Элементы теории массового обслуживания. Три основы теории массового обслуживания

1. Предмет и задачи В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется необходимость в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых необходимо пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО).Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания.Одна из основных задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, например, минимум времени ожидания, минимум средней длины очереди.Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным,контролировать некоторыеколичественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумныйкомпромисс между требованиями «клиентов» и мощностью обслуживающей системы.

В качестве показателей СМО могут применяться также такие величины как среднее число заявок в очереди, вероятность того, что число заявок в очереди превысит какое-то значение и т.д.

Система - совокупность элементов, связей между ними и цели функционирования. Любой системе массового обслуживания характерна структура, которая определяется составом элементов и функциональными связями.

Основные элементы системы следующие:

1. Входящий поток требований (интенсивность входящего потока );

2. Каналы обслуживания (число каналов n , среднее число занятыхk , производительность);

3. Очередь требований (среднее число заявок z , среднее время пребывания одной заявкиt );

4. Выходящий поток требований (интенсивность входящего потока ).

2. Классификация систем массового обслуживания По количеству каналов СМО подразделяют наодноканальные имногоканальные . По месту нахождения источников заявок системы массового обслуживания можно разделить на:

 закрытые – источник в системе и оказывает на нее влияние;

 открытые – вне системы и не оказывает влияния.

По фазам обслуживания СМО можно разделить на:

 однофазные – один этап обслуживания,

 многофазные – два и более этапов.

Системы массового обслуживания (СМО) по условиям ожидания делятся на два основных класса: СМО с отказами и СМО с ожиданием . В СМО с отказами заявка, поступающая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (пример - звонок по телефону). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной илинеограниченной длиной ожидания ,с ограниченным временем ожидания и т.д.

Для классификации СМО важное значение имеет дисциплина обслуживания, определяющая порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами.Дисциплина обслуживания – правила, по которым действуют СМО. По этому признаку обслуживание требования может быть организованно:

1. по принципу «первый пришел – первый обслужен»;

2. по принципу «первый пришел – последним обслужен» (например, отгрузка однородной продукции со склада).

3. случайно;

4. с приоритетом. При этом приоритет может быть абсолютным (более важная заявка вытесняет обычную) иотносительным (важная заявка получает лишь «лучшее» место в очереди).

При анализе случайных процессов с дискретным состояниями удобно пользоваться геометрической схемой – так называемымграфом состояний .

Пример . УстройствоS состоит из двух узлов,

каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Возможные состояния системы: S 0 – оба узла исправны;S 1 – первый узел ремонтируется, второй исправен;S 2 – первый узел исправен, второй ремонтируется;S 3 – оба узла ремонтируются.

3. Входящий поток требований Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений . Количество требований на обслуживание, временные интервалы между их поступлениями и длительность обслуживания случайны.Поэтому основным аппаратом описания систем обслуживания оказывается аппарат теории случайных процессов, в частности, марковских. Для исследования процессов, происходящих в этих системах, применяются методы имитационного моделирования.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-либо событий (появление новой заявки, приоритета обслуживания, окончания обслуживания).

Под случайным (стохастическим, вероятностным) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностным законом. Заявки на обслуживание в СМО обычно поступают не регулярно (например, поток вызовов на телефонной станции, поток отказов компьютеров, поток покупателей и т.д.), образуя так называемыйпоток заявок (или требований).

Поток характеризуетсяинтенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называетсярегулярным , если события следуют одно за другим через определенные равные промежутки времени (поток изделий на конвейере сборочного цеха).

Поток событий называетсястационарным , если его вероятностные характеристики не зависят от времени. В частности у стационарного потока λ(i )= λ (поток автомобилей на проспекте в часы пик).

Поток событий называетсяпотоком без последствий , если для любых два непересекающихся участков времени –τ 1 иτ 2 – число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие(поток людей, входящих в метро или поток покупателей, отходящих от кассы).

Поток событийординарен , если события появляются в нем поодиночке, а не группами(поток поездов – ординарен, поток вагонов – нет).

Поток событий называетсяпростейшим , если он одновременно стационарен, ординарен и не имеет последствий.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона.

Простейший поток в теории массового обслуживания играет такую же роль, как и нормальный закон в теории вероятностей. Главная его особенность заключается в том, что при сложении нескольких независимых простейших потоков образуется суммарный поток, который также близок к простейшему.

Каждому событию соответствует момент t , в который это событие произошло. Т – интервал между двумя моментами времени. Поток событий – независимая последовательность моментов t .

Для простейшего потока с интенсивностью λ вероятность попадания на элементарный (малый) отрезок времени Δt хотя бы одного события потока равна.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона с параметром λτ :

, (1)

для которого математическое ожидание случайной величины равно ее дисперсии:
.

В частности, вероятность того, что за время τ не произойдет ни одного события (m =0), равна

. (2)

Пример. На автоматическую телефонную линию поступает простейший поток вызовов с интенсивностью λ =1,2 вызовов в минуту. Найти вероятность того, что за две минуты: а) не придет ни одного вызова; б) придет ровно один вызов; в) придет хотя бы один вызов.

Решение. а) Случайная величина Х – число вызовов за две минуты – распределена по закону Пуассона с параметром λτ =1,2·2=2,4. Вероятность того, что вызовов не будет (m =0), по формуле (2):

б) Вероятность одного вызова (m =1):

в) Вероятность хотя бы одного вызова:

4. Предельные вероятности состояний Если число состояний системы конечно и из каждого из них можно за конечное число шагов перейти в любое другое состояние, то предельные вероятности существуют.

Рассмотрим математическое описание Марковского процесса с дискретными состояниями и непрерывным временем на примере процесса, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния S i в S j происходят под воздействием простейших потоков событий с интенсивностями состояний λ ij (i , j =0,.1,2,3).

Так как переход системы из состояния S 0 в S 1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S 1 в S 0 – под воздействием потока и событий, связанных с окончанием ремонтов первого узла и т.д.

Граф состояний системы с проставленными у стрелок интенсивностями будем называтьразмеченным . Рассматриваемая система имеет четыре возможных состояния:S 0 ,S 1 ,S 2 ,S 3 . Назовем вероятностьюi -го состояния вероятностьp i (t ) того, что в моментt система будет находиться в состоянииS i . Очевидно, что для любого моментаt сумма вероятностей всех состояний равна единице:
.

Предельная вероятность состояния S i имеет – показывает среднее относительное время пребывания системы в этом состоянии(если предельная вероятность состояния S 0 , т.е. p 0 =0,5, то это означает, что в среднем половину времени система находится в состоянии S 0 ).

Для системыS с графом состояний, изображенном на рис. система линейных алгебраических уравнений, описывающих стационарный режим, имеет вид (также называется системойуравнений Колмогорова ):

(3)

Данная система может быть получена по размеченному графу состояний, руководствуясь правилом , согласнокоторому в левой части уравнений стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, выходящих из i -го состояния, равная сумме произведений интенсивности всех потоков, входящих из i -е состояние на вероятности тех состояний, из которых эти потоки исходят.

Пример . Найти предельные вероятности для системы, граф состояний которого изображен на рис. выше. при λ 01 =1, λ 02 =2, λ 10 =2, λ 13 =2, λ 20 =3, λ 23 =1, λ 31 =3, λ 32 =2 .

Система алгебраических уравнений для этого случая согласно (3) имеет вид:

Решив линейную систему уравнений, получим p 0 = 0,4, p 1 = 0,2, p 2 = 0,27, p 3 = 0,13; т.е. в предельном стационарном режиме система S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 13% в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% в состоянии S 3 (оба узла ремонтируются).

Определим чистый доход от эксплуатации в стационарном режиме рассмотренной системы S в условиях, что в единицу времени исправная работа узла один и узла два приносит доход соответственно 10 и 6 денежных единиц, а их ремонт требует соответственно затрат 4 и 2 денежных единицы. Оценим экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Для решения этой задачи с учетом полученных значений p 0 , p 1 , p 2 , p 3 определим долю времени исправной работы первого узла, т.е. p 0 + p 2 = 0,4+0,27 = 0,67 и долю времени исправной работы второго узла p 0 + p 1 = 0,4+0,2 = 0,6. В то же время первый узел находится в ремонте в среднем долю времени равную p 1 + p 3 = 0,2+0,13 = 0,33, а второй узел p 2 + p 3 = 0,27+0,13 = 0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы равен Д =0,67·10+0,6·6–0,33·4–0,4·2=8,18 ден.ед. уменьшение вдвое среднего времени ремонта каждого узла будет означать увеличение вдвое интенсивностей потока «окончания ремонтов» каждого узла, т.е. теперь λ 10 =4, λ 20 =6, λ 31 =6, λ 32 =4 и система уравнений, описывающая стационарный режим системы S , будет иметь вид:

.

Решив систему получим p 0 = 0,6, p 1 = 0,15, p 2 = 0,2, p 3 = 0,05. Учитывая, что p 0 + p 2 = 0,6+0,2 = 0,8,

p 0 + p 1 = 0,6+0,15 = 0,75, p 1 + p 3 = 0,15+0,05 = 0,2, p 2 + p 3 = 0,2+0,05 = 0,25, а затраты на ремонт первого и второго узла составляют соответственно 8 и 4 ден.ед., вычислим чистый средний доход в единицу времени: Д1 =0,8·10+0,75·6–0,2·8–0,25·4=9,99 ден.ед.

Так как Д1 больше Д (примерно на 20%), то экономическая целесообразность ускорения ремонта узлов очевидна.

5. Процесс размножения и гибели Рассматриваемый в СМО процесс размножения и гибели характеризуется тем, что если все состояния системы пронумероватьS 1 ,S 2 ,,S n то из состоянияS k (k < n ) можно попасть либо в состояниеS k -1 , либо в состояниеS k +1 .

Для предельных вероятностей характерна следующая система уравнений:

(4)

к которой добавляется условие:

Из этой системы можно найти предельные вероятности. Получим:

, (6)

,
, …,
. (7)

Пример. Процесс гибели и размножения представлен графом. (рис).

Найти предельные вероятности состояний.

Решение. По формуле (6) найдем
,

по (7)
,
,

т.е. в установившемся стационарном режиме в среднем 70,6% времени система будет находиться в состоянии S 0 , 17,6% – в состоянии S 1 и 11,8% – в состоянии S 2 .

6. Системы с отказами В качестве показателей эффективности СМО с отказами будем рассматривать:

А – абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени,

Q – относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;

– вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

– среднее число занятых каналов (для многоканальной системы).

4 – Основы теории массового обслуживания.

Определение 1. Пусть имеется некоторая физическая система S , которая с течением времени меняет свое состояние (переходит из одного состояния в другое), причем заранее неизвестным, случайным образом. Тогда мы будем говорить, что в системе S протекает случайный процесс.

Под «физической системой» можно понимать что угодно: техническое устройство, предприятие, живой организм и т.д.

Пример. S техническое устройство, состоящее из ряда узлов, которые время от времени выходят из строя, заменяются или восстанавливаются. Процесс, протекающий в системе, – случайный. Вообще, если подумать, труднее привести пример «неслучайного» процесса, чем случайного. Даже процесс хода часов – классический пример точной, строго выверенной работы («работают как часы») подвержен случайным изменениям (уход вперед, отставание, остановка).

Определение 2. Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы наблюдаем процесс со стороны и в момент t 0 знаем состояние системы S 0 и всю предысторию процесса, все, что было при t < t 0 . Нас, естественно. Интересует будущее: t > t 0 . Можем ли мы его предугадать? В точности – нет. Наш процесс случайный, следовательно – непредсказуемый. Но какие-то вероятностные характеристики процесса в будущем мы найти можем. Например, вероятность того, что через некоторое время t система S окажется в состоянии S 1 или сохранит состояние S 0 и т.д.

Если процесс марковский, то предсказывать можно, только учитывая настоящее состояние системы S 0 и забыв о его «предыстории» (поведение системы при t < t 0 ). Само состояние S 0 , разумеется, зависит от прошлого, но как только оно достигнуто, о прошлом можно забыть. Т.е. в марковском процессе «будущее зависит от прошлого только через настоящее» .

Пример. Система S – счетчик Гейгера, на который время от времени попадают космические частицы; состояние системы в момент времени t характеризуется показаниями счетчика – числом частиц, пришедших до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в в момент t > t 0 счетчик покажет то или другое число частиц S 1 (или менее S 1 ) зависит от S 0 , но не зависит от того, в какие именно моменты приходили частицы до момента t 0 .

На практике часто встречаются процессы, которые если не в точности марковские, то могут быть в каком-то приближении рассмотрены как марковские. Например, S ­ – группа самолетов, участвующих в воздушном бою. Состояние системы характеризуется числом самолетов «красных» – x и «синих» – y , сохранившихся (не сбитых) к какому-то моменту. В момент t 0 нам известны численности сторон x 0 и y 0 . Нас интересует вероятность того, что в какой-то момент времени t 0 + t численный перевес будет на стороне «красных». От чего зависит эта вероятность? В первую очередь от того, в каком состоянии находится система в данный момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента времени t 0 самолеты.

В сущности любой процесс можно рассматривать как марковский, если все параметры из «прошлого», от которых зависит «будущее», перенести в «настоящее». Например, пусть речь идет о работе какого-то технического устройства; в какой-то момент времени t 0 оно ещё исправно, и нас интересует вероятность того, что оно проработает ещё время t . Если за настоящее время считать просто «система исправна», то процесс безусловно не марковский, потому что вероятность, что она не откажет за время t , зависит, в общем случае, от того, сколько времени она уже проработала и когда был последний ремонт. Если оба эти параметра (общее время работы и время после ремонта) включить в настоящее состояние системы. То процесс можно будет считать марковским.

Определение 3. Процесс называется с дискретными состояниями, если его возможные состояния S 1 , S 2 ,... можно заранее перечислить (перенумеровать), и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Определение 4. Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны, если переход может осуществиться, в принципе, в любой момент.

Мы будем рассматривать только процессы с дискретными состояниями.

Пример. Техническое устройство S состоит из двух узлов. Каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

Рис.4.1

Возможные состояния системы:

S 0 – оба узла исправны;

S 1 – первый узел ремонтируется, второй исправен;

S 2 – второй узел ремонтируется, первый исправен;

S 3 – оба узла ремонтируются.

Стрелка, направленная из S 0 в S 1 означает момент отказа первого узла и т. д. На рисунке нет стрелки из состояния S 0 в состояние S 3 , поскольку вероятность того, что два прибора откажут одновременно, стремится к нулю.

Определение 5. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток сбоев на ЭВМ, поток вызовов на телефонной станции).

Важнейшей характеристикой потока событий является его интенсивность l – среднее число событий, приходящееся на единицу времени. интенсивность потока может быть постоянной (l = const ), так и переменной, зависящей от времени. Например, поток автомашин, движущихся по улице, днем интенсивнее, чем ночью, а поток автомашин с 14-ти до 15-ти часов дня можно считать постоянным.

Определение 6. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени.

Определение 7. Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность l стационарного потока должна быть постоянной. Это отнюдь не означает, что фактическое число событий, появляющееся в единицу времени, постоянно, – нет, поток неизбежно (если только он не регулярный) имеет какие-то случайные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера: на один участок длины 1 может попасть больше, а на другой – меньше событий, но среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Например, поток вызовов, поступающих на АТС между 13 и 14 часами. Практически стационарен, но тот же поток в течение суток уже не стационарен.

Определение 8. Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. По сути это означает, что события, образующие поток, появляются в те или другие моменты независимо друг от друга, вызванные каждое своими собственными причинами.

Например, поток пассажиров, входящих в метро, практически не имеет последействия. А вот поток покупателей, отходящих от прилавка с купленными товарами, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Определение 9. Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами сразу.

Например поток клиентов к зубному врачу – обычно ординарный. Поток поездов, подходящих к станции – ординарен, а поток вагонов – неординарен.

Определение 10. Поток событий называется простейшим (или стационарным Пуассоновским), если он обладает сразу тремя свойствами: стационарен, ординарен и не имеет последействия, а сам входной поток распределен по закону Пуассона ().

Для описания случайного процесса, протекающего в системе с дискретными состояниями S 1 , S 2 , ..., S n часто пользуются вероятностями состояний p 1 ( t ),..., p n ( t ) , где p k ( t ) – вероятность того, что в момент времени t система находится в состоянии S k . Вероятности p k ( t ) удовлетворяют условию: .

Если процесс, протекающий в системе с дискретными состояниями и непрерывным временем является марковским, то для вероятностей состояний p 1 ( t ), ..., p n ( t ) можно составить систему линейных дифференциальных уравнений. При составлении этих уравнений удобно пользоваться графом состояний системы, на котором против каждой стрелки, ведущей из состояния в состояние, проставлена интенсивность потока событий, переводящего систему по стрелке (рис.4.2):

Рис.4.2

l ij – интенсивность потока событий, переводящего систему из состояния S i в состояние S j .

Правило создания системы линейных дифференциальный уравнений для нахождения вероятностей состояний.

Для каждого состояния выписывается собственное уравнение. В левой части каждого уравнения стоит производная , а в правой – столько членов, сколько стрелок связано непосредственно с данным состоянием; если стрелка ведет в данное состояние, то член имеет знак «+», иначе - знак «–». Каждый член равен интенсивности потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого стрелка выходит.

Т.о. система линейных дифференциальных уравнений в нашем случае имеет вид:

Начальные условия для интегрирования такой системы отражают состояние системы в начальный момент времени. Если, например, система при t =0 была в состоянии S k , то . Эти уравнения можно решать аналитически, но это удобно только тогда, когда число уравнений не превышает двух (иногда трех). В случае, когда уравнений оказывается больше, применяют численные методы.

Что будет происходить с вероятностями состояний при ? Будут ли p 1 ( t ), ..., p n ( t ) стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний: . p i – среднее относительное время пребывания системы в i -ом состоянии.

Как найти финальные вероятности? Поскольку все p i = const , то производные, стоящие в левой части каждого уравнения равны нулю. Т.о. мы получили систему линейных алгебраических уравнений. Поскольку ни одно уравнение в этой системе не имеет свободного члена, то система является вырожденной (т.е. все переменные будут выражены через одну). Чтобы этот избежать, необходимо воспользоваться нормировочным условием (), при этом любое уравнение можно отбросить.

Классификация систем массового обслуживания

По количеству обслуживающих приборов СМО делятся на одноканальные и многоканальные. Многоканальные СМО состоят из нескольких приборов, и каждый них может обслуживать заявку.

Также СМО подразделяются на системы без ожидания и с ожиданием. В первых заявка покидает очередь, если к моменту её прихода отсутствует хотя бы один канал, способный немедленно приступить к обслуживанию данной заявки. Вторые, в свою очередь, делятся на системы без ограничения и с ограничениями по длине очереди.

Также СМО делятся на системы с приоритетами и без них. В свою очередь системы с приоритетом делятся на СМО с прерыванием и без.

Одноканальная СМО с неограниченной очередью


Рис.4.3

Найдем вероятности p k :

Для состояния S 0 : , отсюда ;

Для состояния S 1 n : , подставляем полученное значение для p 1 : . Аналогично, .

Вероятность p 0 найдем из нормировочного условия :

, – геометрическая прогрессия, при r <1 сходится. – вероятность того, что нет заявок.

– вероятность того, что прибор занят обслуживанием заявки. r = l / m – мера загрузки одноканальной СМО.

В текущий момент времени в системе может быть 0, 1, 2, ..., k , ... заявок с вероятностями p 0 , p 1 p 2 , ... Математическое ожидание количества заявок:

учитывая, что , получим:

Средняя длина очереди равна разности между средним числом заявок в системе и средним числом заявок, находящихся под обслуживанием: .

Формулы Литтла

Рис.4.4

Первая формула Литтла позволяет определить время реакции СМО (время пребывания заявки в системе).

Пусть X ( t ) – число заявок, поступивших в СМО до момента времени t , Y ( t ) – покинувших СМО до t . Обе функции случайны и увеличиваются скачком на единицу в моменты прихода и ухода заявок. Тогда число заявок в системе в момент времени t можно определить как: . Рассмотрим очень большой промежуток времени T и вычислим среднее число заявок в системе:

.

Интеграл равен площади ступенчатой фигуры, ограниченной функциями X ( t ) и Y ( t ) , эта сумма состоит из прямоугольников, ширина которых равна единице, а длина – времени пребывания i -ой заявки в системе. Сумма распространяется на все заявки, поступившие в систему за время T . Правую часть домножим и разделим на l : . T l – среднее количество заявок, пришедших за время T . Поделив сумму всех времен t i на среднее число заявок, получим среднее время пребывания заявки в системе: .

Совершенно аналогично можно получить среднее время пребывания заявки в очереди: .

Многоканальная СМО с неограниченной очередью


Рис.4.5

Найдем вероятности p k :

Для состояния S 0 : ;

Для состояний S 1 S n : ;

Для S n +1 : ; ...

Для S n+s-1 : ;

Для S n+s : .

Из первых n +1 уравнений получаем:

Из последнего уравнения выражаем: и подставляем в предпоследнее: , . Тогда .

Продолжая аналогию: .

Теперь найдем p 0 , подставив полученные выражения в нормировочное условие (): . Отсюда .

Показатели эффективности СМО

– Вероятность потери требования в СМО. Особенно часто ею пользуются при исследовании военных вопросов. Например, при оценке эффективности противовоздушной обороны объекта она характеризует вероятность прорыва воздушных целей к объекту. Применительно к СМО с потерями она равна вероятности занятости обслуживанием требований всех n приборов системы. Чаще всего эту вероятность обозначают p n или p отк .

– Вероятность того, что обслуживанием требований в системе занято k приборов, равна p k .

– Среднее число занятых приборов: характеризует степень загрузки обслуживающей системы.

– Среднее число свободных от обслуживания приборов:.

– Коэффициент простоя приборов: .

– Коэффициент занятости оборудования: .

– Средняя длина очереди: , p k - вероятность того, что в системе находится k требований.

– Среднее число заявок, находящихся в сфере обслуживания: .

– Вероятность того, что число заявок в очереди, ожидающих начала обслуживания, больше некоторого числа m : . Этот показатель особенно необходим при оценке возможностей размещения требований при ограниченности времени для ожидания.

Кроме перечисленных критериев при оценке эффективности СМО могут быть использованы стоимостные показатели:

q об – стоимость обслуживания каждого требования в системе;

q ож – стоимость потерь, связанных с простаиванием заявок в очереди в единицу времени;

q у – убытки, связанные с уходом из системы заявки;

q k – стоимость эксплуатации каждого прибора в единицу времени;

q k пр – стоимость простоя единицы времени k -го прибора системы.

При выборе оптимальных параметров СМО по экономическим показателям можно использовать функцию стоимости потерь в системе (для СМО с ожиданием): T – интервал времени.

Для СМО с отказами: .

Для смешанных: .

Критерий экономической эффективности СМО: , с – экономический эффект, получаемый при обслуживании каждой заявки.

СМО замкнутого типа

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как , – среднее время обслуживания станка, которое вычисляется как , где n – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где – среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO : каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k -1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач,

связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам z 1 , z 2 , ..., z m , ... , таким образом, что:

Случайные величины z k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин z i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины z k , поэтому часто пользуются соответствующей функцией плотности f ( z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины z k независимы. Поэтому . Функции f i ( z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала z k ( i >1) поступила заявка. В отличие от этого функция f 1 ( z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

· Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R ( t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время t p . Величину t p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более t n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

· Структура алгоритма, моделирующего

процесс обслуживания заявок

Рассмотрим однофазную СМО, имеющую n линий, на которые поступают заявки в случайные моменты времени t i . Если вмомент поступления заявки оказываются в наличии свободные линии (их число n св ), заявка занимает одну из них на время t p . В противном случае заявка находится в системе до момента t n , ожидая обслудивания. В т t чение времени ожидания некоторые линии могут освободиться (их число m ), и в этом случае будет возможность обслужить заявку. Если до момента времени t n ни одна из линий не освобождается (m =0 ), заявка получает отказ.

Будем считать, что в силу недостаточно высокой надежности системы, линии обслуживающие заявку, могут выходить из строя, тогда заявка получает отказ, а линия может быть отремонтирована и через промежуток времнеи t pem введена в строй.

Для исследования качества обслуживания заявок предусматривается N * кратное моделирование процесса функционирования системы в интервале (0, T ) . В процессе моделирования число обследованных реализаций обозначим через N .

Алгоритм:

1. Определяется момент t i поступления очередной заявки в систему.

2. Если t i < T , то переход на шаг 3, иначе – на шаг 11.

3. Проверка возможности обслужить поступившую заявку: если n св >0 , то переход на шаг 4, иначе – на шаг 12. (Значение времени поступления заявки t i сравнивается с t осв для всех линий, т.о. выявляются свободные линии.)

4.Если n св >1 , то переход на шаг 5, иначе – на шаг 6.

5. Выбирается номер свободной линии по специальным правилам.

6. Назначается выбранная линия.

7. Проверка: имеет ли место срыв обслуживания по причине недостаточной надежности? Если да, то переход на шаг 8, иначе – на шаг 10.

8. Определение времени t рем ремонта линии, вышедшей из строя (t рем имеет определенный закон распределения).

9. N отк = N отк +1 . Переход на шаг 1.

10. Определение времени занятости t з линии, которая назначена обслуживать заявку (некая случайная величина с определенным законом распределения) и времени освобождения линии: t осв = t i + t з . Переход к очередной заявке (шаг 1).

11. Проверка: если N < N * , то N = N +1 и переход на шаг 1, иначе – обработка результатов опыта и конец.

12. Определить:

А) времени t n пребывания заявки в системе;

Б) число освободившихся каналов m за время t n .

13. Если m >0 , то переход на шаг 14, иначе – на шаг 9.

14. Если m >1 , то переход на шаг 15, иначе – на шаг 6.

15. Выбирается определенная линия в соответствии с принятыми правилами и переход на шаг 6.

Модели теории массового обслуживания

Теория массового обслуживания представляет собой область при­кладной математики, использующую методы теории случайных про­цессов и теории вероятностей для исследования различной природы сложных систем. Теория массового обслуживания непосредственно не связана с оптимизацией. Назначение ее состоит в том, чтобы на осно­ве результатов наблюдений за «входом» в систему предсказать ее воз­можности и организовать наилучшее обслуживание для конкретной ситуации и понять, как последнее отразится на стоимости системы в целом.

Модели теории массового обслуживания описывают процессы массового спроса на обслуживание с учетом случайного характера поступления требований и продолжитель­ности обслуживания.

Назначение моделей теории массового обслуживания состоит в том, чтобы на основе информации о входящем случайном потоке требова­ний предсказать возможности системы обслуживания, организовать наилучшее выполнение требований для конкретной ситуации и оце­нить, как это отразится на ее стоимости.

Система массового обслуживания (СМО) возникает тогда, когда происходит массовое появление заявок (требований) на обслуживание и их последующее удовлетворение.

Особенностью СМО является случайный характер исследуе­мых явлений. Типичный пример СМО - телефонная сеть (снятием трубки с рычага телефонного аппарата абонент дает заявку на обслуживание разговора по одной из линий телефонной сети).

Основными элементами СМО являются:

Входящий поток заявок (требований) на обслуживание;

Очередь заявок на обслуживание;

Приборы (каналы) обслуживания;

Выходящий поток обслуженных заявок (рисунок 8.5).

Такой элемент СМО как очередь может отсутствовать в не­которых системах, но в тоже время СМО может иметь и другие элементы, например, выходящий поток не обслуженных заявок.

Для систем, относящихся к системам массового обслуживания, существует определенный класс задач, решение которых позволяет от­ветить, например, на следующие вопросы:

Рисунок 8.5 - Обобщенная схема СМО

С какой ин­тенсивностью должно проходить обслуживание или должен выполнять­ся процесс при заданной интенсивности и других параметрах входящего потока требований, чтобы минимизировать очередь или задержку в подготовке документа или другого вида информации?

Каковы вероят­ность появления задержки или очереди и ее величина? Сколько време­ни требование находится в очереди и каким образом минимизировать его задержку?

Какова вероятность потери требования (клиента)?

Ка­кова должна быть оптимальная загрузка обслуживающих каналов? При каких параметрах системы достигаются минимальные потери прибы­ли?

К этому перечню можно добавить еще целый ряд задач.

Как системы массового обслуживания могут быть представ­лены следующие работы и процессы: посадка самолетов в аэро­порту, обслуживание автомобилей на автозаправочных станциях, разгрузка судов на причалах, обслуживание покупателей в ма­газинах, прием больных в поликлинике, обслуживание клиентов в ремонтной мастерской и др.

Часто входной поток заявок представляется в виде про­стейшего потока, обладающего свойством стационарности, от­сутствия последствия и ординарности.

Поток является стационарным, если вероятный режим не зависит от времени. Ординарность потока наступает, если ве­роятность появления двух и более заявок за промежуток вре­мени τ является бесконечно малой величиной по сравнению с τ. Поток обладает свойством отсутствия последствия, если поступление заявок не зависит от предистории процесса.

Для простейшего потока поступление заявок в СМО описы­вается законом распределения Пуассона

Р к (τ ) ,

где Р к (τ ) -вероятность поступления к заявок за время τ ;

λ - интенсивность входного потока.

Важное для исследования свойство, которым обладает пуассоновский поток, заключается в том, что процедура разделения и объединения дает снова пуассоновские потоки. Тогда, если входной по­ток формируется из N независимых источников, каждый из которых порождает пуассоновский поток интенсивностью λ i (i = 1, 2, ..., N), то его интенсивность будет определяться по формуле

λ = λ l + λ 2 +...+ λ N .

В случае разделения пуассоновского потока на N независимых по­токов получим, что интенсивность потока λ i будет равна r i λ ,где r i - доля i-го потока во входном потоке требований.

Очередью является множество заявок (требований), ожи­дающих обслуживание.

В зависимости от допустимости и характера формирования очереди системы массового обслуживания подразделяются:

1. СМО с отказами - формирование очереди не разрешено, поэтому заявка, пришедшая в момент, когда все каналы заняты, получает отказ и теряется. Пример: АТС (выполнение заказов к определенному сроку), система ПВО объекта (цель в зоне об­стрела пребывает мало времени).

2. СМО с неограниченным ожиданием - поступившая заяв­ка, застав все обслуживающие приборы занятыми, становится в очередь и дожидается обслуживания. Число мест для ожидания (длина очереди) не ограничено. Не ограничивается и время ожидания. Пример: предприятия бытового обслуживания, такие как мастерские по ремонту часов, обуви.

3. СМО смешанного типа. В этих системах имеется очередь,
на которую накладываются ограничения. Например: на макси­мальную длину очереди (I тип – с ограниченной ДО) или на время ожидания заявки в очереди (П тип – с ограниченным ВО). Примерами СМО I-го типа являются мастер­ские по ремонту радиоаппаратуры с ограниченными площадями для ее хранения. Торговые точки по продаже фруктов, овощей, которые могут храниться ограниченное время, являются смешан­ными СМО II -го типа.

Порядок поступления заявок на обслужива­ние называется дисциплиной обслуживания.

В СМО с очередью могут быть следующие варианты дисцип­лины обслуживания:

а) в порядке поступления заявок (первым пришел – первым обслужился) - магазины, предприятия бытового обслуживания;

б) в порядке обратном поступлению, т. е. последняя заявка обслуживается первой (последним пришел - первым обслужился) - выемка заготовок из бункера;

в) в соответствии с приоритетом (участники ВОВ в поликлинике);

г) в случайном порядке (в системе ПВО объекта при отра­жении воздушного налета противника).

Основным параметром процесса обслужи­вания считается время обслуживания заявки каналом (обслуживающим прибором j) – t j (j=1,2,…,m).



Величина t j в каждом конкретном случае определяется рядом факторов: интенсивностью поступления заявок, квалификацией ис­полнителя, технологией работ, окружающей средой и т.д. Законы рас­пределения случайной величины t j могут быть самыми различными, но наибольшее распространение в практических приложениях полу­чил экспоненциальный закон распределения. Функция распределения случайной величины t j имеет вид:

F(t) = l – e - μt ,

где m - положительный параметр, определяющий интенсивность обслужи­вания требований;

где Е (t) - математическое ожидание случайной величины обслуживания тре­бования t j .

Важнейшее свойство экспоненциального распределения заключа­ется в следующем. При наличии нескольких однотипных каналов об­служивания и равной вероятности их выбора при поступлении заявки распределение времени обслуживания всеми m каналами будет пока­зательной функцией вида:

Если СМО состоит из неоднородных каналов, то , если
же все каналы однородные, то .

По количеству обслуживающих приборов (каналов) СМО де­лятся на:

Одноканальные;

Многоканальные.

Структура СМО и характерис­тика ее элементов приведены на рисунке 8.6.

Исследование СМО заключается в нахождении показателей, харак­теризующих качество и условия работы обслуживающей системы и показателей, отражающих экономические последствия принятых ре­шений.

Важнейшим понятием в анализе СМО является понятие сос­тояния системы. Состояние есть некоторое описание системы, на основании которого можно предсказать ее будущее поведение.

Рисунок 8.6 – Структура и характеристика элементов СМО

При анализе СМО определяют усредненные показатели об­служивания. В зависимости от решаемой задачи ими могут быть:

средняя длина очереди,

среднее время ожидания в очереди,

средний процент обслуживаемых (или получивших отказ) заявок, среднее число занятых (или простаивающих) каналов,

среднее время пребывания в СМО и др.

В качестве критерия оптимизации применяют:

Максимум прибыли от эксплуатации СМО;

Минимум суммарных потерь, связанных с простоем кана­лов, простоем заявок в очереди и уходом необслуженных за­явок;

Обеспечение заданной пропускной способности.

Варьируемыми параметрами обычно являются: количество каналов, их производительность, длина и дисциплина очереди, приоритетность обслуживания.

Вопросы для самопроверки

1. Понятие о математических моделях и моделировании.

2. Что представляет собой экономико-статистическая модель и производственная функция?

3. Применение графических и графоаналитических моделей в управлении.

4. Использование корреляционного анализа для выявления связи между параметрами

5. Виды и методы построения регрессионных моделей.

6. Статистическое исследование причинно-следственных связей.

7. Классификация математических моделей по четырем аспектам детализации (по В.А. Кардашу).

8. Классификация моделей по применяемому математическому аппарату. Понятие о балансовых моделях.

9. Этапы моделирования. Проверка модели на адекватность.

10. Понятие о системах массового обслуживания (СМО). Составные части СМО.

11. СМО с отказами и с очередью. Разновидности очередей.

12. Одноканальные и многоканальные СМО. Дисциплины обслуживания

13. Моделирование СМО. Показатели, получаемые при экспериментах на модели СМО.

14. Критерии оптимизации систем массового обслуживания.

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

На практике при изучении операций часто приходится иметь дело с системами, предназначенными для многократного использования при решении однотипных задач. Процессы, которые возникают при этом получили название процессов обслуживания, а системы - систем массового обслуживания. Примерами таких систем являются ремонтные мастерские, телефонные системы, вычислительные комплексы, магазины и т.

Каждая система массового обслуживания состоит из определенного числа обслуживающих единиц, в том числе приборов, при-

нарядов, пунктов, станций, называют каналами обслуживания. Каналами могут выступать продавцы, парикмахеры, вычислительные машины, точки продаж, линии связи и др. По количеству каналов системы массового обслуживания делятся на одноканальные (один канал) и многоканальные (несколько каналов).

Заявки поступают в систему массового обслуживания обычно нерегулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок продолжается также какой-то случайный время. Случайный поток заявок и времени обслуживания приводит к тому, что система массового обслуживания оказывается загруженной неравномерно: в какие-то периоды времени накапливается очень большое количество заявок, а в другие периоды система работает с неполной загрузкой или простаивает. Для того, чтобы максимально оптимизировать, регулировать эти процессы путем принятия взвешенных и обоснованных управленческих решений используется теория массового обслуживания.

Теория массового обслуживания - теория, которая изучает статистические закономерности в массовых операциях, состоящих из большого числа однородных элементарных операций. К ним, в частности, относятся: составление однотипных деталей на конвейере, выдача инструментов, ремонт станков, работа телефонной станции, обслуживание покупателей в магазине, в билетных кассах, клиентов в парикмахерских, техническое обслуживание машин и оборудования и др.

Синонимом теории обслуживания является теория очередей. В системах массового обслуживания, в которых заявки на элементарные операции поступают в случайные моменты времени или обслуживаются в течение случайных промежутков времени, появление очередей - неизбежное зло. При большом количестве каналов обслуживания (ремонтных бригад, продавцов, телефонисток и т. П.) Система терпит убытки из-за возможных длительные простои каналов. По малого количества каналов обслуживания, убытки системы вызывают очереди, которые накапливаются.

Задача теории массового обслуживания - изучить статистические закономерности входного потока заявок на элементарные операции и длительность обслуживания заявок, а также дать оценку качества систем обслуживания (выяснить пропускную способность) при различных правил формирования очередей. Очереди могут быть организованы по-разному - с ограниченной и неограниченной длиной очереди, с ограниченным временем ожидания и др.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы систем массового обслуживания (число каналов, их производительность, характер потока, заявок и т.п.) с показателями эффективности этих систем, описывающих их способность справляться с потоком заявок.

Под потоком событий понимают последовательность однородных событий, следующих одна за другой в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов БВМ, поток покупателей и т.п.).

Поток характеризуется интенсивностью () - частотой появления события или средним числом событий, которые поступают в систему массового обслуживания за единицу времени.

В качестве показателей эффективности систем массового обслуживания могут использоваться следующие:

Среднее количество заявок в очереди;

Среднее время ожидания на обслуживание;

Вероятность отказа в обслуживании без ожидания;

Вероятность того, что число заявок в очереди превысит определенное значение и тому подобное.

Системы массового обслуживания делятся на два основных типа (класса): с ожиданием (очередью) и с отказами. В системе массового обслуживания с ожиданием заявка, поступившая в момент занятости каналов, а не отправляется, а становится в очередь на обслуживание.

В системах с отказом заявка, поступающая в момент, когда все каналы заняты, получает отказ и покидает систему, не принимая участия в дальнейшем процессе обслуживания (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает Систему обслуженных).

В качестве показателей эффективности системы массового обслуживания с отказами применяются следующие:

1. Абсолютная пропускная способность (А) - показатель, который показывает среднее количество заявок, обслуживаемых в единицу времени. Он рассчитывается по формуле

где - интенсивность потока заявок;

Интенсивность потока обслуживания.

При этом интенсивность потока обслуживания является обратной величиной к среднему времени обслуживания ():

2. Относительная пропускная способность (Q) - показатель, характеризующий среднюю долю заявок, которая поступила и обслуживается системой. Вычисляется по формуле

3. Вероятность отказа (Р от) - величина, характеризующая вероятность того, что заявка покинет систему массового обслуживания не обслужены. Показывает долю заявок, которым будет отказано в предоставлении соответствующей услуги.

4. Среднее число занятых каналов () (для многоканальной системы). Этот показатель рассчитывается следующим образом:

Определяется также интенсивность нагрузки канала - р (или приведена интенсивность потока заявок) - это показатель, который выражает среднее количество заявок, поступающей среднего обслуживании одной заявки. Он рассчитывается по формуле

В многоканальных системах массового обслуживания с предельными вероятностями используют формулы для предельных вероятностей состояния, которые получили название формул Эрланга в честь А.К. Эрланга (конец XIX - начало XX в.) - Датского инженера, математика, основателя теории массового обслуживания.

Вероятность отказа системы массового обслуживания - это предельная вероятность того, что все п каналов системы будут заняты, то есть:

;

, ..., ...,.

Относительная пропускная способность - вероятность того, что заявка будет обслужена определяется:

.

Абсолютная пропускная способность рассчитывается:

Для классификации систем массового обслуживания важное значение имеет дисциплина обслуживания, определяет порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами. По этому признаку обслуживания заявки может быть организовано по принципу очередности поступления в порядке поступления (с начала) или наоборот обслуживаются те, которые поступили в конце (с конца), с приоритетом обслуживания (в первую очередь обслуживаются важнейшие заявки).

Пример. Заявки на телефонные переговоры на переговорном пункте поступают с интенсивностью, равной 80 заявок в час, а средняя продолжительность разговора по телефону.

1. Определить показатели эффективности работы системы массового обслуживания (переговорного пункта) при наличии одного телефонного номера.

2. Определить оптимальное количество телефонных номеров на переговорном пункте, если условием оптимальности считать

удовольствие в среднем из каждых 100 заявок не менее 80 заявок на переговоры.

1. Рассчитаем интенсивность потока обслуживания:

.

2. Определим относительную пропускную способность системы массового обслуживания:

.

Это означает, что в среднем только 20% заявок, поступающих будут удовлетворены за ними будут предоставлены услуги, то есть осуществятся переговоры по телефону.

3. Вероятность отказа в обслуживании () составит:

.

Итак, в среднем 80% заявок, которые поступят на переговоры, получат отказ в обслуживании.

4. Абсолютная пропускная способность системы массового обслуживания - переговорного пункта равно

.

Таким образом, в среднем за час будут обслужены 16 заявок на переговоры.

Из этого можно сделать вывод, что при наличии только одного телефонного номера переговорный пункт будет плохо справляться с потоком заявок.

Для выполнения второй задачи задачи - определение оптимального числа номеров на телефонной станции, следует прежде всего проанализировать интенсивность нагрузки канала.

5. Вычислим интенсивность нагрузки канала:

.

То есть, за время средней по продолжительности телефонного разговора поступает в среднем 4 заявки на переговоры.

6. Для получения характеристик системы (переговорного пункта) и выбора оптимального варианта количества номеров следует постепенно увеличивать число каналов (телефонных номеров) n = 2,3,4, ..., превращая таким образом имеющуюся систему массового обслуживания с одноканальной в многоканальную. Тогда относительная пропускная способность составит:

;

;

за;.

Абсолютная пропускная способность равна:

Аналогично рассчитаем основные характеристики системы массового обслуживания для 3, 4, 5, 6 каналов обслуживания (номеров телефонов) и сведем их в табл. 13.5.

Таблица 13.5. Основные характеристики обслуживания заявок на переговоры переговорным пунктом в зависимости от количества номеров

Итак, по условиям оптимальности Q 3 = 0,8, поэтому на переговорном пункте необходимо установить 3 телефонных номера (в этом случае Q = 0,80). Это означает, что за час будут обслуживаться в среднем 64 заявки (А = 64), а среднее число занятых номеров (каналов) равна

.

Несмотря на большое значение теории игр для принятия управленческих решений, она не имеет универсального характера. Одним из основных ограничений ее применения является то, что в этой игре имеется единственный показатель выигрыша как характеристика эффективности. Однако на практике при решении большинства экономических задач встречаются несколько показателей эффективности. Кроме того, в экономике в основном возникают такие ситуации, когда интересы партнеров не имеют антагонистического характера. Эти особенности следует учитывать аналитику при выборе методов исследования тех или иных экономических явлений и процессов.



Декларация по УСН