Метод линейной свертки критериев пример. Характеристика инвестиционных проектов. Вопросы для самопроверки

Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где j - нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он - несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где j - нормирующие множители,

вj - весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 - альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве? называется произвольное подмножество R множества? Х? , где? Х? - это множество всех упорядоченных пар (ai ;aj) , где ai , aj ? . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки - это вершины графа, стрелки между точками - это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е - непустое конечное множество элементов (вершин), е - конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества? по бинарному отношению R называется такой элемент х? , что у? выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент - это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества? по бинарному отношению R называется такой элемент х? , что у? для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества - это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент - это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 - в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 - из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 - из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 - в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа - это квадратная матрица размера m x m (m - это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето - одно удовольствие! Максимальные элементы - это те, чьи строки состоят из всех единиц (кроме себя самих - там может быть как нуль, так и единица). А оптимальные по Парето элементы - это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа - это матрица, строки которой соответствуют вершинам, а столбцы - дугам. При этом предполагается, что граф не должен иметь петель.

Элементы матрицы инцидентности будут такими:

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов - нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы - это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы - это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Важность критериев была задана нечеткими числами с функциями принадлежности следующего вида:

ВАЖНЫЙ (В)- m B ={0,4; 1/0,7; 0/1};

ОЧЕНЬ ВАЖНЫЙ (OB) - m OB ={0/0,7; 1/1};

НЕ ОЧЕНЬ ВАЖНЫЙ (НОВ) - m HOB = {0/0,1; 1/0,4; 0/7}.

Для оценки альтернатив использовались лингвистические значения:

Альтернативы получили следующие оценки по критериям:

Взвешенные оценки альтернатив R i имеют следующие функции принадлежности:

Оценки предпочтительности альтернатив равны: m(a 1) = 0,90, m(a 2) = 0,62, m(a 3) = 1,0. Лучшей альтернативой является a 3 , a худшей – а 2 .

Решение задачи методом анализа иерархий

На заданном наборе критериев была построена трехуровневая иерархия, на верхнем уровне которой определена цель выбора (с G). На втором уровне находятся обобщенные критерии: прибыль (с P) к и риск (с R) . На третьем уровне иерархии расположены перечисленные выше критерии с 1 , ..., с 5 . При этом критерии c 1 , с 2 , с 3 , входят в группу критерия c P , а критерии с 4 , с 5 - в группу критерия c R . Экспертные предпочтения и полученные приоритеты приведены в матрицах попарных сравнений:

В результате иерархического синтеза получены векторы приоритетов альтернатив:

Альтернативой с наименьшим риском является а 1 , а наибольшую прибыль обеспечивает а 3 . Эта же альтернативаимеет максимальный приоритет относительно цели выбора.

Сравнение полученных результатов

На рис. 4.9 приведены результаты решения задачи выбора рационального инвестиционного проекта, полученные различными методами.

Несмотря на то, что исходная информация во всех рассмотренных примерах является последовательной и непротиворечивой, полученные результаты заметно отличаются. Кроме описанных выше нечетких методов принятия решений, для сравнения использовался метод анализа иерархий, который обычно дает результаты, хорошо согласующиеся с интуитивными представлениями экспертов при рациональном подходе к принятию решений.

Несовпадение результатов, полученных разными методами, объясняется, с одной стороны, разными способами представления экспертной информации, а с другой стороны - различием подходов к принятию решений. Так, в основу метода анализа иерархий и метода отношений предпочтения заложен рационально-взвешенный подход, основанный на попарных сравнениях объектов и нормированных весовых коэффициентах. Максиминная свертка и лингвистическая векторная оценка являются реализациями пессимистического подхода, игнорирующего хорошие стороны альтернатив, когда лучшей считается альтернатива, имеющая минимальные недостатки по всем критериям. Аддитивная свертка предполагает оптимистический подход, когда низкие оценки по критериям имеют одинаковый статус по сравнению с высокими. Нечеткий вывод на правилах реализует эвристический подход.

Анализ приведенных результатов позволяет сделать следующие выводы:

1. Методы принятия решений на нечетких моделях позволяют удобно и достаточно объективно производить оценку альтернатив по отдельным критериям. В отличие от других методов добавление новых альтернатив не изменяет порядок ранее ранжированных наборов. При оценке альтернатив по критериям возможна как лингвистическая оценка, так и оценка на основе точечных оценок с использованием функций принадлежности критериев.

2. Основной проблемой многокритериального выбора с применением нечетких моделей является представление информации о взаимоотношениях между критериями и способы вычисления интегральных оценок. Методы, базирующиеся на разных подходах, дают различные результаты. Каждый подход имеет свои ограничения и особенности, и пользователь должен получить о них представление, прежде чем применять тот или иной метод принятия решений. Наиболее широкие возможности для представления информации дает эвристический подход.

3. Большинство нечетких методов принятия решений показывает слабую устойчивость результатов относительно исходных данных. Исследование рассмотренных методов показало, что наибольшей устойчивостью обладает метод, основанный на правилах.

Анализ нечетких методов принятия решений позволяет сформулировать требования к дальнейшим разработкам в этой области. Это развитие теоретических подходов к описанию сложных взаимоотношений между критериями, более широкое применение интеллектуальных методов на основе нечеткой логики, а также развитие комбинированных методов принятия решений с использованием нечетких представлений.

Основные понятия

1. Нечеткие множества.

2. Нечеткие числа.

3. Лингвистические переменные.

4. Лингвистический критерий.

5. Лингвистическая оценка.

6. Нечеткие операции и отношения.

7. Нечеткие отношения предпочтения.

8. Максиминная свертка нечетких множеств.

9. Нечеткий логический вывод.

10. Композиционное правило вывода.

11. Методология применения методов теориинечетких множеств.

12. Сравнительный анализ методов.

13. Практические результаты применения методовпринятия решений.

Контрольные вопросы и задания

1. Перечислите и дайте определения основным элементам теории нечетких множеств.

2. Дайте определение нечетким операциям, отношениям и свойствам отношений.

3. Охарактеризуйте постановку задачи многокритериального выбора альтернатив на основе пересечения нечетких множеств.

4. Составьте алгоритмы и программы многокритериального выбора альтернатив методом максиминной свертки.

5. Постановка задачи выбора альтернатив на основе нечеткого отношения предпочтения.

6. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе нечеткого отношения предпочтения.

7. Постановка задачи выбора альтернатив с аддитивным критерием.

8. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе аддитивной свертки предпочтений, заданных нечеткими числами.

9. Постановка задачи принятия решений на основе лингвистической векторной оценки.

10. Разработайте алгоритмы и программы для решения задачи многокритериального выбора с использованием метода лингвистического векторного критерия.

11. Постановка задачи многокритериального выбора с использованием правила нечеткого вывода.

12. Разработайте алгоритмы и программы для решения задачи выбора рациональной альтернативы на основе математического аппарата нечеткого логического вывода.

13. Рассмотрите применение принципов пересечения нечетких множеств в экономических и управленческих задачах принятия решений.

14. Разработайте методику применения метода нечеткого отношения предпочтения для проектирования и выбора конкурентоспособных экономических, технических и управленческих решений.

15. Поставьте задачи из области экономики, наилучшим образом формализуемые математическим аппаратом нечеткого логического вывода.

16. Решите одну задачу различными методами принятия решений, основанными на теории нечетких множеств. Проведите сравнительный анализ полученных результатов. Сделайте вывод о том, какой из методов дает наиболее адекватные результаты в сравнении с вашими представлениями.

Литература

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений: Пер. с англ. - М.: Мир, 1976. - 165 с.

2. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. - М.: Радио и связь, 1986. - 408 с.

3. Борисов А. П., Крумберг О. А., Федоров И. П . Принятиерешенийна основе нечетких моделей. - Рига: Зинатне, 1990. - 184 с.

4. Нечеткие множества в моделях управления и искусственного интеллекта/Под ред. Д. А. Поспелова. - М.: Наука, 1986. - 312 с.

В многокритериальных задачах, когда из первоначальной постановки не удается выделить критерий, преобладающий по важности над другими - главный критерий, довольно часто критерии искусственно комбинируют посредством агрегирующей функции, с параметрами - весовыми коэффициентами, назначаемыми каждому критерию согласно его относительной важности. Этот подход часто называют скаляризацией или сверткой векторного критерия. А получающуюся при этом параметризованную функцию, сводящую исходную многокритериальную задачу к однокритериальной, - обобщенным, агрегированным, глобальным критерием или суперкритерием. Наиболее широко распространенным видом обобщенного критерия является линейная свертка, когда глобальный критерий представляется в виде суммы (иногда произведения) частных критериев, умноженных на соответствующие весовые коэффициенты.

При применении этого способа определенные трудности вызывает правильный выбор весовых коэффициентов, проблематична интерпретация получаемых результатов. Использовать рассмотренный прием образования обобщенного критерия имеет смысл только в тех случаях, когда интерес представляет сумма отдельных критериальных функций. В общем же случае происходит просто замена одних неопределенностей другими, замаскированная математическими выкладками .

Существуют также случаи, когда довольно проблематично назначить каждому критерию определенный весовой коэффициент, соответствующий его важности относительно остальных. Тогда прибегают к свертке критериев где весовые коэффициенты не отражают относительной важности критериев, а изменяясь в определенных пределах, способствуют тем самым локализации точек в множестве Парето. При этом еще больше возрастает роль ЛПР, т.к. при выборе весовых коэффициентов он руководствуется в основном собственным опытом и интуицией, что также требует от него определенной квалификации.

Неоднократно отмечались ошибки и противоречия, которые делает человек при назначении весов критериев. Достаточно обстоятельный обзор различных методов назначения весов подводит к выводу, что не существует корректных методов решения человеком этой задачи. Такое поведение человека при решении многокритериальных зада является повторяющимся и устойчивым.

Имеются результаты экспериментов, из которых следует, что человек назначает веса критериев с существенными ошибками по сравнению с объективно известными, что назначаемые веса противоречат его непосредственным оценкам альтернатив и т.д. Хотя дискуссия о возможности использования весов в методах принятия решений еще продолжается, полученных данных уже достаточно, чтобы считать эту операцию достаточно сложной для ЛПР .

Суммируя сказанное можно сделать следующий вывод. Метод сверток применялся и применяется наиболее часто, но имеет труднопреодолимые недостатки :

  • - не всегда потеря качества по одному критерию компенсируется приращением по другому. «Оптимальное» по свертке решение может характеризоваться низким качеством некоторых частных критериев и в связи с этим будет неприемлемым;
  • - не всегда можно задать веса критериев. Зачастую известна лишь сопоставимая важность критериев, иногда нет никакой информации о важности;
  • - результат сильно зависит от предпочтений ЛПР, который чаще всего назначает веса, исходя из интуитивного представления о сравнительной важности критериев;
  • - величина функции цели, полученная по свертке, не имеет никакого физического смысла;
  • - многократный запуск алгоритма по свертке может давать только несколько различных точек Парето (или одну и ту же) даже в случае, когда в действительности этих точек очень много;
  • - данный подход не способен генерировать истинные Парето-оптимальные решения в условиях невыпуклых поисковых пространств, что является серьезным препятствием при решении многих практических задач.

Итак, для решения любой многокритериальной задачи необходимо учитывать сведения об относительной важности частных критериев.

В некоторых многокритериальных задачах частные критерии строго упорядочены по важности так, что следует добиваться приращения более важного критерия за счет любых потерь по всем остальным менее важным критериям. Но в большинстве случаев возникает ситуация, когда выделить главный или упорядочить критерии по важности не удается. Тогда зачастую прибегают к свертке критериев в обобщенный критерий. Применение данного подхода к формированию множества Парето, также как методов последовательных уступок и выделения основного частного критерия, связано с рядом возникающих при этом трудностей, что ставит вопрос о целесообразности использования подобных подходов и необходимости разработки методов, лишенных их недостатков.

К тому же, характерной чертой, объединяющей 3 рассмотренных подхода, является то, что в каждом из них задача многокритериальной оптимизации сводится к одной или нескольким задачам однокритериальной оптимизации.

Таким образом, теряется суть решаемой задачи, ее отличительная особенность - одновременный учет многих критериев. А сами методы должны работать многократно, чтобы сгенерировать множество точек Парето с тем, чтобы дальше выполнить оценку решения, значительно увеличивая затрачиваемые при этом вычислительные ресурсы.

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.



Закрытие ИП