Стационарный пуассоновский поток отказов. Смотреть страницы где упоминается термин пуассоновский поток

Описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью.

Вероятностные свойства потока Пуассона полностью характеризуются функцией Λ(А) , равной приращению в интервале А некоторой убывающей функции. Чаще всего поток Пуассона имеет мгновенное значение параметра λ(t) - функцию, в точках непрерывности которой вероятность события потока в интервале равна λ(t)dt . Если А - отрезок , то

Λ (A) = ∫ a b λ (t) d t {\displaystyle \Lambda (A)=\int \limits _{a}^{b}\lambda (t)\,dt}

Поток Пуассона, для которого λ(t) равна постоянной λ , называется простейшим потоком с параметром λ .

Потоки Пуассона определяются для многомерного и вообще любого абстрактного пространства, в котором можно ввести меру Λ(А) . Стационарный поток Пуассона в многомерном пространстве характеризуется пространственной плотностью λ . При этом Λ(А) равна объему области А , умноженному на λ .

Классификация

Различают два вида процессов Пуассона: простой (или просто: процесс Пуассона) и сложный (обобщённый).

Простой процесс Пуассона

Пусть λ > 0 {\displaystyle \lambda >0} . Случайный процесс { X t } t ≥ 0 {\displaystyle \{X_{t}\}_{t\geq 0}} называется однородным Пуассоновским процессом с интенсивностью λ {\displaystyle \lambda } , если

Сложный (обобщённый) пуассоновский процесс

Обозначим через S k {\displaystyle S_{k}} сумму первых k элементов введённой последовательности.

Тогда определим сложный Пуассоновский процесс { Y t } {\displaystyle \{Y_{t}\}} как S N (t) {\displaystyle S_{N(t)}} .

Свойства

  • Пуассоновский процесс принимает только неотрицательные целые значения, и более того
P (X t = k) = λ k t k k ! e − λ t , k = 0 , 1 , 2 , … {\displaystyle \mathbb {P} (X_{t}=k)={\frac {\lambda ^{k}t^{k}}{k!}}e^{-\lambda t},\quad k=0,1,2,\ldots } .
  • Траектории процесса Пуассона - кусочно-постоянные, неубывающие функции со скачками равными единице почти наверное. Более точно
P (X t + h − X t = 0) = 1 − λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=0)=1-\lambda h+o(h)} P (X t + h − X t = 1) = λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=1)=\lambda h+o(h)} P (X t + h − X t > 1) = o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}>1)=o(h)} при h → 0 {\displaystyle h\to 0} ,

где o (h) {\displaystyle o(h)} обозначает «о малое» .

Критерий

Для того чтобы некоторый случайный процесс { X t } {\displaystyle \{X_{t}\}} с непрерывным временем был пуассоновским (простым, однородным) или тождественно нулевым достаточно выполнение следующих условий:

Информационные свойства

Зависит ли T {\displaystyle T} от предыдущей части траектории?
P ({ T > t + s ∣ T > s }) {\displaystyle \mathbb {P} (\{T>t+s\mid T>s\})} - ?

Пусть u (t) = P (T > t) {\displaystyle u(t)=\mathbb {P} (T>t)} .

U (t ∣ s) = P (T > t + s ∩ T > s) P (T > s) = P (T > t + s) P (T > s) {\displaystyle u(t\mid s)={\frac {\mathbb {P} (T>t+s\cap T>s)}{\mathbb {P} (T>s)}}={\frac {\mathbb {P} (T>t+s)}{\mathbb {P} (T>s)}}}
u (t ∣ s) u (s) = u (t + s) {\displaystyle u(t\mid s)u(s)=u(t+s)}
u (t ∣ s) = s (t) ⇔ u (t) = e − α t {\displaystyle u(t\mid s)=s(t)\Leftrightarrow u(t)=e^{-\alpha t}} .
Распределение длин промежутков времени между скачка́ми обладает свойством отсутствия памяти ⇔ оно показательно .

X (b) − X (a) = n {\displaystyle X(b)-X(a)=n} - число скачков на отрезке [ a , b ] {\displaystyle } .
Условное распределение моментов скачков τ 1 , … , τ n ∣ X (b) − X (a) = n {\displaystyle \tau _{1},\dots ,\tau _{n}\mid X(b)-X(a)=n} совпадает с распределением вариационного ряда, построенного по выборке длины n {\displaystyle n} из R [ a , b ] {\displaystyle R} .

Плотность этого распределения f τ 1 , … , τ n (t) = n ! (b − a) n I (t j ∈ [ a , b ] ∀ j = 1 , n ¯) {\displaystyle f_{\tau _{1},\dots ,\tau _{n}}(t)={\frac {n!}{(b-a)^{n}}}\mathbb {I} (t_{j}\in \ \forall j={\overline {1,n}})}

ЦПТ

  • Теорема.

P (X (t) − λ t λ t < x) ⇉ x λ t → ∞ Φ (x) ∼ N (0 , 1) = 1 2 π ∫ − ∞ x e − u 2 2 d u {\displaystyle \mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}}

Скорость сходимости:
sup x | P (X (t) − λ t λ t < x) − Φ (x) | ⩽ C 0 λ t {\displaystyle \sup \limits _{x}{\biggl |}\mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}},
где C 0 {\displaystyle C_{0}} - константа Берри-Эссеена .

Применение

Поток Пуассона служит для моделирования различных реальных потоков: несчастных случаев, потока заряженных частиц из космоса, отказов оборудования и других. Так же возможно применение для анализа финансовых механизмов, таких как поток платежей и других реальных потоков. Для построения моделей различных систем обслуживания и анализа их пригодности.

Использование потоков Пуассона значительно упрощает решение задач систем массового обслуживания , связанных с расчетом их эффективности. Но необоснованная замена реального потока потоком Пуассона там, где это недопустимо, приводит к грубым просчетам.

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток - это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a - параметр Пуассона.

Если λ (t ) = const(t ), то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ), то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, - другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет - график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток - поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r - равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ - интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом - в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение T н = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма - моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3.

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M}

Бизнес идеи