Принцип действия катодной защиты. Катодная защита от коррозии

Коррозия подземных трубопроводов и защита от нее

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного - 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты
Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

Метод электрохимической защиты (ЭХЗ) от коррозии уже многие годы применяется инженерами для продления срока службы различных металлических устройств и сооружений. Однако так повелось, что наиболее широко известны технические решения по использованию ЭХЗ для противокоррозионной защиты больших металлоемких конструкций и сооружений, таких как подземные трубопроводы в нефтегазовой промышленности и в сфере ЖКХ или большие стальные резервуары, хотя принцип работы ЭХЗ универсален, и может быть успешно использован практически везде, где есть контакт металла и агрессивного электролита. В этой статье мы бы хотели дать, безусловно, очень краткий обзор других возможностей применения электрохимзащиты вокруг нас - в индустриальной, общественной и даже приватной сфере жизни современного человека.

Электрохимическая защита основана на управлении токами электрохимической коррозии, всегда возникающими при контакте любого металлического сооружения и электролита. С помощью ЭХЗ анодная разрушающаяся зона переносится с защищаемого объекта либо на специальное анодное заземление (при катодной защите), либо на отдельное изделие из более активного металла (при протекторной защите). Более подробно о физико-химических принципах катодной и протекторной защиты от коррозии можно прочитать . Главное, что следует понимать при принятии решения о применении ЭХЗ - это то, что необходим обязательный контакт защищаемого объекта/системы объектов и внешнего анода (анодного заземления или протектора), как посредством проводника первого рода (металлического кабеля или прямого металлического контакта), так и посредством проводника второго рода (электролита). Электрическая цепь "сооружение - кабель - анод - электролит" обязательно должна замкнуться, иначе защитного тока в системе просто не возникнет. Простой пример - трубопровод или свая, выходящая из земли на поверхность. ЭХЗ будет работать только на подземной части. Однако есть несколько примеров, когда, на первый взгляд, это правило не работает. Например, постоянный контакт сооружения и электролита не обеспечивается в зонах переменного смачивания, таких как приливно-отливная зона свай на морских пирсах и причалах, зона волнового смачивания аналогичных сооружений пресноводных водоемов и т.д. В этих случаях приходится применять довольно хитрые схемы ЭХЗ, работающие только в моменты увлажнения коррозионно-опасных зон. Но как, например, организовать ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе? Оказывается и это возможно! Но начнем мы с более простых случаев.

Простой и очевидный пример объекта, подвергающегося электрохимической коррозии, которую можно замедлить с помощью ЭХЗ - это закопанное в землю или стоящее на земле любое металлическое сооружение: свая, резервуар, трубопровод любого назначения. Конечно, применять ЭХЗ везде и всюду нет никакой необходимости, однако если объект находится в грунте высокой коррозионной агрессивности (высокая влажность или засоленность - явные признаки такого грунта!), либо это промышленно значимый и плохо ремонтопригодный объект - ЭХЗ явно не будет лишней. Проект такой системы ЭХЗ не очень сложен. Например, если нужно защитить свайный фундамент, то достаточно станции катодной защиты малой мощности (может хватить и аккумулятора) и несколько правильно расположенных точечных анодов, или несколько небольших отрезков протяженного анода. Только нужно не забыть, что если сваи сделаны из труб, то они могут корродировать и изнутри, там, где ЭХЗ работать не будет. Одиночный, полностью закопанный резервуар также прекрасно защищается точечными анодами по периметру сооружения, а днище резервуара, стоящего на грунте - одним точечным анодом или изогнутым отрезком протяженного анода. Если есть возможность менять анодные заземления и сопротивление грунта мало, то вместо точечных анодов можно установить протекторные установки, срок эффективной работы которых обычно составляет 5-7 лет.

Теперь перейдем к не очень распространенному, но очень продуктивному способу электрохимической защиты от коррозии внутренней поверхности трубопроводов и резервуаров (сосудов) любой емкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение ЭХЗ позволяет продлить срок безремонтной эксплуатации объекта в несколько раз. Более простой случай - внутренняя ЭХЗ резервуара, когда во внутреннем пространстве резервуара размещаются протекторы или анодные заземления. Эффективность ЭХЗ существенно повысится, если внутренняя поверхность резервуара будет дополнительно защищена изоляционным покрытием с хорошими диэлектрическими свойствами. Более сложное техническое решение применяется для внутренней электрохимической защиты трубопровода. В этом случае наиболее эффективно ввести во внутреннюю полость трубопровода протяженный гибкий анод (ПГА) из токопроводящей резины. Длина такого анода обычно равна протяженности защищаемого участка трубопровода. Определенную техническую сложность вызывает укладка такого анода в уже эксплуатируемый трубопровод, хотя это также выполнимо на практике. Иногда для защиты участков ограниченной протяженности (5-30 м) достаточно установки во внутреннюю полость единичного точечного анода или протектора.

Внутренняя ЭХЗ трубопровода с применением протекторов

Такие системы внутренней электрохимзащиты чрезвычайно эффективны, даже когда ничего больше не помогает в принципе. Например, срок службы трубопроводов и различных очистительных установок - очень коррозионно-агрессивных сточных вод промышленных предприятий - продлевается за счет внутренней ЭХЗ в 5-20 раз!

Следующий интересный случай применения систем ЭХЗ - это причальные сооружения, основания нефтегазовых платформ, опоры мостов или любые другие металлические конструкции в морской воде. Кстати, воды некоторых пресных водоемов в нашей "экологически чистой" стране, особенно вблизи крупных городов и промышленных предприятий, по коррозионной агрессивности приближаются к морской воде, поэтому все излагаемое ниже распространяется и на них с небольшими оговорками.

Коррозия сваи в зоне переменного смачивания и забрызгивания

Итак, металлические конструкции в морской воде подвергаются активной электрохимической коррозии, которая не может быть остановлена обычной покраской. По механизму коррозионного процесса на таких объектах обычно выделяют три основных зоны:

  • зона переменного смачивания и забрызгивания;
  • зона полного погружения в воду;
  • зона погружения сваи в грунт.

Наибольшую сложность при реализации систем электрохимической защиты представляет зона переменного смачивания, где нет постоянной электрической цепи "сооружение - электролит - анод". Для этих зон необходимы анодные заземления (протекторы) сетчатой или браслетной формы, обеспечивающие раздельную защиту локально увлажненных участков металлической конструкции. В самых сложных случаях имеет смысл обеспечить принудительное постоянное увлажнение зоны переменного смачивания конструкции, для постоянной работы средств ЭХЗ.

Электрохимзащита зоны полного смачивания металлических свай в водной среде может быть реализована в зависимости от конструкции разными способами, среди которых имеет смысл выделить следующие:

  • размещение нескольких подвесных точечных анодов, каждый из которых защищает ближайшие, окружающие его, сваи;
  • на более глубоких участках возможно использование протяженных гибких анодов, которые крепятся к тросам, закрепляемым концами на металлическом сооружении и дне водоема;
  • если нет возможности подвести электричество к защищаемому сооружению, тогда приемлемым методом электрохимической защиты будет использование больших глубинных протекторов с длительными расчетными сроками эксплуатации.

Магниевый протектор для электрохимзащиты морских сооружений

Теперь вернемся к анонсированной ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе. По своему механизму этот случай чем-то напоминает коррозию в зоне переменного смачивания - также большое количество локально-увлажненных участков, только еще более маленьких. В этом случае единственный способ обеспечить электрохимическую защиту всей поверхности защищаемого изделия - это обеспечить свою локальную систему ЭХЗ на каждом увлажненном участке. Эта цель достигается путем нанесения на поверхность изделия специального покрытия, содержащего частицы металла, обладающего защитными протекторными свойствами по отношению к стали. Обычно этим металлом является цинк. Таким образом, на каждом участке поверхности обеспечивается своя маленькая установка протекторной защиты, которая активируется при увлажнении.

В этой статье мы рассказали только о нескольких основных случаях применения электрохимической защиты разнообразных металлических конструкций. На самом деле можно привести гораздо больше таких примеров - ЭХЗ может использоваться повсеместно: кузова автомобилей, корпуса морских судов, бытовые нагреватели воды, морские трубопроводы и т.д. Иногда даже приходится обеспечивать электрохимзащиту железобетонных конструкций, но это настолько объемная тема, что требует отдельного обзора. Поэтому можно смело говорить, что пока наш век металла не сменился веком композиционных материалов, именно электрохимическая защита будет одной из наиболее важных и востребованных человечеством технологий.

Электрохимическая защита – эффективный способ защиты готовых изделий от электрохимической коррозии . В некоторых случаях невозможно возобновить лакокрасочное покрытие или же защитный оберточный материал, тогда целесообразно использовать электрохимическую защиту. Покрытие подземного трубопровода или же днища морского суда очень трудоемко и дорого возобновлять, иногда просто невозможно. Электрохимическая защита надежно защищает изделие от , предупреждая разрушение подземных трубопроводов, днищ судов, различных резервуаров и т.п.

Применяется электрохимическая защита в тех случаях, когда потенциал свободной коррозии находится в области интенсивного растворения основного металла либо перепассивации. Т.е. когда идет интенсивное разрушение металлоконструкции.

Суть электрохимической защиты

К готовому металлическому изделию извне подключается постоянный ток (источник постоянного тока или протектор). Электрический ток на поверхности защищаемого изделия создает катодную поляризацию электродов микрогальванических пар. Результатом этого является то, что анодные участки на поверхности металла стают катодными. А вследствии воздействия коррозионной среды идет разрушение не металла конструкции, а анода.

В зависимости от того, в какую сторону (положительную или отрицательную) смещается потенциал металла, электрохимическую защиту подразделяют на анодную и катодную.

Катодная защита от коррозии

Катодная электрохимическая защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии. Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду. При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений, находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о эффективности катодной защиты, является защитный потенциал . Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты . Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита (применение протектора)

Разновидностью катодной защиты является протекторная. При использовании протекторной защиты к защищаемому объекту подсоединяется металл с более электроотрицательным потенциалом. При этом идет разрушение не конструкции, а протектора. Со временем протектор корродирует и его необходимо заменять на новый.

Протекторная защита эффективна в случаях, когда между протектором и окружающей средой небольшое переходное сопротивление.

Каждый протектор имеет свой радиус защитного действия, который определяется максимально возможным расстоянием, на которое можно удалить протектор без потери защитного эффекта. Применяется протекторная защита чаще всего тогда, когда невозможно или трудно и дорого подвести к конструкции ток.

Протекторы используются для защиты сооружений в нейтральных средах (морская или речная вода, воздух, почва и др.).

Для изготовления протекторов используют такие металлы: магний, цинк, железо, алюминий. Чистые металлы не выполняют в полной мере своих защитных функций, поэтому при изготовлении протекторов их дополнительно легируют.

Железные протекторы изготавливаются из углеродистых сталей либо чистого железа.

Цинковые протекторы

Цинковые протекторы содержат около 0,001 – 0,005 % свинца, меди и железа, 0,1 – 0,5 % алюминия и 0,025 – 0,15 % кадмия. Цинковые проекторы применяют для защиты изделий от морской коррозии (в соленой воде). Если цинковый протектор эксплуатировать в слабосоленой, пресной воде либо почвах – он достаточно быстро покрывается толстым слоем оксидов и гидроксидов.

Протектор магниевый

Сплавы для изготовления магниевых протекторов легируют 2 – 5 % цинка и 5 – 7 % алюминия. Количество в сплаве меди, свинца, железа, кремния, никеля не должно превышать десятых и сотых долей процента.

Протектор магниевый используют в слабосоленых, пресных водах, почвах. Протектор применяется с средах, где цинковые и алюминиевые протекторы малоэффективны. Важным аспектом является то, что протекторы из магния должны эксплуатироваться в среде с рН 9,5 – 10,5. Это объясняется высокой скоростью растворения магния и образованием на его поверхности труднорастворимых соединений.

Магниевый протектор опасен, т.к. является причиной водородного охрупчивания и коррозионного растрескивания конструкций.

Алюминиевые протекторы

Алюминиевые протекторы содержат добавки, которые предотвращают образование окислов алюминия. В такие протекторы вводят до 8 % цинка, до 5 % магния и десятые-сотые доли кремния, кадмия, индия, таллия. Алюминиевые протекторы эксплуатируются в прибрежном шельфе и проточной морской воде.

Анодная защита от коррозии

Анодную электрохимическую защиту применяют для конструкций, изготовленных из титана, низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Анодная защита применяется в хорошо электропроводных коррозионных средах.

При анодной защите потенциал защищаемого металла смещается в более положительную сторону до достижения пассивного устойчивого состояния системы. Достоинствами анодной электрохимической защиты является не только очень значительное замедление скорости коррозии, но и тот факт, что в производимый продукт и среду не попадают продукты коррозии.

Анодную защиту можно реализовать несколькими способами: сместив потенциал в положительную сторону при помощи источника внешнего электрического тока или введением в коррозионную среду окислителей (или элементов в сплав), которые повышают эффективность катодного процесса на поверхности металла.

Анодная защита с применением окислителей по защитному механизму схожа с анодной поляризацией.

Если использовать пассивирующие ингибиторы с окисляющими свойствами, то защищаемая поверхность переходит в пассивное состояние под действием возникшего тока. К ним относятся бихроматы, нитраты и др. Но они достаточно сильно загрязняют окружающую технологическую среду.

При введении в сплав добавок (в основном легирование благородным металлом) реакция восстановления деполяризаторов, протекающая на катоде, проходит с меньшим перенапряжением, чем на защищаемом металле.

Если через защищаемую конструкцию пропустить электрический ток, происходит смещение потенциала в положительную сторону.

Установка для анодной электрохимической защиты от коррозии состоит из источника внешнего тока, электрода сравнения, катода и самого защищаемого объекта.

Для того, чтоб узнать, возможно ли для определенного объекта применить анодную электрохимическую защиту, снимают анодные поляризационные кривые, при помощи которых можно определить потенциал коррозии исследуемой конструкции в определенной коррозионной среде, область устойчивой пассивности и плотность тока в этой области.

Для изготовления катодов используются металлы малорастворимые, такие, как высоколегированные нержавеющие стали, тантал, никель, свинец, платина.

Чтобы анодная электрохимическая защита в определенной среде была эффективна, необходимо использовать легкопассивируемые металлы и сплавы, электрод сравнения и катод должны все время находится в растворе, качественно выполнены соединительные элементы.

Для каждого случая анодной защиты схема расположения катодов проектируется индивидуально.

Для того, чтоб анодная защита была эффективной для определенного объекта, необходимо, чтоб он отвечал некоторым требованием:

Все сварные швы должны быть выполнены качественно;

В технологической среде материал, из которого изготовлен защищаемый объект, должен переходить в пассивное состояние;

Количество воздушных карманов и щелей должно быть минимальным;

На конструкции не должно присутствовать заклепочных соединений;

В защищаемом устройстве электрод сравнения и катод должны всегда находиться в растворе.

Для реализации анодной защиты в химической промышленности часто используют теплообменники и установки, имеющие цилиндрическую форму.

Электрохимическая анодная защита нержавеющих сталей применима для производственных хранилищ серной кислоты, растворов на основе аммиака, минеральных удобрений, а также всевозможных сборников, цистерн, мерников.

Анодная защита может также применяться для предотвращения коррозионного разрушения ванн химического никелирования, теплообменных установок в производстве искусственного волокна и серной кислоты.

Существуют различные методы обработки металлических труб, но наиболее эффективной из них является катодная защита трубопроводов от коррозии. Она необходима для предотвращения их преждевременной разгерметизации, которая повлечет за собой образование трещин, каверн и разрывов.

Коррозия металлов представляет собой естественный процесс, при котором происходит изменение атомов металла. Вследствие этого их электроны переходят к окислителям, что влечет разрушение структуры материала.

Для подземных трубопроводов дополнительным фактором коррозийного влияния является состав грунта. В нем присутствуют участки различного электродного потенциала, что является причиной образования коррозийных гальванических элементов.

Существует несколько разновидностей коррозии, среди которых:

  • Сплошная. Отличается большой сплошной площадью распространения. В редких случаях становится причиной повреждения трубопровода, так как зачастую не проникает глубоко в структуру металла;

  • Местная коррозия – становится наиболее частой причиной разрывов, так как не охватывает большую площадь, но проникает глубоко. Подразделяется на язвенную, нитевидную, сквозную, подповерхностную, пятнистую, ножевую, межкристаллитную, коррозийную хрупкость и растрескивание.

Методы защиты подземного трубопровода

Защита от коррозии металла может быть как активной, так и пассивной. Пассивные методы предполагают создание для трубопровода таких условий, в которых на него не будет влиять окружающий его грунт. Для этого на него наносятся особые защитные составы, которые становятся барьером. Чаще всего используются в виде покрытия битум, эпоксидные смолы, полимерные ленты либо каменноугольный пек.

Для активного метода чаще всего используется катодная защита трубопроводов от коррозии. Она основывается на создании поляризации, что позволяет снизить скорость растворения металла. Этот эффект реализуется за счет смещения потенциала коррозии в более отрицательную область. Для этого между поверхностью металла и грунтом проводиться электрический ток, что существенно снижает скорость коррозии.

Способы реализации катодной защиты:

  • С использованием внешних источников тока, которые соединяются с защищаемой трубой и с анодным заземлением;

  • С использованием гальванического метода (магниево-жертвенных анодов-протекторов).

Катодная защита трубопроводов от коррозии с использованием внешних источников является более сложной. Так как требует использования особых конструкций, которые обеспечивают подачу постоянного тока. Гальванический способ, в свою очередь, реализуется за счет протекторов, которые позволяют обеспечивать эффективную защиту только в грунтах с низким электрическим сопротивлением.

Может использоваться для защиты трубопровода и анодный метод. Он используется в условиях контакта с агрессивной химической средой. Анодный метод основывается на переводе активного состояния металла в пассивное и его поддержания за счет влияния внешнего анода.

Несмотря на определенные сложности в реализации, данный метод активно используется там, где катодная защита трубопроводов от коррозии не может быть реализована.

Примеры катодной защиты трубопроводов от коррозии на выставке

Опыт использования и новые разработки в данной сфере освещаются на ежегодной отраслевой выставке «Нефтегаз», которая проходит в ЦВК «Экспоцентр».

Выставка является крупным событием индустрии и отличной площадкой для ознакомления специалистов с новыми разработками, а также запуска новых проектов. Выставка «Нефтегаз» будет проходить в ЦВК «Экспоцентр» в Москве на Красной Пресне.

Читайте другие наши статьи.

А . Г . Семенов , генеральный директор , СП «Элкон» , г . Кишинэу ; Л . П . Сыса , ведущий инженер по ЭХЗ , НПК «Вектор» , г . Москва

Введение

Станции катодной защиты (СКЗ) являются необходимым элементом системы электрохимической (или катодной) защиты (ЭХЗ) подземных трубопроводов от коррозии. При выборе СКЗ исходят чаще всего из наименьшей стоимости, удобства обслуживания и квалификации своего обслуживающего персонала. Качество приобретаемого оборудования оценить обычно трудно. Авторы предлагают рассмотреть указанные в паспортах технические параметры СКЗ, которые определяют, насколько качественно будет выполняться основная задача катодной защиты.

Авторы не преследовали цель выражаться строго научным языком в определении понятий. В процессе общения с персоналом служб ЭХЗ мы поняли, что необходимо этим людям помочь систематизировать термины и, что еще более важно, дать им представление, что же происходит и в электросети, и в самой СКЗ.

Задача ЭХЗ

Катодная защита осуществляется при протекании электрического тока от СКЗ по замкнутой электрической цепи, образованной тремя включенными последовательно сопротивлениями:

· сопротивление грунта между трубопроводом и анодом; I сопротивление растекания анода;

· сопротивление изоляции трубопровода.

Сопротивление грунта между трубой и анодом может меняться в широких пределах в зависимости от состава и внешних условий.

Анод является важной частью системы ЭХЗ, и служит тем расходным элементом, растворение которого обеспечивает саму возможность реализации ЭХЗ. Сопротивление его в процессе эксплуатации стабильно растет вследствие растворения, уменьшения эффективной площади рабочей поверхности и образования окислов.

Рассмотрим сам металлический трубопровод, который и является защищаемым элементом ЭХЗ. Металлическая труба снаружи покрыта изоляцией, в которой в процессе эксплуатации образуются трещины от воздействия механических вибраций, сезонных и суточных температурных перепадов и т.д. Через образовавшиеся трещины в гидро- и теплоизоляции трубопровода проникает влага и возникает контакт металла трубы с грунтом, так образуется гальваническая пара, способствующая выносу металла из трубы. Чем больше трещин и их размеры, тем больше металла выносится. Таким образом происходит гальваническая коррозия, в которой течет ток ионов металла, т.е. электрический ток.

Раз течет ток, то возникла замечательная идея взять внешний источник тока и включить его на встречу этому самому току, из-за которого происходит вынос металла и коррозия. Но возникает вопрос: какой величины этот самый рукотворный ток давать? Вроде бы такой, чтобы плюс на минус давал ноль тока выноса металла. А как измерить этот самый ток? Анализ показал, что напряжение между металлической трубой и грунтом, т.е. по обе стороны изоляции, должно находиться в пределах от -0,5 до -3,5 В (это напряжение называется защитным потенциалом).

Задача СКЗ

Задачей СКЗ является не только обеспечивать в цепи ЭХЗ ток, но и поддерживать его таким, чтобы защитный потенциал не выходил за принятые рамки.

Так, если изоляция новая, и она не успела получить повреждений, то ее сопротивление электрическому току высокое и нужен небольшой ток для поддержания нужного потенциала. При старении изоляции ее сопротивление падает. Следовательно, требуемый компенсирующий ток от СКЗ возрастает. Еще больше он возрастет, если в изоляции появились трещины. Станция должна уметь измерять защитный потенциал и менять свой выходной ток соответствующим образом. И ничего более, с точки зрения задачи ЭХЗ, не требуется.

Режимы работы СКЗ

Режимов работы ЭХЗ может быть четыре:

· без стабилизации выходных значений тока или напряжения;

· I стабилизации выходного напряжения;

· стабилизации выходного тока;

· I стабилизации защитного потенциала.

Скажем сразу, что в принятом диапазоне изменений всех влияющих факторов полностью обеспечивается выполнение задачи ЭХЗ только при использовании четвертого режима. Что и принято как стандарт для режима работы СКЗ.

Датчик потенциала выдает станции информацию об уровне потенциала. Станция изменяет свой ток в нужную сторону. Проблемы начинаются с момента, когда надо ставить это самый датчик потенциала. Ставить его нужно в определенном расчетном месте, нужно копать траншею для соединительного кабеля между станцией и датчиком. Тот, кто прокладывал какие-либо коммуникации в городе, знает, какая это морока. Плюс к этому датчик требует периодического обслуживания.

В условиях, когда возникают проблемы с режимом работы с обратной связью по потенциалу, поступают следующим образом. При использовании третьего режима принимают, что состояние изоляции в краткосрочном плане меняется мало и ее сопротивление остается практически стабильным. Следовательно, достаточно обеспечить протекание стабильного тока через стабильное сопротивление изоляции, и получаем стабильный защитный потенциал. В среднесрочном и долговременном плане необходимые корректировки может производить специально обученный обходчик. Первый и второй режимы не предъявляют к СКЗ высоких требований. Эти станции получаются простыми по исполнению и как следствие дешевыми, как в изготовлении, так и в эксплуатации. Видимо это обстоятельство и обуславливает применение таких СКЗ в ЭХЗ объектов, находящихся в условиях невысокой коррозионной активности среды. В случае если внешние условия (состояние изоляции, температура, влажность, блуждающие токи) изменяются до пределов, когда на защищаемом объекте образуется недопустимый режим - эти станции не могут выполнять свою задачу. Для корректировки их режима необходимо частое присутствие обслуживающего персонала, иначе задача ЭХЗ выполняется частично.

Характеристики СКЗ

В первую очередь, СКЗ необходимо выбирать исходя из требований, изложенных в нормативных документах. И, наверное, самым главным в этом случае будет ГОСТ Р 51164-98. В приложении «И» этого документа говорится, что КПД станции должен быть не ниже 70%. Уровень индустриальных помех, создаваемых СКЗ, должен быть не выше значений, указанных ГОСТ 16842, а уровень гармоник на выходе соответствовать ГОСТ 9.602.

В паспорте СКЗ обычно указываются: I номинальная выходная мощность;

КПД при номинальной выходной мощности.

Номинальная выходная мощность - мощность, которую может отдавать станция, при номинальной нагрузке. Обычно эта нагрузка составляет 1 Ом. КПД определяется как отношение номинальной выходной мощности к активной мощности, потребляемой станцией в номинальной режиме. И в этом режиме КПД самый высокий для любой станции. Однако большинство СКЗ работают далеко не в номинальном режиме. Коэффициент загрузки по мощности колеблется от 0,3 до 1,0. В этом случае реальный КПД для большинства выпускаемых сегодня станций будет заметно падать при снижении выходной мощности. Особенно это заметно для трансформаторных СКЗ с применением тиристоров в качестве регулирующего элемента. Для бестрансформаторных (высокочастотных) СКЗ падение КПД при уменьшении выходной мощности существенно меньше.

Общий вид изменения КПД для СКЗ разного исполнения можно видеть на рисунке.

Из рис. видно, что если вы используете станцию, к примеру, с номинальным КПД равным 70%, то будьте готовы к тому, что еще 30% полученной из сети электроэнергии вы истратили бесполезно. И это в самом лучшем случае номинальной выходной мощности.

При выходной мощности на уровне 0,7 от номинальной вы должны быть готовы уже к тому, что ваши потери электроэнергии сравняются с полезно затраченной энергией. Где же теряется столько энергии:

· омические (тепловые) потери в обмотках трансформаторов, дросселей и в активных элементах схемы;

· затраты энергии для работы схемы управления станцией;

· потери энергии в виде радиоизлучения; потери энергии пульсаций выходного тока станции на нагрузке.

Эта энергия излучается в грунт от анода и не производит полезной работы. Поэтому так необходимо использовать станции с низким коэффициентом пульсаций, иначе бесполезно тратится недешевая энергия. Мало, того, что при больших уровнях пульсаций и радиоизлучения растут потери электроэнергии, но кроме этого эта бесполезно рассеянная энергия создает помехи для нормальной работы большого количества электронной аппаратуры, расположенной в окрестностях. В паспорте СКЗ указывается также необходимая полная мощность, попробуем разобраться с этим параметром. СКЗ забирает из электросети энергию и делает это в каждую единицу времени с такой интенсивностью, какой мы позволили ей это делать ручкой регулировки на панели управления станции. Естественно, что из сети можно брать энергию с мощностью, не превышающей мощность этой самой сети. И если напряжение в сети меняется синусоидально, то и наша возможность брать энергию из сети меняется синусоидально 50 раз в секунду. К примеру, в момент времени, когда напряжение сети переходит через ноль, из нее нельзя взять никакой мощности. Однако же, когда синусоида напряжения достигает своего максимума, то в этот момент наша возможность забирать из сети энергию максимальна. В любой другой момент времени эта возможность меньше. Таким образом, получается, что в любой момент времени мощность сети отличается от ее мощности в соседний момент времени. Эти значения мощности называются мгновенной мощностью в данный момент времени и таким понятием трудно оперировать. Поэтому договорились о понятии так называемой действующей мощности, которая определяется из воображаемого процесса, в котором сеть с синусоидальным изменением напряжения заменяется на сеть с постоянным напряжением. Когда подсчитали величину этого постоянного напряжения для наших электросетей, то получилось 220 В - ее назвали действующим напряжением. А максимальное значение синусоиды напряжения назвали амплитудным напряжением, и равно оно 320 В. По аналогии с напряжением ввели понятие действующего значения тока. Произведение действующего значения напряжения на действующее значение тока называют полной потребляемой мощностью, и ее значение указывают в паспорте СКЗ.


А используется полная мощность в самой СКЗ не полностью, т.к. в ней имеются различные реактивные элементы, которые не тратят энергию, а используют ее как бы для создания условий, чтобы остальная энергия прошла в нагрузку, а затем возвращают эту настроечную энергию обратно в сеть. Эту возвращаемую обратно энергию назвали реактивной энергией. Энергию, которая передается в нагрузку, - активной энергией. Параметр, который указывает отношение между активной энергией, которая должна быть передана в нагрузку, и полной энергией, подводимой к СКЗ, называется коэффициентом мощности и указывается в паспорте станции. И если мы согласуем свои возможности с возможностями питающей сети, т.е. синхронно с синусоидальным изменением напряжения сети отбираем из нее мощность, то такой случай называется идеальным и коэффициент мощности СКЗ, работающей с сетью таким способом, будет равен единице.

Активную энергию станция должна как можно эффективнее передать для создания защитного потенциала. Эффективность, с которой СКЗ это делает, и оценивается коэффициентом полезного действия. Сколько она тратит энергии, зависит от способа передачи энергии и от режима работы. Не вдаваясь в это обширное поле для обсуждения, скажем только, что трансформаторные и трансформаторнотиристорные СКЗ достигли своего предела совершенствования. У них нет ресурсов для улучшения качества своей работы. Будущее за высокочастотными СКЗ, которые с каждым годом становятся надежней и проще в обслуживании. По экономичности и качеству своей работы они уже превосходят своих предшественников и имеют большой резерв для совершенствования.

Потребительские свойства

К потребительским свойствам такого устройства как СКЗ можно отнести следующее:

1. Размеры , вес и прочность . Наверно, не нужно говорить, что чем меньше и легче станция, тем меньше затрат на ее транспортировку и установку как при монтаже, так и при ремонте.

2. Ремонтопригодность . Очень важна возможность быстрой замены станции или узла на месте. С последующим ремонтом в лаборатории, т.е. модульный принцип построения СКЗ.

3. Удобство в обслуживании . Удобство в обслуживании, кроме удобства транспортировки и ремонта, определяется, по нашему мнению, следующим:

наличие всех необходимых индикаторов и измерительных приборов, наличие возможности дистанционного управления и слежения за режимом работы СКЗ.

Выводы

Исходя из вышесказанного можно сделать несколько выводов-рекомендаций:

1. Трансформаторные и тиристорно-трансформаторные станции безнадежно устарели по всем параметрам и не отвечают современным требованиям, особенно в области энергосбережения.

2. Современная станция должна иметь:

· высокий КПД во всем диапазоне нагрузок;

· коэффициент мощности (cos I) не ниже 0,75 во всем диапазоне нагрузок;

· коэффициент пульсаций выходного напряжения не более 2%;

· диапазон регулирования по току и напряжению от 0 до 100%;

· легкий, прочный и малогабаритный корпус;

· модульный принцип построения, т.е. иметь высокую ремонтопригодность;

· I энергоэкономичность.

Остальные требования к станциям катодной защиты, такие как защита от перегрузок и коротких замыканий; автоматическое поддержание заданного тока нагрузки - и прочие требования, являются общепринятыми и обязательными для всех СКЗ.

В заключении предлагаем потребителям таблицу сравнения параметров основных выпускаемых и применяемых сейчас станций катодной защиты. Для удобства в таблице представлены станции одинаковой мощности, хотя многие производители могут предложить целую гамму выпускаемых станций.



Документы