График функции. Эскиз графика функции (на примере дробно-квадратичной функции)

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


В данном уроке мы рассмотрим методику построения эскиза графика функции, приведем разъясняющие примеры.

Тема: Повторение

Урок: Эскиз графика функции (на примере дробно-квадратичной функции)

Наша цель - построить эскиз графика дробно-квадратичной функции. Для примера возьмем уже знакомую нам функцию:

Задана дробная функция, в числителе и знаменателе которой стоят квадратичные функции.

Методика построения эскиза такова:

1. Выделим интервалы знакопостоянства и определим на каждом знак функции (рисунок 1)

Мы подробно рассматривали и выяснили, что функция, непрерывная в ОДЗ, может сменить знак только при переходе аргумента через корни и точки разрыва ОДЗ.

Заданная функция у непрерывна в своей ОДЗ, укажем ОДЗ:

Найдем корни:

Выделим интервалы знакопостоянства. Мы нашли корни функции и точки разрыва области определения - корни знаменателя. Важно отметить, что внутри каждого интервала функция сохраняет знак.

Рис. 1. Интервалы знакопостоянства функции

Чтобы определить знак функции на каждом интервале, можно взять любую точку, принадлежащую интервалу, подставить ее в функцию и определить ее знак. Например:

На интервале функция имеет знак плюс

На интервале функция имеет знак минус.

В этом преимущество метода интервалов: мы определяем знак в единственной пробной точке и заключаем, что функция будет иметь такой же знак на всем выбранном интервале.

Однако можно выставлять знаки автоматически, не высчитывая значений функции, для этого определить знак на крайнем интервале, а далее чередовать знаки.

1. Построим график в окрестности каждого корня. Напомним, что корни данной функции и :

Рис. 2. График в окрестностях корней

Поскольку в точке знак функции меняется с плюса на минус, то кривая сначала находится над осью, потом проходит через ноль и далее расположена под осью х. В точке наоборот.

2. Построим график в окрестности каждого разрыва ОДЗ. Напомним, что корни знаменателя данной функции и :

Рис. 3. График функции в окрестностях точек разрыва ОДЗ

Когда или знаменатель дроби практически равен нулю, значит, когда значение аргумента стремится к этим числам, значение дроби стремится к бесконечности. В данном случае, когда аргумент подходит к тройке слева функция положительна и стремится к плюс бесконечности, справа функция отрицательна и выходит из минус бесконечности. Около четверки наоборот, слева функция стремится к минус бесконечности, а справа выходит из плюс бесконечности.

Согласно построенному эскизу мы можем в некоторых промежутках угадать характер поведения функции.

Рис. 4. Эскиз графика функции

Рассмотрим следующую важную задачу - построить эскиз графика функции в окрестностях бесконечно удаленных точек, т.е. когда аргумент стремится к плюс или минус бесконечности. Постоянными слагаемыми при этом можно пренебречь. Имеем:

Иногда можно встретить такую запись данного факта:

Рис. 5. Эскиз графика функции в окрестностях бесконечно удаленных точек

Мы получили приблизительный характер поведения функции на всей ее области определения, далее нужно уточнять построения с применением производной.

Пример 1 - построить эскиз графика функции:

Имеем три точки, при переходе аргумента через которые функция может менять знак.

Определяем знаки функции на каждом интервале. Имеем плюс на крайнем правом интервале, далее знаки чередуются, так как все корни имеют первую степень.

Строим эскиз графика в окрестностях корней и точек разрыва ОДЗ. Имеем: поскольку в точке знак функции меняется с плюса на минус, то кривая сначала находится над осью, потом проходит через ноль и далее расположена под осью х. Когда или знаменатель дроби практически равен нулю, значит, когда значение аргумента стремится к этим числам, значение дроби стремится к бесконечности. В данном случае, когда аргумент подходит к минус двум слева функция отрицательна и стремится к минус бесконечности, справа функция положительна и выходит из плюс бесконечности. Около двойки аналогично.

Найдем производную функции:

Очевидно, что производная всегда меньше нуля, следовательно, функция убывает на всех участках. Так, на участке от минус бесконечности до минус двух функция убывает от нуля до минус бесконечности; на участке от минус двух до нуля функция убывает от плюс бесконечности до нуля; на участке от нуля до двух функция убывает от нуля до минус бесконечности; на участке от двух до плюс бесконечности функция убывает от плюс бесконечности до нуля.

Проиллюстрируем:

Рис. 6. Эскиз графика функции к примеру 1

Пример 2 - построить эскиз графика функции:

Строим эскиз графика функции без использования производной.

Сначала исследуем заданную функцию:

Имеем единственную точку, при переходе аргумента через которую функция может менять знак.

Отметим, что заданная функция нечетная.

Определяем знаки функции на каждом интервале. Имеем плюс на крайнем правом интервале, далее знак меняется, так как корень имеет первую степень.

Строим эскиз графика в окрестностях корня. Имеем: поскольку в точке знак функции меняется с минуса на плюс, то кривая сначала находится под осью, потом проходит через ноль и далее расположена над осью х.

Теперь строим эскиз графика функции в окрестностях бесконечно удаленных точек, т.е. когда аргумент стремится к плюс или минус бесконечности. Постоянными слагаемыми при этом можно пренебречь. Имеем:

После выполнения вышеперечисленных действий мы уже представляем себе график функции, но требуется уточнить его с помощью производной.

Найдем производную функции:

Выделяем интервалы знакопостоянства производной: при . ОДЗ здесь . Таким образом, имеем три интервала знакопостоянства производной и три участка монотонности исходной функции. Определим знаки производной на каждом интервале. Когда производная положительна, функция возрастает; когда производная отрицательна, функция убывает. При этом - точка минимум, т.к. производная меняет знак с минуса на плюс; наоборот, точка максимума.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.



Декларация по УСН