщиков воде.

Такие аппараты помогают ремонтировать морские нефтяные платформы и прикреплять кабели к затонувшим кораблям, чтобы поднять их. Такие дистанционно управляемые транспортные средства прикреплены тросом (толстым кабелем, обеспечивающим питание и связь) с центром управления на судне. Операторы на корабле наблюдают видеоизображения, отправленные обратно от робота, и могут управлять пропеллерами и манипулятором аппарата. Затопленный «Титаник» был изучен именно таким транспортным средством.

Батискафы

Батискаф - это самоходный глубоководный погружной подводный корабль, состоящий из кабины экипажа, подобно батисфере, но подвешенный ниже поплавка, а не за поверхностный кабель, как в классическом дизайне батисферы. Многие рассматривают его как вид самоходного подводного аппарата.

Его поплавок заполнен бензином, легко доступен, плавуч и весьма прочен. Несжимаемость топлива означает, что цистерны могут быть очень легко сконструированы, поскольку давление внутри и снаружи резервуаров уравновешивается. Также емкости не имеют задачи полностью выдерживать любые перепады давления, тогда как кабина экипажа призвана оказать сопротивление огромной нагрузке. Плавучесть на поверхности можно легко уменьшить, заменив бензин водой, которая плотнее.

Этимология

Огюст Пикард, изобретатель первого батискафа, сочинил название «батискаф», используя древнегреческие слова βαθύς bathys («глубокое») и σκάφος skaphos («судно» / «корабль»).

Функционирование

Чтобы спуститься, батискаф затапливает воздушные резервуары морской водой. Но в отличие от подводной лодки, жидкость в его затопленных емкостях не может быть смещена со сжатым воздухом, чтобы подняться. Это связано с тем, что давление воды на глубинах, для которых корабль был предназначен для работы, слишком велико.

Например, нагрузка в нижней части Challenger Deep - аппарата, на котором плавал сам Джеймс Кэмерон - более чем в семь раз превышает давление в стандартном цилиндре сжатого газа типа H. Для равновесия этот аппарат использовал железные грузы. Контейнеры с ними состоят из одного или нескольких цилиндров, которые открыты на дне на протяжении всего погружения, а груз удерживается на месте электромагнитом. Это отказоустойчивое устройство, так как оно не требует повышения мощности.

История батискафов

Первый батискаф был назван FNRS-2 - в честь Национального фонда рекреационных исследований - и был построен в Бельгии с 1946 по 1948 год Огюстом Пикардом. FNRS-1 был воздушным шаром, используемым для подъема Пикарда в стратосферу в 1938 году.

Движение первого батискафа было обеспечено электродвигателями с батарейным питанием. Поплавок составил 37 850 литров авиационного бензина. В нем не было туннеля доступа. Сфера должна была быть загружена и выгружена на палубе. Первые плавания подробно описаны в книге Жака Кусто «Тихий мир». Как говорится в повествовании, «судно безмятежно выдержало давление глубин, но было уничтожено незначительным шквалом». FNRS-3 был новым подводным аппаратом, использующим экипажную сферу от поврежденного FNRS-2 и новый, более крупный, 75,700-литровый поплавок.

Второй батискаф Piccard был куплен ВМС США у Италии в 1957 году. В нем было два груза с водяным балластом и одиннадцать резервуаров плавучести, содержащих 120 000 литров бензина. Позже был изобретен подводный аппарат "Посейдон".

В 1960 году батискаф, несущий сына Пикара Жака и лейтенанта Дона Уолша, достиг самого глубокого известного места на поверхности Земли - Глубины Челленджера в Марианской впадине. Бортовые системы указали глубину 37 800 футов (11 521 м), но впоследствии она была исправлена ​​до 35 813 футов (10 916 м) с учетом изменений, вызванных соленостью и температурой.

Аппарат был оснащен мощным источником энергии, который, осветив маленькую рыбу, подобную камбале, поставил вопрос о том, существовала ли жизнь на такой глубине в полном отсутствии света. Экипаж батискафа отметил, что дно состояло из диатомового ила и сообщал о наблюдении какого-то типа камбалы, напоминающего подошву, длиной около 1 фута и 6 дюймов в поперечнике, лежащей на морском дне.

В 1995 году японцы отправили автономный подводный аппарат на эту же глубину, но позже он был потерян в море. В 2009 году команда из Океанографического института Вудс-Хоул отправила роботизированную подводную лодку по имени "Нереус" на дно впадины.

Изобретение батисферы

Батисфера (от греческого βαθύς, бана, «глубокая» и σφαῖρα, сфайра, «сфера») была уникальной сферической глубоководной подводной лодкой, которая управлялась дистанционно и опускалась в океан на тросе. Она использовалась для проведения серии погружений у берегов Бермудских островов с 1930 по 1934 год.

Батисфера была спроектирована в 1928 и 1929 годах американским инженером Отисом Бартоном и стала известна благодаря тому, что натуралист Уильям Биб использовал ее для изучения подводной дикой природы. По своему строению батисфера близка к торпедному подводному аппарату.

Для решения некоторых задач могут применяться различные дистанционно управляемые системы с комплексом необходимого оборудования. Так, для исследования морского дна и изучения донных объектов могут применяться автономные необитаемые подводные аппараты. Системы этого класса активно разрабатываются отечественными предприятиями. В последние годы силами нескольких организаций были созданы несколько подобных комплексов. Два из них относятся к семейству под названием «Клавесин».

АНПА «Клавесин-1Р»


Первым представителем нового семейства стал аппарат «Клавесин-1Р». По имеющимся данным, автономный необитаемый подводный аппарат «Клавесин-1Р» был разработан Институтом проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН, г. Владивосток). Целью проекта было создание специального средства, пригодного для выполнения различных задач на разных глубинах. Разработка велась как в интересах научных организаций, так и для соответствующих структур военного ведомства. Проектом предусматривалась возможность изучения окружающей обстановки и отдельных объектов при помощи набора бортового оборудования. Аппарат получил автоматизированную систему управления с возможностью получения новых команд с пульта управления.

АНПА "Клавесин-1Р" перед спуском в воду. Фото ИПМТ ДВО РАН / Imtp.febras.ru

Исходя из требований и предполагаемых особенностей применения, авторы проекта использовали некоторые отработанные идеи и решения. В частности, внешне изделие «Клавесин-1Р» напоминает торпеду немного увеличенных габаритов. Все основные агрегаты помещены внутри цилиндрического корпуса. Головная часть аппарата прикрыта полусферическим обтекателем, в корме имеется сужающийся агрегат, на котором находится т.н. движительный комплекс. Длина «Клавесина-1Р» составляет 5,8 м, диаметр корпуса – 900 мм. Масса аппарата в воздухе – 2,5 т.

АНПА «Клавесин-1Р» имеет прочный корпус, обеспечивающий работу всех агрегатов на больших глубинах. Характеристики конструкции обеспечивают погружение на глубины до 6 км. Аппарат оснащается четырьмя электродвигателями, расположенными на колонках кормовой части корпуса. Каждый из них вращает свой гребной винт. Имеющиеся силовые агрегаты позволяют развивать скорость до 1,5 м/с (2,9 узла). Аккумуляторные батареи дают дальность хода до 300 км.

Подводный аппарат получил автоматизированную программную систему управления. В ходе подготовки к погружению в автоматику изделия загружается программа, по которой в дальнейшем осуществляется работа. При этом предусматривается возможность коррекции загруженной программы. Для этого комплекс управления, размещенный на борту судна-носителя, может использовать гидроакустический канал связи. После обновления программы АНПА «Клавесин-1Р» сразу может приступать к требуемым действиям.


Аппарат на испытаниях. Фото Svpressa.ru

На борту подводного аппарата имеется набор различного оборудования, предназначенного для обследования окружающих объектов и сбора необходимых сведений. В разных частях прочного корпуса монтируются гидролокаторы бокового обзора, электромагнитный искатель, цифровая видеокамера со средствами обработки сигнала, акустический профилограф, а также датчики температуры и электропроводности забортной воды.

Основным средством наблюдения за окружающим пространством, способным работать в различных условиях и использоваться для обнаружения разных объектов, является гидроакустический локатор бокового обзора. Имеется возможность использования высокочастотного и низкочастотного режима работы станции. Низкочастотный режим позволяет вести обзор полосы шириной 800 м. При использовании колебаний высокой частоты ширина полосы сокращается до 200 м.

Прочая бортовая аппаратура позволяет производить различные измерения и определять параметры окружающей среды. Также может выполняться батиметрическое исследование водоемов и их дна, акустическое зондирование донного грунта или видеосъемка обнаруженных объектов. При помощи бортового оборудования «Клавесин-1Р» может как находить, так и обследовать различные объекты, расположенные на дне. Возможно изучение точечных и протяженных объектов.


Пульт управления комплекса "Клавесин-1Р". Фото ИПМТ ДВО РАН / Imtp.febras.ru

Управление работой подводного аппарата производится при помощи пульта, располагаемого на борту судна-носителя. Оборудование пульта позволяет проводить предварительную подготовку перед погружением, в том числе вводить рабочую программу, контролировать работу всех систем, получать некоторые данные, а также корректировать заданную программу и передавать обновленные указания аппарату.

Проект АНПА «Клавесин-1Р» был разработан в середине прошлого десятилетия, и вскоре был доведен до сборки опытной техники с последующими ее испытаниями. Позже опытный образец использовался в различных операциях, целью которых было проведение исследований или поиск некоторых объектов. Известно, что в ходе испытаний прототип совершал погружения в Японском море, а также опускался в Курильско-Камчатский глубоководный желоб. Опытная эксплуатация велась в районах Арктики. Так, в 2007 году аппарат «Клавесин-1Р» вошел в состав научного оборудования, используемого полярной экспедицией «Арктика-2007». Носителем комплекса стал атомный ледокол «Россия». Позже АНПА нового типа использовался в поисковой операции в Охотском море. Целью этих работ был поиск затонувшего радиоизотопного источника.

В конце 2008 года отечественные средства массовой информации опубликовали некоторые подробности исследовательской работы в арктических морях. Видеокамера аппарата позволила операторам увидеть разных обитателей морского дна, часть которых впоследствии не удалось опознать даже специалистам. Тем не менее, исследование морской фауны не являлось задачей операторов комплекса.


Изображение объекта, полученное при помощи аппаратуры "Клавесина-1Р". Фото ИПМТ ДВО РАН / Imtp.febras.ru

В ходе испытаний комплекс «Клавесин-1Р» подтвердил расчетные характеристики, а кроме того, улучшил некоторые показатели. Так, во время одного из погружений была достигнута глубина 6083 м. В 2008 году аппарат прошел государственные испытания, по результатам которых был рекомендован к полноценной эксплуатации. По разным данным, к настоящему времени автономный необитаемый подводный аппарат несколько раз использовался для различных исследований в разных морях.

АНПА «Клавесин-2Р-ПМ»

Вероятно, по результатам испытаний и эксплуатации подводного аппарата «Клавесин-1Р» было принято решение о создании новой системы этого класса, предназначенной для эксплуатации специальными структурами военно-морского флота. В 2009 году министерство обороны сформировало требования к новому АНПА и выбрало разработчика. 19 мая 2009 года был подписан договор между военным ведомством и Центральным конструкторским бюро морской техники «Рубин». К настоящему времени новый проект был доведен до стадии испытаний в море.

Второй проект автономного необитаемого подводного аппарата получил название «Клавесин-2Р-ПМ». По имеющимся данным, новая разработка имеет те же цели и задачи, что и ее предшественник. При этом АНПА второй модели должен отличаться немного увеличенными габаритами и иным составом бортового оборудования. За счет этого появляется возможность повысить эффективность поисковых работ и исследований морского дна.


Общий вид АНПА "Клавесин-2Р-ПМ". Фото Hisutton.com

Имеются некоторые сведения о конструкции аппарата «Клавесин-2Р-ПМ». Согласно этим данным, основным агрегатом изделия является рама прямоугольного сечения, предназначенная для установки всех основных систем. На ней монтируется электронная аппаратура, силовая установка, блоки плавучести и т.д. В корме также имеется движительный комплекс, состоящий из четырех двигателей с винтами. Защита от воды осуществляется при помощи прочного корпуса. Корпус имеет цилиндрическую форму с обтекаемыми носовой и кормовой частями. На верхней поверхности корпуса предусматривается выступ-надстройка большой длины и малой высоты.

Длина АНПА «Клавесин-2Р-ПМ» достигает 6,5 м, диаметр корпуса – 1 м. Масса примерно равна 3,7 т. Скоростные параметры аппарата, по разным данным, примерно равны характеристикам предшественника. При этом дальность хода была сокращена до 50 км. Прочность корпуса позволяет совершать погружения на глубину до 6 км. Несколько месяцев назад сообщалось, что аппарат уже смог совершить погружение на глубину 500 м.

Точный состав бортового оборудования нового подводного аппарата неизвестен. Вероятно, было решено сохранить общую архитектуру предыдущего проекта, но при этом повысить эффективность работы путем использования аппаратуры новых моделей с улучшенными характеристиками. Также заявлено повышение автономности в сравнении с АНПА «Клавесин-1Р». Подобные данные могут говорить о сохранении существующих принципов управления, благодаря чему работа должна осуществляться по заранее составленной программе с возможностью ее корректировки в любой момент.

К настоящему времени опытная техника типа «Клавесин-2Р-ПМ» вышла на испытания. Началу проверок предшествовало появление некоторых документов, раскрывающих подробности проекта. В частности, в феврале этого года ЦКБ МТ «Рубин» объявило запрос предложений о страховании опытной техники нового типа. Через месяц после этого планировалось выбрать компанию, которой предстояло застраховать два опытных подводных аппарата. Также в документе указывалось, что строительство техники выполнялось в г. Санкт-Петербург, а проведение испытаний планируется в Санкт-Петербурге и в Крыму, на Черном море. Страховая стоимость одного АНПА «Клавесин-2Р-ПМ» определялась в 300 млн рублей.

В начале июня 2016 года руководство ЦКБ МТ «Рубин» рассказало о скором завершении работ по новому проекту. Из опубликованных данных следовало, что к настоящему времени опытные образцы вышли на испытания и проверяются в акватории Черного моря. Также отмечалось, что в ходе этого этапа проверок «Клавесин-2Р-ПМ» сможет достичь глубины около 500 м. Погружение на большие глубины на используемом полигоне Черного моря попросту невозможно.

В обозримом будущем специалисты промышленности и флота должны будут завершить все необходимые работы по проекту «Клавесин-2Р-ПМ». После этого опытная техника, пройдя государственные испытания, может быть принята на вооружение военно-морского флота. Ранее в открытом доступе появлялись некоторые сведения о возможном применении новой техники. Автономные необитаемые подводные аппараты будут включены в состав бортового оборудования атомных подлодок, модернизируемых по проекту 949АМ. Кроме того, они станут штатным средством изучения обстановки АПЛ специального назначения БС-64 «Подмосковье» проекта 09787.

Разработка перспективных автономных подводных аппаратов позволяет дать флоту и научным организациям новые комплексы, способные осуществлять наблюдение и разведку в различных районах Мирового океана на разных глубинах. Обеспечивается возможность наблюдения за обстановкой при помощи гидроакустических локаторов, а также некоторой другой аппаратуры. При приближении на минимальное расстояние новые аппараты могут использовать видеокамеры. Важным преимуществом новых отечественных разработок является возможность автономной работы без постоянного управления с борта носителя.


Предполагаемая архитектура аппарата "Клавесин-2Р-ПМ". Рисунок Hisutton.com

К настоящему времени один из аппаратов семейства «Клавесин» прошел все необходимые испытания и был рекомендован к полноценной эксплуатации. Два прототипа АНПА «Клавесин-2Р-ПМ» в настоящее время проходят проверки, которые в будущем позволят определить их реальное будущее. При отсутствии серьезных проблем и соблюдении нужных темпов испытания могут быть завершены в течение нескольких следующих месяцев. Благодаря этому в скором будущем военно-морской флот сможет получить новое специальное оборудование, упрощающее решение некоторых специальных задач. Тем не менее, в связи со специфическим предназначением новой техники, подробности ее эксплуатации будут оставаться тайной в течение длительного времени.

По материалам сайтов:
http://imtp.febras.ru/
http://ckb-rubin.ru/
http://i-mash.ru/
http://tass.ru/
http://hisutton.com/


Любой подводный обитаемый аппарат, независимо от его назначения и глубины погружения, можно представить в виде следующих основных элементов и систем: прочный корпус, легкий корпус, система погружения-всплытия, уравнительно-дифферентная система, система аварийного балласта, энергетическая установка, движительно-рулевой комплекс, система гидравлики, система жизнеобеспечения экипажа, средства навигации, связи, освещения и приборное оборудование.

Прочный корпус

Управление всеми системами аппарата и пилотирование осуществляется из кабины, размещенной внутри прочного корпуса (ПК). ПК испытывает наружное давление воды, возрастающее с каждым метром погружения. Давление это очень велико, достаточно вспомнить опыт Паскаля с бочкой, которая разорвалась в результате воздействия на ее стенки столба воды. Успех и безопасность подводных спусков в основном зависят от надежности ПК, защищающего экипаж подводного аппарата от воздействия разрушительного давления воды. Форма и толщина стенок корпуса при проектировании подводного аппарата задаются с учетом рабочей глубины погружения и типа материала, из которого изготовляется корпус. В качестве материала в основном применяют высокопрочную сталь, титановые и алюминиевые сплавы. Оптимальной считается та форма корпуса с заданным объемом и прочностью, которая обеспечивает наименьший вес. Соотношение веса ПК и его водоизмещения (произведение объема на удельный вес воды) определяет плавучесть аппарата; чем оно меньше, тем больше плавучесть аппарата. Лучше всего этому требованию отвечает сферическая форма ПК, хотя и существует большое количество подводных аппаратов, имеющих цилиндрические и эллипсоидальные корпуса, в которых достаточно удобно размещается экипаж и оборудование. Сфера более однородна по своей конструкции и устойчива к внешнему давлению. Напряжение, возникающее в материале ПК сферической формы, при условии равенства внешнего давления, диаметра корпуса и толщины стенок, в два раза меньше напряжения в цилиндрическом корпусе. Подводные аппараты со сферическими ПК используются во всем диапазоне глубин. Менее распространены корпуса, состоящие из двух или более сфер, соединенных переходами. Аппараты с цилиндрической формой корпуса работают на глубинах от 100 до 600 м (исключения составляют «Алюминаут» и «Север-2»), Прочные корпуса других форм, например корпус «Дениз» в форме чечевицы, большого применения не нашли. Какую бы форму не имели прочные корпуса, их герметичность зависит от тщательного конструкторского расчета прочности и учета напряжений, возникающих в районах вырезных элементов и отверстий для люка, иллюминаторов и различных вводов в стенках ПК. После изготовления ПК, обвешанный большим количеством тензодатчиков для измерения напряжений, проходит проверку давлением в испытательной камере. Напряжения, возникающие в точках измерения, особенно в местах вырезов, должны не превышать значение предела текучести для материала, из которого изготовлен корпус. Использование для изготовления ПК новых материалов с высоким показателем удельной прочности (отношение предела текучести к плотности), ударной вязкости, коррозионной устойчивости, пластичности, свариваемости и легкостью механической обработки позволяет значительно увеличить глубину погружения аппарата. В качестве примера можно привести подводные аппараты «Алвин», «Си Клифф» и «Тартл», на которых стальные прочные корпуса были заменены на корпуса из титановых сплавов, что позволило им работать на глубинах 4000 и 6000 м. Высокая удельная прочность и низкая плотность (4,5 г/см3) титана, большое сопротивление на разрыв, коррозионная стойкость и немагнитность ставят его в ряд наиболее перспективных материалов для изготовления прочных корпусов и элементов конструкций подводных аппаратов. Вместе с тем разрабатываются и испытываются превосходящие титан по прочности и упругости стали, способные стать лидерами в производстве корпусов для глубоководной техники. Перспективны стали со сверхвысоким пределом текучести, обладающие высокой прочностью. Пока недостатками таких сталей (NS 90, 10 Ni-8Со) являются недостаточная пластичность и вязкость, а это приводит к уменьшению надежности при ударных воздействиях. Алюминиевые сплавы, которые использовались на первых этапах строительства подводных аппаратов, в силу их плохой свариваемости и малого значения модуля упругости, уступают дорогу новым материалам.

Легкий корпус

Легкий корпус (ЛК) придает аппарату законченный вид и обтекаемость, необходимую для снижения гидродинамического сопротивления. Форма ЛК определяется заданными габаритами подводного аппарата, формой и габаритами прочного корпуса и принципом компановки ряда забортных систем, таких, как система погружения-всплытия, уравнительно-дифферентная и гидравлическая системы, аккумуляторные боксы и двигатели. Наибольшее распространение получили каплевидная и торпедообразная формы ЛК. Небольшое количество аппаратов («Дениз», «Дип Квест») имеет сплющенную или эллипсоидальную («Бивер-4») форму ЛК. Подводные аппараты малых глубин, имеющие цилиндрические ПК, чаще всего обходятся без ЛК («Дип Дайвер»). В качестве материалов для изготовления ЛК используются стекловолокнистые пластики, многослойные материалы на основе эпоксидной смолы, армированной высокопрочным волокном из кевлара, и синтактик (синтактик - плавучий материал из синтактической пены, выдерживающий высокие давления, состоящий из фенольных микробаллонов в эпоксидном наполнителе), реже - легкие алюминиевые и титановые сплавы. Процесс изготовления ЛК из стеклопластика состоит из трех этапов: выполнение по чертежу корпуса «болвана», выклеивание по нему матрицы и заполнение матрицы слоями стекловолокна, пропитанного смолами. ЛК может состоять из нескольких элементов. Верхняя его часть является палубой с ограждением люка ЛК. Килевая часть закрывает аккумуляторы. По бортам ЛК имеет съемные смотровые люки для обслуживания забортных систем.

Система погружениявсплытия

Система погружения-всплытия обеспечивает переход подводного аппарата из надводного в подводное положение и обратно за счет изменения плавучести. В первых безтросовых подводных аппаратах - батискафах - необходимая плавучесть достигалась путем изменения объема бензина в поплавке и количества дроби в бункерах. Дробь для регулировки плавучести применялась и в аппаратах следующего поколения («Алюминаут», «Дип Квест», «Довб», «Сиана», «Си Клифф»). С появлением синтактика, рассчитанного на большие глубины, способного значительно компенсировать вес аппарата, стало возможно отказаться от больших и небезопасных бензиновых поплавков и сильно уменьшить габариты подводных аппаратов. Современные подводные аппараты оснащены цистернами главного балласта (ЦГБ), имеющими достаточно большой внутренний объем, заполняемый при погружении забортной водой. Вода поступает через шпигаты цистерны, замещая воздух, который выходит через открытые клапаны вентиляции. При всплытии аппарата пилот имеет возможность продуть цистерны воздухом из баллонов высокого давления. Продувка прекращается при появлении воздушных пузырьков из шпигатов. Следует отметить, возможность полной продувки ЦГБ ограничена давлением воздуха в баллоне и глубиной, на которой находится аппарат. Обычно для аппаратов малых глубин используют воздух, сжатый до 200 атм., для глубоководных аппаратов давление воздуха в баллонах поднимают до 400 атм. Запаса воздуха в баллонах должно хватить на двойную продувку ЦГБ. Уравнительнодифферентная система Уравнительно-дифферентная система (УДС) обеспечивает точную регулировку плавучести подводного аппарата, необходимую при фиксации положения аппарата на грунте, исследуемом объекте, зависании в толще, погружении или всплытии с заданной скоростью. Еще одно назначение УДС - изменение дифферента (выравнивание аппарата или обеспечение наклона для работы в специальных случаях). На большинстве подводных обитаемых аппаратах нужная плавучесть достигается соответствующим изменением веса аппарата при неизменном водоизмещении. Увеличение веса за счет приема водяного балласта происходит при заполнении балластных цистерн самотеком или принудительно. Уменьшение веса за счет удаления балласта происходит, когда включаются насосы, откачивающие воду за борт. Природа решила эту задачу миллионы лет назад, создав маленький живой подводный аппарат - Наутилус. Наутилус - моллюск с великолепной витой раковиной, живущий на глубинах до 600. Наутилус легко меняет свою плавучесть, то зависая в толще воды, то опускаясь вниз. Моллюск забирает или выдавливает воду из внутренней трубки, проходящей через всю спиральную раковину, разделенную на герметичные отсеки. Дифферентный насос перекачивает балласт (воду или ртуть) из носовых цистерн в кормовые и наоборот, тем самым меняя количество балласта и дифферент аппарата. В состав УДС, помимо цистерн и дифферентного насоса, входят: насосы морской воды, клапаны, фильтры, трубопроводы, ограничители расхода и пульт управления и конт роля УДС. Насосы морской воды являются сердцем УДС, они откачивают воду вплоть до максимальной рабочей глубины погружения аппарата. Управляемые клапаны принимают воду в цистерны и позволяют перекачать балласт из носа в корму и обратно, а также откачать воду из цистерн. Ограничители расхода начинают действовать в случае отказа клапанов или разрушения трубопроводов, когда в цистерны врывается забортная вода и служит причиной бесконтрольного погружения аппарата. На пульте управления, кроме тумблеров включения-выключения клапанов и насосов, имеется индикатор уровня воды в цистернах. Еще один принцип регулировки плавучести заключается в изменении водоизмещения подводного аппарата при сохранении постоянного значения его веса. Работа УДС переменного водоизмещения («Аргус») основывается на перекачке масла из прочных цистерн в эластичные мешки-вариаторы, что обеспечивает увеличение плавучести аппарата. Положительная плавучесть в данном случае возрастает на величину веса воды, объем которой эквивалентен объему вариатора. Дифферентовка производится путем перекачки масла в нос или в корму насосом дифферентной системы. На некоторых аппаратах («Мермайд») изменение дифферента осуществляется перемещением груза в горизонтальной плоскости, например - аккумуляторного бокса с помощью гидроцилиндра.

Система аварийного балласта

Многолетняя практика эксплуатации подводных обитаемых аппаратов показала, что иногда возникают достаточно неприятные ситуации, в которых пилот должен воспользоваться системой аварийного всплытия. Система аварийного всплытия предусматривает сброс аварийного балласта в случаях, когда невозможно использовать энергетическую установку для работы насосов и двигателей, когда произошло неуправляемое поступление забортной воды в системы аппарата или когда аппарат завяз в илистом грунте, и мощности вертикальных двигателей не хватает для того, чтобы размыть вязкий ил. В качестве аварийного балласта используют тяжелые аккумуляторные боксы, ртуть из дифферентных цистерн, якорьгайдроп, другое забортное оборудование, имеющее значительную массу и, наконец, свинцовые или металлические грузы. Сброс производится с помощью резервных аккумуляторных батарей или пиропатронов. Груз, прикрепленный к прочному корпусу, может отдаваться и вручную из кабины. Общий вес аварийного балласта должен рассчитываться с учетом максимально возможной отрицательной плавучести аппарата. Роль аварийного балласта выполняет и маневровая дробь, предназначенная для управления плавучестью («Триест-2»), размещенная в бункерах с электромагнитными затворами. Большинство аппаратов имеют возможность легко расстаться с выступающими за обводы легкого корпуса двигателями, манипуляторами и выносными штангами, в случае запутывания в сетях или тросах. Буй из синтактика, выкрашенный в яркий оранжевый цвет, выпущенный на поверхность и связанный с аппаратом прочным длинным тросом, обозначает место аварии.

Энергетическая установка

Движение аппарата, работа основных элементов и систем, способность выполнять сложные задачи в подводном положении в течение длительного времени зависят от характеристик энергетической установки (ЭУ). В состав ЭУ входят источники энергии, преобразователи напряжения и токоведущие части. Источники энергии, применяемые на подводных аппаратах, подразделяются на аккумуляторные батареи, генераторы тока с тепловыми двигателями, топливные элементы и атомные энергоустановки. Подавляющее большинство подводных аппаратов (95%) имеют аккумуляторные батареи - свинцово-кислотные или щелочные (серебряно-цинковые, никелькадмиевые). Свинцово-кислотные аккумуляторы чаще всего ставятся на обитаемые аппараты и отличаются надежностью (около 1000 циклов заряд-разряд), простотой обслуживания и невысокой стоимостью. К их недостаткам следует отнести значительный вес, небольшую (30 Вгч/кг) удельную энергию (отношение запаса энергии к массе источника), нарушение работы при больших углах наклона аппарата. Серебряно-цинковые аккумуляторы («Си Клифф») в 4 раза эффективнее свинцово-кислотных, правда, они более чувствительны к колебаниям температуры, выдерживают не более 150 циклов заряд-разряд и стоят гораздо дороже. Удельная энергия никель-кадмиевых аккуму ляторов («Наутил», «Бентос-5») близка по величине удельной энергии свинцово-кислотных. При большом ресурсе (до 2500 циклов), прочности и удобстве в эксплуатации никель-кадмиевые аккумуляторы имеют низкое напряжение (1,2 В на элемент) и высокую стоимость. Аккумуляторы, собранные в батарею, размещаются или внутри прочного корпуса («Алюминаут»), или снаружи - в боксах, залитых жидким диэлектриком и оборудованных клапаном для стравливания газов, выделяющихся во время и после зарядки. В системе компенсации внешнего давления используются мембранные или поршневые компенсаторы. На некоторых аппаратах («Шинкай», «Тоурс») применяются дизель-генераторы, подзаряжающие аккумуляторные батареи и обеспечивающие движение в надводном положении. Топливные элементы, прежде чем попасть на подводные аппараты, испытывались в 10 кВт-установке на борту американских ракет «Аполлон». В батарее, состоящей из топливных элементов, активные вещества располагаются во внешних резервуарах и подаются на электроды постепенно, по мере их расхода. Продолжительность работы определяется запасами активных (анодных) веществ и окислителя (катодного вещества). В качестве активных веществ могут использоваться кислородно-водородные, гидразин-перекисные и гидразин-кислородные реагенты («Стар-1», «Дин Квест»). Изза невысокой эффективности гидразиновые электрохимические генераторы пока не нашли широкого применения в подводной технике. К тому же при использовании топливных элементов с жидким электролитом не исключены протечки, коррозия, воздей ствие сильно токсичных веществ на людей. Наиболее безопасным с этой точки зрения является применение в энергетических установках топливных элементов с твердым полимерным электролитом. Батарея из 130 таких элементов с активной площадью около 4 м2, обеспечивает мощность 17 кВт при напряжении 120 В и энергоемкости 96 кВт/ч. Для американской исследовательской подводной лодки «HP-1» была создана паротурбинная атомная энергетическая установка. Имея ряд преимуществ, атомные установки все же более пригодны для подводных лодок большого водоизмещения. Работы по созданию новых энергоустановок для подводных аппаратов ведутся по пути уменьшения габаритов и увеличения их удельной энергии.

Движительно-рулевой комплекс

Движительно-рулевой комплекс (ДРК) обеспечивает движение и маневрирование подводного аппарата в подводном и надводном положении. ДРК состоит из ходовых движителей, позволяющих осуществить поступательное движение, и маневровых движителей, служащих для вертикального перемещения, в том числе для безопасной посадки на грунт и маневрирования; поворотов, движения лагом, изменения направления движения реверсом, движения в узкостях. Пассивные рули и стабилизаторы, создающие управляющие усилия в результате взаимодействия с водой, из-за небольшой скорости большинства подводных аппаратов малоэффективны. Для выполнения сложных маневров в современных подводных аппа ратах используются движители на поворотных колонках и гребные винты, установленные внутри горизонтальных и вертикальных шахт в легком корпусе. В качестве электропривода для ДРК используются электродвигатели постоянного и реже - переменного тока. Иногда применяют работающие от электрогидравлического насоса водометные движители - простые и надежные, но обладающие низким КПД и быстродействием («Дениз», «Танкай»). На многих аппаратах стоят гидравлические движители («МИР-1», «МИР-2»). Электродвигатели постоянного тока размещаются в отдельном прочном корпусе. Выходной вал такого двигателя приходится уплотнять сальниками, при больших плотностях тока существует опасность перегрева обмоток. Этот вариант используется для аппаратов малых глубин. Преимущества электропривода постоянного тока - простота регулирования скорости, малая масса, высокий КПД и надежность. Погружные двигатели постоянного тока размещаются в корпусах, заполненных жидким диэлектриком. Для компенсации внешнего давления корпуса снабжены компенсаторами. Жидкий диэлектрик (керосин или масло) обладает хорошей теплопроводностью, следовательно, возможно повышение электромагнитных нагрузок на двигатель. Недостатки подобных двигателей - вероятность снижения изоляции обмоток из-за проникновения вместе с жидкостью щеточной пыли и трение вращающихся частей о диэлектрик. Еще один вариант подводного электродвигателя - двигатель переменного тока, работающий непосредственно в воде. Масса такого двигателя, по сравнению с массой двигателя постоянного тока той же мощности, меньше, но использование пере менного тока требует наличие преобразователя, размещенного внутри ПК или в отдельном прочном корпусе, что значительно увеличивает массу подводного аппарата. Количество движителей и места их установки определяются конструктивными особенностями и назначением подводного аппарата. Принципу разумной достаточности удовлетворяет схема с тремя движителями: кормовым маршевым в поворотной насадке и двумя бортовыми, меняющими положение в вертикальной плоскости в пределах 180° («МИР-1», «МИР-2»), Подводный обитаемый аппарат «Пайсис» оснащен всего двумя бортовыми движителями, установленными на поворотной штанге. Водолазный аппарат «Осмотр» имеет три пары жестко фиксированных движителей. Два маршевых движителя (6 кВт) размещены по бортам в кормовой части, два вертикальных (3 кВт) - стоят в носовой и кормовой шахтах легкого корпуса, два лаговых погружных электродвигателя постоянного тока (1 кВт) закреплены над уравнительно-дифферентными цистернами. Гребные винты движителей, выходящие за пределы ЛК, защищают насадками, оберегающими лопасти винтов от соприкосновения с твердыми телами. Кроме того, насадка обеспечивает сужение потока и увеличение скорости протекающей сквозь лопасти винта воды, то есть увеличивает КПД движителя.

Система гидравлики

В состав системы гидравлики входят: силовой насосный агрегат, обеспечивающий необходимое давление в системе, клапаны управления, компенсаторы, уравнивающие внутреннее и наружное давление, аккумуляторы рабочей жидкости, трубопроводы и исполнительные механизмы - гидроцилиндры и гидромоторы, приводящие в движение гребные винты, выдвижные и поворотные устройства, манипуляторы и подводные инструменты. В качестве рабочей жидкости применяется масло, которое помимо основной функции - переноса гидравлической энергии - обеспечивает смазку исполнительных механизмов. Насосный агрегат подает рабочую жидкость для привода гидродвигателей и цилиндров и состоит из погружного электродвигателя с одним или несколькими насосами. Насосы заключены в кожухи, залиты маслом и могут управляться по производительности и изменению направления потока. Чаще всего подводные аппараты оснащаются гидронасосами и гидромоторами, прошедшими хорошую проверку в авиации и космической технике. Регулировка направления подачи рабочей жидкости, ее расхода и давления осуществляется при помощи приборов, информирующих о давлении масла в системе, температуре, уровне масла в компенсаторах, токе электродвигателя насосной станции. Проблемы, возникающие при работе гидродвигателей, связаны с увеличением вязкости и сжимаемости масла, а также с падением давления в системе при увеличении глубины погружения. В результате снижается и без того невысокий КПД гидродвигателей. Тем не менее широкое применение на подводных аппаратах гидравлических двигателей обусловлено возможностью быстрого пуска и остановки, широким диапазоном скоростей и мощностей. Подавляющее большинство подводных аппаратов оснащены манипуляторами или механическими «руками». Часто один из манипуляторов удерживает аппарат в нужном для работы у объекта положении, а второй используется в качестве рабочего инструмента. Самые первые манипуляторы оснащались ручным приводом с механическими тягами, проходящими через вводы в прочный корпус. Современные манипуляторы имеют гидравлический привод и приводятся в движение при помощи выключателей, вмонтированных в рукоятку управления - джойстик. Простые движения управляются клапанами выключателя потока, более сложные - пропорциональными клапанами, причем скорость движения зависит от амплитуды отклонения ручки джойстика. Движение кисти или схвата механической «руки», сжатие и его усилие управляются электрогидравлическими устройствами - сервоклапанами, обеспечивающими расход жидкости, пропорциональный поступающему к ним электрическому сигналу. Для выполнения сложных подводных операций манипулятор должен выполнять как минимум шесть независимых движений. Функциональные возможности манипуляторов расширяются за счет применения различного типа подводных инструментов. Гидравлические инструменты имеют гидравлические разъемы и стыкуются с манипулятором. Этот инструмент может быть линейным (тросорезы) и вращающимся (различные диски и сверла). Главные требования при отборе и проектировании гидравлических систем, манипуляторов и инструментов - надежность, высокая производительность, компактность и небольшой вес. Система жизнеобеспечения экипажа Система жизнеобеспечения экипажа (СЖО) служит для обеспечения жизнедеятельности экипажа подводного аппарата во время погружения. Нормальная продолжительность рабочего спуска составляет 10-12 часов, аварийный же запас СЖО насчитывается как минимум на трое суток. Стандартный набор системы состоит из средств: - обеспечения кислородом; - поглощения углекислого газа и вредных примесей; - поддержания нормального температурного и влажностного режимов; - газоанализа и индикации параметров атмосферы обитаемого отсека. С того момента когда закрывается люк подводного аппарата, экипаж, отрезанный от внешнего мира, остается в обитаемом отсеке. Воздух в отсеке по своему составу не должен отличаться от обычного атмосферного воздуха, которым дышит человек. Содержание кислорода в атмосфере на уровне моря обычно составляет 21%. Считается безвредным снижение содержания кислорода до 16%. Если уровень кислорода снижается до 10%, то человек начинает испытывать гипоксию, признаками которой являются - слабость, посинение губ, нарушение координации движений и, в конце концов, потеря сознания. Повышенное парциальное давление кислорода вызывает кислородное отравление, на ранних стадиях которого у человека кружится голова, возникает тошнота, мышцы лица начинают непроизвольно подергиваться. Еще одной неприятностью грозит превышение концентрации кислорода. При превышении объемной концентрации кислорода порога в 25% материалы, огнестойкие в нормальных условиях, становятся горючими. Даже сталь в атмосфере 100% кислорода будет сильно гореть. Поэтому все материалы, которые используются в обитаемом корпусе, должны быть максимально пожаростойкими. Конечно, содержание кислорода в отсеке определяется не по физиологическим симптомам членов экипажа, для этого служат специальные приборы-газоанализаторы, позволяющие с большой точностью определить концентрацию кислорода в пределах 0-25%. Газоанализаторы снабжены звуковыми и световыми сигнализаторами, которые предупреждают о низкой или высокой объемной концентрации. Кислород, необходимый для дыхания, хранится в баллонах. Баллон в рабочем положении снабжается редуктором с регулятором расхода. В среднем один человек потребляет около 25 л кислорода за час. Таким образом, экипажу из трех человек на трое суток понадобится около 5400 л кислорода. В результате жизнедеятельности человеческий организм выделяет углекислый газ и вредные примеси, такие, как СО, H2S и др. В обитаемом отсеке желательно поддерживать концентрацию углекислого газа на уровне 0,03%. Допустимым пределом концентрации СО2 считается 1,5%. В подводном аппарате очистка воздуха осуществляется путем прокачки воздуха вентиляторами через емкости, заполненные специальными химическими веществами-поглотителями. О необходимости регенерации «воздушной квинтэссенции» еще в 1620 году говорил голландец Корнелиус ван Дреббель. В качестве поглотителя используются гидрооксид натрия или лития. Помимо рабочих кассет на борту обязательно должен находиться резервный запас герметично упакованного поглотителя. Его количество рассчитывается исходя из таких параметров, как среднее выделение человеком CO2, (20 л/ч) и поглотительная способность 1 кг вещества (более 100 л). Для поглощения других вредных примесей, попадающих в атмосферу отсека, используется активированный уголь. Кроме газоанализаторов, концентрацию газов в атмосфере отсека можно определить с помощью комплекта измерительных индикаторных трубок, начинка которых меняет цвет при наличии в воздухе определенного газа. Резервирование средств газоанализа является важным моментом при комплектации системы жизнеобеспечения. Во время погружения аппарата обитаемый корпус постепенно охлаждается, на стенках появляются капли конденсата. Снизить избыточную влажность можно, если поместить в одну из кассет гранулы силикагеля и менять его по мере насыщения влагой. Контроль таких параметров атмосферы, как температура, влажность, давление, осуществляется приборами - термометром, гигрометром и барометром. Обычно во время глубоководных спусков аппарат охлаждается и в кабине устанавливается температура 10-12°С. Чтобы сохранить комфортные условия работы, гидронавтам приходится надевать шерстяную одежду и теплые комбинезоны. Что должны иметь гидронавты на случай непредвиденных и аварийных ситуаций? Во-первых, запасы кислорода и поглотителя, во-вторых, резерв питьевой воды и пищи, в-третьих, хорошо скомплектованную аптечку и, в-четвертых, наборы инструментов. Внешняя коммутация электрооборудования подводного аппарата обеспечивается кабельными вводами, герморазъемами и маслозаполненными узлами. Часто причиной возникновения на борту пожара является короткое замыкание под воздействием морской воды, проникшей через поврежденные уплотнения гермовводов. Для предотвращения пожара устанавливается аварийный выключатель, дистанционно отключающий питание всех потребителей. В случае активизации горения и задымления в отсеке экипаж может использовать углекислотные огнетушители и аварийные дыхательные аппараты, рассчитанные на 4-5 часов работы. И наконец интересующий многих вопрос о так называемой фановой системе. На самом деле этот вопрос решается достаточно просто при помощи герметично закрывающихся пластиковых и полиэтиленовых емкостей, причем, как показывает практика, они используются довольно редко.

Навигация и связь

Экипаж подводного аппарата во время погружения в любой момент времени должен иметь возможность определить свои координаты и связаться как с судном обеспечения или катером на поверхности, так и с другими подводными аппаратами, работающими под водой. В состав навигационного оборудования, которым оснащается аппарат, входят: гирокомпас, магнитный компас, гидролокатор кругового обзора и гидроакустическая навигационная система. Компас дает возможность пилоту двигаться по выбранному маршруту. Гидролокатор нужен при поиске объектов и для обеспече ния безопасного прохода по сложному рельефу. Гидроакустическая система работает совместно с транспондерами и судовой навигационной системой. Транспондеры, снабженные излучателями, вместе с блоками плавучести, световыми маяками и радиомаяками опускаются на дно в районе выбранного полигона, где уже достаточно хорошо известен рельеф в результате промеров с судна. Далее проводится калибровка полигона, в процессе которой каждый маяк опрашивается с судна с разных сторон. Данные об абсолютных координатах судна, проходящего над маяками, поступают с нескольких спутников. В результате калибровки получают точные координаты маяков и текущие наклонные дальности до них. Блок навигации, установленный на аппарате, измеряет время между запросами маяков и ответами от них и вычисляет расстояние от маяков до подводного аппарата. На экране дисплея оператор видит точки постановки маяков и точку положения аппарата в данный момент. На поверхность транспондеры вызываются с судна или с аппарата. Транспондеры с блоками плавучести отсоединяются от груза и всплывают на поверхность. Связь подводного аппарата с судном обеспечения или береговой базой осуществляется при помощи УКВ-радиостанции, имеющей дальность действия более 10 миль. Система подводной акустической связи устанавливается на аппарате, судне и катере. Для передачи информации в системе используется распространение акустических волн в воде. Аппаратура подводной связи позволяет передавать речь и данные по телеметрическому каналу.Средства подводного освещения Поток солнечного света, попадая в морскую воду, быстро ослабляется с увеличением глубины. Только сотая часть его доходит до глубины 100 м. Даже в яркий солнечный день сумерки сменяются кромешной тьмой на глубине 200 м. Естественно, что подводному аппарату, выполняющему задачу по обнаружению, наблюдению, теле- и киносъемке, нечего делать на больших глубинах без искусственного освещения. Еще в XIX веке в качестве подводных светильников использовались масляные горелки. Их сменили электрические лампы, сначала - с угольной, а потом - с вольфрамовой нитью накаливания. В тридцатые годы XX столетия А. А. Гершун разрабатывал и испытывал лампы с зеркальными колбами. С появлением новых материалов и технологий, подводные светильники становились более надежными и безопасными. С какими же проблемами приходится сталкиваться проектировщикам подводных световых приборов? Во-первых, это специфические оптические свойства морской воды, оказывающей влияние на распространение света. Световой поток, пройдя слой воды, выйдет из него ослабленным. Не вдаваясь в подробности, отметим, что ослабление света происходит из-за поглощения и рассеяния. Поглощение - процесс превращения части потока световой энергии в тепловую и химическую энергию, вызванный избирательным поглощением молекулами воды и растворенным в воде веществом. Рассеяние вызывается неодинаковой плотностью морской воды и присутствием в ней взвешенных частиц и заключается в откло нении светового потока от первоначального направления в результате многократного столкновения с частицами. Интенсивность поглощения и рассеяния зависит от спектрального состава излучения. Так, поглощение велико для длинноволнового (красного) участка спектра, а рассеяние сильнее в коротковолновом (фиолетовом) диапазоне. Суммарное воздействие поглощения и рассеяния определяет пропускание света морской водой. Кривая пропускания имеет пик в области от 450 до 550 нм., то есть через обычную морскую воду с меньшими проблемами пройдет часть света со спектром от фиолетового до желто-зеленого. Максимум спектрального излучения источника света, который необходимо иметь на подводном аппарате, должен попасть в область наибольшего пропускания света морской водой и приближаться к 500 нм. Кроме этого условия, желательно, чтобы светоотдача (отношение светового потока лампы к потребляемой мощности) была как можно большей. В 1959 году к инертному газу, заполняющему обычную лампу накаливания, добавили йод. Это обеспечило сохранение постоянной яркости почти на весь срок службы лампы. Так появились галогенные лампы. Сейчас эти лампы, достаточно надежные и компактные, широко используются в световых приборах подводных аппаратов. Отрицательной стороной галогенных ламп является низкая светоотдача (20 лм/Вт) и, хотя и широкий, но все-таки смещенный в красно-желтую область спектр излучения. Другой тип ламп - газоразрядные. Они светят благодаря электрическому разряду в газовом наполнителе. Наполнителем служат находящиеся под давлением пары ртути. В результате добавления к рту ти йодидов таллия и диспрозия получаются йодно-таллиевые лампы с высокой светоотдачей (75 лм/Вт). Максимум излучения таких ламп попадает как раз в зеленую часть спектра. К недостаткам газоразрядных ламп следует отнести наличие пуско-регулирующей аппаратуры, длительный период разгорания, необходимость применения помехоподавляющей аппаратуры, обязательное охлаждение перед повторным включением. Третий вариант - натриевые лампы высокого давления с широким спектром и светоотдачей, превышающей 100 лм/Вт. После выбора источника света определяются конструктивные особенности светового прибора. Стандартный состав такого прибора: источник света, корпус с патроном, отражатель, защитный иллюминатор или стеклооболочка, герморазъем для подключения кабеля питания. В приборах, рассчитанных на небольшие глубины, источник света может работать непосредственно в воде. Источник света приборов с рабочей глубиной свыше 200 м защищается от внешнего давления прочным стеклом. Основными конструкционными материалами для изготовления корпусов светильников являются: алюминий и его сплавы, титан и нержавеющие стали. При достаточной прочности корпуса прибора он должен соответствовать минимальным массогабаритным характеристикам. Размеры светового прибора сильно зависят от формы и габаритов отражателей, которые подбираются в каждом случае по кривой силы света, распределенной в пространстве. Для подводных работ нужны светильники как с узким направленным светом, так и с большим углом рассеяния. На практике, в зависимости от задач каждого погружения и оптических характеристик воды в районе погружения, просто меняют отражатели, не снимая сам прибор с подводного аппарата. Еще одной важной особенностью является размещение световых приборов на аппарате. Влияние дымки обратного рассеяния заставляет увеличивать базу размещения приборов, то есть разносить их подальше от приемника. Увеличение же количества светильников и мощности их источников положительного эффекта не приносит. Общий срок службы средств подводного освещения определяется грамотной эксплуатацией и периодическим ТО, при котором особое внимание необходимо уделять чистоте деталей и тщательной проверке герметизирующих колец и прокладок.

Приборное оборудование

Приборное оборудование подводных аппаратов состоит из фото- и телеаппаратуры, комплекса гидрофизических датчиков и пробоотборников. Первая подводная фотография была получена в 1856 году обычной камерой, помещенной в деревянный бокс со стеклом вместо иллюминатора. Англичане Томпсон и Кенион опустили камеру в реку Уэй на глубину 5 м. Несмотря на то что бокс затек, на фотопластинке осталось размытое изображение. Увеличить глубину погружения камеры, используя водолазный колокол, и улучшить качество изображения удалось французу Базину. Большой вклад в развитие подводной фотографии внес его соотечественник Луи Бутан. В своих фотобоксах Бутан использовал кассеты со сменными фотопластинами и дистанционно-управля емый электрический затвор. В 1892 году Бутан сделал первую свою подводную фотографию; это был снимок средиземноморского краба. Последняя его камера была помещена в короб из меди и стали. В качестве поплавка, плавающего на поверхности, Бутан использовал пустую винную бочку. В январе 1927 года в журнале «Национальная География» появилась первая цветная подводная фотография, полученная Мартином и Ленгли в районе отмели Драй-Тортугас. В 1931 году американец Гарольд Эджертон из Массачусетского технологического института в качестве источника света предложил использовать синхронизированную с камерой вспышку. С середины сороковых годов подводная фотография становится неотъемлемой частью всех подводных работ, в том числе аварийно-спасательных и исследовательских. В 1959 году «Папе Флэшу», так прозвали Эджертона на «Калипсо», удалось получить фотографии морского дна на глубине 8500 м. В наше время появились удобные, небольшие фотокомплексы для подводных аппаратов, выпускаемые уже серийно. Такой фотокомплекс состоит из фотокамеры с объективом, специально рассчитанным для съемок в морской воде, и вспышки. Камера с большим запасом пленки и вспышка с энергией от 100 до 1000 Дж заключены в термобоксы и чаще всего устанавливаются на поворотных кронштейнах. Качество получаемых снимков зависит от ряда факторов, таких, как свойства морской воды, оптические параметры объектива и иллюминатора, мощность и цветовая температура осветителя, чувствительность фотоматериала, взаимное расположение на аппарате фотокамеры и вспышки. Морская вода ока зывает отрицательное влияние на качество фотографии, которое характеризуется искажением цветопередачи, ухудшением качества изображения с увеличением расстояния, уменьшением угла поля зрения и дефицитом освещения. Несмотря на эти неблагоприятные особенности, подводная фотография широко применяется и развивается. Для обследования участка дна Средиземного моря, где произошло кораблекрушение, на подводный обитаемый аппарат «Ашера» были установлены две 70-миллиметровые камеры с фокусным расстоянием в воде 60 мм. Участок дна, покрытый решеткой, снимался с высоты 5 м. Подводные фотокамеры также используются на подводных аппаратах для маршрутной съемки и съемки наиболее интересных объектов с близкого расстояния. Подводные телевизионные системы появились в 1940-х годах. Тогда это были обычные студийные черно-белые установки, помещенные в громоздкие боксы. Прежде чем стать миниатюрными камерами с высокими четкостью и чувствительностью, телевизионные установки прошли большой путь развития. «Бабушка» современных подводных камер - автоматическая камера фирмы «Хайдропродактс», совершила историческое погружение на батискафе «Триест» в Марианскую впадину. Перед подводными телевизионными системами подводных аппаратов ставятся следующие задачи: выбор объектов для фотосъемки с использованием видеомонитора в качестве видоискателя, телевизионный обзор донной поверхности при геологических и биологических исследованиях. Телевизионная камера оснащается трансфокатором, позволяющим увеличить картинку на мониторе, в этом случае можно не вклю чать движители аппарата для приближения к исследуемому объекту. Поворотные головки, поворачивающие камеры в горизонтальной и вертикальной плоскостях, позволяют увеличить поле зрения. Для улучшения качества изображения и увеличения дальности видимости, кроме усиления чувствительности телевизионных камер, грамотного подбора объектива и иллюминатора, большую роль играет правильное размещение камеры относительно световых приборов. Это позволяет значительно снизить интенсивность световой дымки, которая сильно ухудшает качество видеозаписи. Комплекс гидрофизических датчиков позволяет измерить, преобразовать и записать в цифровом виде ряд параметров морской воды. В состав комплекса обычно вхо дят датчики температуры, электропроводности, давления, растворенного кислорода, концентрации ионов водорода, скорости течения, скорости звука, прозрачности, проводимости, высокой температуры. Большая часть геологических и биологических образцов попадает в бункеры подводного аппарата при помощи манипуляторов. Сачки, сетки и пробоотборники для взятия образцов снабжаются ручками для удобного захвата кистью манипулятора. На аппарате могут устанавливаться батометры малой и большой емкости для отбора проб воды. Мягкие осадки и биологические образцы вместе с водой закачиваются в контейнер помпой через широкий рукав. Это позволяет получить большое количество морских организмов, целых и невредимых.

Кадры