Технология RAD. Методология RAD — Rapid Application Development

Методология разработки софта - организация труда, включающая идеологические принципы, план, контроль над процессами, подход к сотрудникам. Выделим 12 видов:

  • Waterfall - традиционный подход.
  • RUP (Rational Unified Process) - рациональный.
  • Agile - общая методология гибкой разработки.
  • Crystal Clear - подход с уравниванием разработчиков в коллективе.
  • Spiral - спиральный метод.
  • DSDM (Dynamic Systems Development Model) - динамическая модель.
  • FDD (Feature Driven Development) - методология, рассматривающая будущие изменения.
  • JAD (Joint Application Development) - ориентированный на пользователя подход.
  • RAD (Rapid Application Development) - модель быстрой разработки.
  • Scrum - концепция работы в условиях сорванных сроков и идеологического кризиса.
  • XP (Extreme Programming) - экстремальная разработка в динамической среде.
  • LD (Lean Development) - метод, предполагающий бережное отношение ко всем участникам процесса.

Давайте попробуем разобраться, что скрывается за этими английскими названиями.

Waterfall

Модель Waterfall относится к классическому пониманию разработки ПО. Весь процесс является жестким и линейным, имеет четкие цели для каждого этапа, новая фаза начинается по завершению предыдущей, нет возврата назад. Преимущества водопадной методологии - децентрализация и строгий контроль над сроками и качеством исполнения.

На практике Waterfall часто не оправдывает ожиданий, поскольку игнорирует динамические изменения. Так, после тестирования очень сложно откатить процесс и заложить функции, не учтенные на стадии разработки. Waterfall неэффективен ещё и потому, что предполагает временные простои сотрудников в рамках одного проекта. Тестирование проводится только в конце разработки, хотя проблемы, найденные на этом этапе - это дорогостоящие исправления.

RUP

RUP - итеративный подход, который решает проблемы, которые есть у Waterfall. Чем хорош RUP:

  • Учитывает изменяющиеся требования. Как бы ни был хорош руководитель проекта, учесть всё в начале невозможно.
  • Интеграция функций происходит постепенно, то есть каждая «деталь» проходит цикл разработки, проверки и внедрения в проект. Как следствие, снижаются риски и стоимость производства.
  • Ранний выпуск продукта. ПО выходит с уменьшенной функциональностью, чтобы занять нишу на рынке и противостоять конкурентам, после чего обрастает «мясом».
  • Повторное использование. При наращивании функциональности проще выделить типовые решения, которые сократят разработку.
  • Постоянное обучение. Из-за частых итераций разработчики не имеют больших пауз между доработкой кода, поэтому профессиональный рост происходит плавно и безболезненно.
  • Постоянное улучшение продукта. Итерации позволяют оценить проект не только с точки зрения соответствия плану и ТЗ, но и найти пути увеличения эффективности и качества продукта.

Agile

Agile - метод гибкой разработки программного обеспечения, предполагающий большое количество итераций. Документ Agile Manifesto описывает 4 идей и 12 принципов гибкого подхода, коротко его можно описать всего двумя пунктами:

  • Неформальные отношения важнее задокументированных. То есть устные договоренности между сотрудниками, между заказчиком и исполнителем важнее всего, что отражено в планах, договорах и техническом задании. Иначе говоря, клиент всегда прав.
  • Работающий продукт - главная оценка прогресса. Важны не инструменты, решения, производительность и изящество, а тот факт, что все запланированные возможности реализованы.

Несмотря на недостатки, Agile стала фундаментальной концепцией для разработки ПО и нашла отражение в других методологиях, речь о которых пойдет далее.

Crystal Clear

Методология, созданная для небольших коллективов из 6−10 сотрудников. Также поддерживает принципы гибкой разработки, но имеет чуть больше конкретики. Основная идея, которая и заключена в названии - каждая команда является набором людей с разным уровнем знаний, разными умениями и опытом.

Именно поэтому нет универсального подхода для разработки софта, он должен определяться в процессе общения внутри группы. Там же назначаются роли, инструменты, стандарты. Затем группа принимается за единицу и те же самые вопросы решаются на уровень выше, пока иерархия не дойдет до заказчика.

Spiral

Модель спирального жизненного цикла - это сложная организация жизненного цикла ПО, которая фокусируется на раннем выявлении и уменьшении проектных рисков. Разработка начинается в небольшом масштабе, решаются локальные задачи, оцениваются риски и пути их уменьшения. Следующий шаг охватывает более комплексные задачи - следующий виток спирали.

Преимущество подхода не в увеличении скорости разработки, а в снижении уровня возникновения рисков. Успешность спирального метода зависит от добросовестного, внимательного и компетентного управления, а размер проекта не имеет принципиального значения.

DSDM

Модель развития динамических систем была разработана в Великобритании в середине 1990-х годов и является эволюционным развитием быстрой разработки приложений (RAD). Основная идея стандартная: при планировании в самом начале невозможно понимать всех тонкостей разработки, поэтому весь процесс - исследовательская работа.

В DSDM тоже присутствует деление на команды, в каждой из которых есть уполномоченный для принятия стратегических решений. В процессе могут участвовать все заинтересованные стороны: пользователи, разработчики, заказчики, руководители. Тестирование проводится на протяжении всего жизненного цикла.

FDD

FDD - процесс для обеспечения масштабируемости и повторяемости, при этом поощряющий творчество и инновации. Вот основные принципы:

  • Разработка каждого крупного проекта должна иметь системность.
  • Процессы должны быть простыми и проработанными.
  • Ценность и логичность процесса должна быть ясна каждому члену команды.
  • Предпочтение отдаётся коротким итеративным циклам разработки. Это уменьшает количество ошибок и позволяет быстрее наращивать функциональность.

FDD регламентирует время, которое должно затрачиваться на каждый из процессов. Организационной деятельности в цикле должна занимать не более 23−25%, в то время как на непосредственную разработку, сборку и тестирование функций необходимо тратить 75−77% времени.

JAD

JAD - это методология, нацеленная на максимальную занятость в разработке конечного пользователя. Происходит это посредством встреч и проведения совместных семинаров. JAD была придумана в 1970-х годах сотрудниками IBM и нацелена на бизнес в целом. Однако со временем данная концепция стала успешно применяться и для разработки программного обеспечения.

В отличие от подхода Waterfall, JAD приводит к сокращению времени разработки, большей удовлетворенности клиентов и экономии средств на изучении рынка. С другой стороны, это требует большой клиентской выборки и необходимости разработчиков работать не со строгими требованиями ТЗ, а с постоянно меняющимся мнением.

RAD

RAD - методология, которая во главу угла ставит скорость и удобство разработки. Одно из главных условий - использование языка быстрой разработки. Это название абстрактного языка программирования, с помощью которого программист способен решать задачи быстрее, чем с представителями третьего поколения (C / C ++, Pascal или Fortran). Вот ещё несколько пунктов концепции:

  • Использование фокус-групп для сбора требований.
  • Прототипирование и пользовательское тестирование конструкций.
  • Повторное использование программных компонентов.
  • Использование плана, не включающего переработку, или дизайн следующей версии продукта.
  • Проведение неформальных совещаний по запросу одной из сторон.

RAD предполагает использование целого комплекса инструментов помимо языка быстрой разработки: системы сбора требований, среды разработки, фреймворки, программы для группового общения, ПО для тестирования.

Scrum

Scrum - гибкий метод управления проектами, целью которого является повышение производительности труда в командах, ранее парализованных более тяжелыми методологическими процессами. В основе концепции лежат «спринты». Спринт - короткая итерация, строго ограниченная по времени (обычно 2−4 недели). В это время минимизируется длительность совещаний, но увеличивается их частота (они называются «схватками»).

Благодаря этому контроль за выполнением становится более гибким, а разработчики быстрее реагируют на возникающие проблемы. Традиционное планирование отходит на второй план, его место занимает журнал спринтов.

XP

Экстремальное программирование - возможность вести разработку в условиях постоянно меняющихся требований. Вот несколько признаков:

  • Игра в планирование. В начале проекта есть только приблизительный план, после каждой итерации его чёткость возрастает.
  • Высокая частота релизов. Новая версия продукта имеет незначительные изменения по сравнению с предыдущей, но время на выпуск при этом минимально.
  • Контакт с клиентом. Для удовлетворения требований конечной аудитории необходимо оперативное реагирование на замечания и пожелания.
  • Рефакторинг. Улучшение качества кода без уменьшения функциональности.
  • Стандарт выполнения кода. Или применяются общие правила, или разногласия в оформлении не подлежат обсуждению и критике.
  • Коллективная ответственность. Несмотря на то, что каждый член команды выполняет свой участок работ, за код в целом отвечает весь коллектив.

LD

Бережливая разработка ПО - ещё одно ответвление гибкой методологии, предполагающее сохранение высокого морально-функционального состояния разработчиков. Это выражается в:

  • Поощрении сотрудников за успешную работу.
  • Изменении текущих задач только по мере необходимости или по запросу заказчика.
  • Строгом выполнении плана: всё, что сверх - считается потерями времени и ресурсов.
  • Внедрении общей концепции «Мыслить широко, делать мало, ошибаться быстро, учиться стремительно».

В условиях короткого дайджеста трудно раскрыть все преимущества и недостатки методологий, показать эффективные области применения. О наиболее актуальных на сегодняшний день концепциях мы поговорим отдельно. О каких именно? Оставляйте свои пожелания в комментариях.

Срочная разработка программного обеспечения - это суровая необходимость современного ИТ-рынка. Положение индустрии таково, что приходится реагировать достаточно эффективно на любые условия, которые меняются часто. Быстро, срочно - эти слова не исчезают из лексикона успешных разработчиков. Приложения должны удовлетворять текущий запрос, предоставляя тот функционал, о котором вчера лишь догадывались, а сегодня он уже необходим именно это и есть и срочная разработка программного обеспечения. Разработка программ сегодня проникла буквально во все сферы жизни и новые требования могут появится с любой стороны. Программное обеспечение сегодня это:

  • Современное управление
  • Контроль
  • Мониторинг

Срочно - не значит некачественно?

Разработка программ - это трудоёмкий процесс, который требователен к уровню и знаниям исполнителя. Традиционно считается, что качество подразумевает долгий цикл. Но так ли это на самом деле? Возможна ли быстро и срочно разработать ПО?

  • Чтобы продукт получался быстро - необходима либо слаженная команда профессионалов, либо отдельный исполнитель-универсал. Разумеется, это не подходит ко всем программам.
  • Контроль качества - обязательная процедура. Контроль качества и отлов «багов» в таком процессе как создание программного обеспечения не может быть исключён из производственного процесса, даже для ускорения. Это необходимое условие для профессионально сделанной программы.
  • Чтобы срочность не вредила итоговому продукту, нужны исполнители, которые давно освоили и создали свой производственный процесс. Скорее всего разработка ПО у таких специалистов пройдёт действительно качественно и быстро.

Заказать срочные услуги разработки сегодня может любой, кому исполнение необходимо быстро, срочно и профессионально. Остаётся открытым вопрос, где найти грамотных специалистов под срочное создание программ?

Поиск исполнителей.

Много специалистов, вольнонаёмных и объединённых в организации оказывают подобные услуги. Заказать у них можно всё что угодно, естественно что цены будут зависеть от уровня специалиста, его востребованности и сложности задачи. Есть три основных пути, которыми пользуется большинство заказчиков.

  • Студийная разработка. Студии предполагают хорошее качество исполнения, но за срочность берут очень и очень солидные надбавки. Заказать у них программу можно, если заказчик готов оплатить эти расходы.
  • Фрилансеры. Спорный вопрос. Можно сэкономить, а можно получить сорванные сроки и очень посредственное качество.

Специализированные платформы, которые предлагают удобную площадку для размещения заказа и конкуренции вольнонаёмных специалистов. Отличаются от предыдущего варианта быстротой, безопасностью и возможность выбрать наиболее конкурентное предложение. Лучший из сервисов - Юду, который даёт возможность изучить правдивое портфолио каждого специалиста и выбрать наиболее подходящий вариант.

Разработка программного продукта знает много достойных методологий - иначе говоря, устоявшихся best practices. Выбор зависит от специфики проекта, системы бюджетирования, субъективных предпочтений и даже темперамента руководителя. В статье описаны методологии, с которыми мы регулярно сталкиваемся в Эдисоне .

1. «Waterfall Model» (каскадная модель или «водопад»)


Одна из самых старых, подразумевает последовательное прохождение стадий, каждая из которых должна завершиться полностью до начала следующей. В модели Waterfall легко управлять проектом. Благодаря её жесткости, разработка проходит быстро, стоимость и срок заранее определены. Но это палка о двух концах. Каскадная модель будет давать отличный результат только в проектах с четко и заранее определенными требованиями и способами их реализации. Нет возможности сделать шаг назад, тестирование начинается только после того, как разработка завершена или почти завершена. Продукты, разработанные по данной модели без обоснованного ее выбора, могут иметь недочеты (список требований нельзя скорректировать в любой момент), о которых становится известно лишь в конце из-за строгой последовательности действий. Стоимость внесения изменений высока, так как для ее инициализации приходится ждать завершения всего проекта. Тем не менее, фиксированная стоимость часто перевешивает минусы подхода. Исправление осознанных в процессе создания недостатков возможно, и, по нашему опыту, требует от одного до трех дополнительных соглашений к контракту с небольшим ТЗ.

С помощью каскадной модели мы создали множество проектов «с нуля», включая разработку только ТЗ. Проекты, о которых написано на Хабре: средний - рентгеновский микротомограф , мелкий - автообновление службы Windows на AWS .

Когда использовать каскадную методологию?

  • Только тогда, когда требования известны, понятны и зафиксированы. Противоречивых требований не имеется.
  • Нет проблем с доступностью программистов нужной квалификации.
  • В относительно небольших проектах.

2. «V-Model»


Унаследовала структуру «шаг за шагом» от каскадной модели. V-образная модель применима к системам, которым особенно важно бесперебойное функционирование. Например, прикладные программы в клиниках для наблюдения за пациентами, интегрированное ПО для механизмов управления аварийными подушками безопасности в транспортных средствах и так далее. Особенностью модели можно считать то, что она направлена на тщательную проверку и тестирование продукта , находящегося уже на первоначальных стадиях проектирования. Стадия тестирования проводится одновременно с соответствующей стадией разработки, например, во время кодирования пишутся модульные тесты.

Пример нашей работы на основе V-методологии - мобильное приложение для европейского сотового оператора, который экономит расходы на роуминг во время путешествий. Проект выполняется по четкому ТЗ, но в него включен значительный этап тестирования: удобства интерфейса, функционального, нагрузочного и в том числе интеграционного, которое должно подтверждать, что несколько компонентов от различных производителей вместе работают стабильно, невозможна кража денег и кредитов.

Когда использовать V-модель?

  • Если требуется тщательное тестирование продукта, то V-модель оправдает заложенную в себя идею: validation and verification.
  • Для малых и средних проектов, где требования четко определены и фиксированы.
  • В условиях доступности инженеров необходимой квалификации, особенно тестировщиков.

3. «Incremental Model» (инкрементная модель)

В инкрементной модели полные требования к системе делятся на различные сборки. Терминология часто используется для описания поэтапной сборки ПО. Имеют место несколько циклов разработки, и вместе они составляют жизненный цикл «мульти-водопад». Цикл разделен на более мелкие легко создаваемые модули. Каждый модуль проходит через фазы определения требований, проектирования, кодирования, внедрения и тестирования. Процедура разработки по инкрементной модели предполагает выпуск на первом большом этапе продукта в базовой функциональности, а затем уже последовательное добавление новых функций, так называемых «инкрементов». Процесс продолжается до тех пор, пока не будет создана полная система.

Инкрементные модели используются там, где отдельные запросы на изменение ясны, могут быть легко формализованы и реализованы. В наших проектах мы применяли ее для создания читалки DefView, а следом и сети электронных библиотек Vivaldi.

Как пример опишем cуть одного инкремента. Сеть электронных библиотек Vivaldi пришла на смену DefView. DefView подключалась к одному серверу документов, а теперь может подключаться ко многим. На площадку учреждения, желающего транслировать свой контент определенной аудитории, устанавливается сервер хранения, который напрямую обращается к документам и преобразует их в нужный формат. Появился корневой элемент архитектуры - центральный сервер Vivaldi, выступающий в роли единой поисковой системы по всем серверам хранения, установленным в различных учреждениях.

Когда использовать инкрементную модель?

  • Когда основные требования к системе четко определены и понятны. В то же время некоторые детали могут дорабатываться с течением времени.
  • Требуется ранний вывод продукта на рынок.
  • Есть несколько рисковых фич или целей.

4. «RAD Model» (rapid application development model или быстрая разработка приложений)

RAD-модель - разновидность инкрементной модели. В RAD-модели компоненты или функции разрабатываются несколькими высококвалифицированными командами параллельно, будто несколько мини-проектов. Временные рамки одного цикла жестко ограничены. Созданные модули затем интегрируются в один рабочий прототип. Синергия позволяет очень быстро предоставить клиенту для обозрения что-то рабочее с целью получения обратной связи и внесения изменений.

Модель быстрой разработки приложений включает следующие фазы:

  • Бизнес-моделирование: определение списка информационных потоков между различными подразделениями.
  • Моделирование данных: информация, собранная на предыдущем этапе, используется для определения объектов и иных сущностей, необходимых для циркуляции информации.
  • Моделирование процесса: информационные потоки связывают объекты для достижения целей разработки.
  • Сборка приложения: используются средства автоматической сборки для преобразования моделей системы автоматического проектирования в код.
  • Тестирование: тестируются новые компоненты и интерфейсы.
Когда используется RAD-модель?

Может использоваться только при наличии высококвалифицированных и узкоспециализированных архитекторов. Бюджет проекта большой, чтобы оплатить этих специалистов вместе со стоимостью готовых инструментов автоматизированной сборки. RAD-модель может быть выбрана при уверенном знании целевого бизнеса и необходимости срочного производства системы в течение 2-3 месяцев.

5. «Agile Model» (гибкая методология разработки)


В «гибкой» методологии разработки после каждой итерации заказчик может наблюдать результат и понимать, удовлетворяет он его или нет. Это одно из преимуществ гибкой модели. К ее недостаткам относят то, что из-за отсутствия конкретных формулировок результатов сложно оценить трудозатраты и стоимость, требуемые на разработку. Экстремальное программирование (XP) является одним из наиболее известных применений гибкой модели на практике.

В основе такого типа - непродолжительные ежедневные встречи - «Scrum» и регулярно повторяющиеся собрания (раз в неделю, раз в две недели или раз в месяц), которые называются «Sprint». На ежедневных совещаниях участники команды обсуждают:

  • отчёт о проделанной работе с момента последнего Scrum’a;
  • список задач, которые сотрудник должен выполнить до следующего собрания;
  • затруднения, возникшие в ходе работы.
Методология подходит для больших или нацеленных на длительный жизненный цикл проектов, постоянно адаптируемых к условиям рынка. Соответственно, в процессе реализации требования изменяются. Стоит вспомнить класс творческих людей, которым свойственно генерировать, выдавать и опробовать новые идеи еженедельно или даже ежедневно. Гибкая разработка лучше всего подходит для этого психотипа руководителей. Внутренние стартапы компании мы разрабатываем по Agile. Примером клиентских проектов является Электронная Система Медицинских Осмотров , созданная для проведения массовых медосмотров в считанные минуты. Во втором абзаце этого отзыва , наши американские партнеры описали очень важную вещь, принципиальную для успеха на Agile.

Когда использовать Agile?

  • Когда потребности пользователей постоянно меняются в динамическом бизнесе.
  • Изменения на Agile реализуются за меньшую цену из-за частых инкрементов.
  • В отличие от модели водопада, в гибкой модели для старта проекта достаточно лишь небольшого планирования.

6. «Iterative Model» (итеративная или итерационная модель)

Итерационная модель жизненного цикла не требует для начала полной спецификации требований. Вместо этого, создание начинается с реализации части функционала, становящейся базой для определения дальнейших требований. Этот процесс повторяется. Версия может быть неидеальна, главное, чтобы она работала. Понимая конечную цель, мы стремимся к ней так, чтобы каждый шаг был результативен, а каждая версия - работоспособна.

На диаграмме показана итерационная «разработка» Мона Лизы. Как видно, в первой итерации есть лишь набросок Джоконды, во второй - появляются цвета, а третья итерация добавляет деталей, насыщенности и завершает процесс. В инкрементной же модели функционал продукта наращивается по кусочкам, продукт составляется из частей. В отличие от итерационной модели, каждый кусочек представляет собой целостный элемент.

Примером итерационной разработки может служить распознавание голоса. Первые исследования и подготовка научного аппарата начались давно, в начале - в мыслях, затем - на бумаге. С каждой новой итерацией качество распознавания улучшалось. Тем не менее, идеальное распознавание еще не достигнуто, следовательно, задача еще не решена полностью.

Когда оптимально использовать итеративную модель?

  • Требования к конечной системе заранее четко определены и понятны.
  • Проект большой или очень большой.
  • Основная задача должна быть определена, но детали реализации могут эволюционировать с течением времени.

7. «Spiral Model» (спиральная модель)


«Спиральная модель» похожа на инкрементную, но с акцентом на анализ рисков. Она хорошо работает для решения критически важных бизнес-задач, когда неудача несовместима с деятельностью компании, в условиях выпуска новых продуктовых линеек, при необходимости научных исследований и практической апробации.

Спиральная модель предполагает 4 этапа для каждого витка:

  1. планирование;
  2. анализ рисков;
  3. конструирование;
  4. оценка результата и при удовлетворительном качестве переход к новому витку.
Эта модель не подойдет для малых проектов, она резонна для сложных и дорогих, например, таких, как разработка системы документооборота для банка, когда каждый следующий шаг требует большего анализа для оценки последствий, чем программирование. На проекте по разработке СЭД для ОДУ Сибири СО ЕЭС два совещания об изменении кодификации разделов электронного архива занимают в 10 раз больше времени, чем объединение двух папок программистом. Государственные проекты, в которых мы участвовали, начинались с подготовки экспертным сообществом дорогостоящей концепции, которая отнюдь не всегда бесполезна, поскольку окупается в масштабах страны.

Подытожим


На слайде продемонстрированы различия двух наиболее распространенных методологий.

В современной практике модели разработки программного обеспечения многовариантны. Нет единственно верной для всех проектов, стартовых условий и моделей оплаты. Даже столь любимая всеми нами Agile не может применяться повсеместно из-за неготовности некоторых заказчиков или невозможности гибкого финансирования. Методологии частично пересекаются в средствах и отчасти похожи друг на друга. Некоторые другие концепции использовались лишь для пропаганды собственных компиляторов и не привносили в практику ничего нового.

О технологиях разработки:
Ещё раз про семь основных методологий разработки .
10 главных ошибок масштабирования систем .
8 принципов планирования разработки, упрощающих жизнь .
5 главных рисков при заказной разработке ПО .

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.

Один из подходов к разработке ПО в рамках спиральной модели ЖЦ – получившая широкое распространение методология (технология) быстрой разработки приложений RAD (Rapid Application Development) . Данная модель очень хорошо подходит к разработке учебных программ, т.к. включает в себя три составляющие:

Ø небольшую команду программистов (от 2 до 10 человек);

Ø короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

Ø повторяющийся цикл, при котором разработчики по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Рассмотрим данную модель более подробно. Команда разработчиков должна представлять собой группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств, способных хорошо взаимодействовать с конечными пользователями и трансформировать их предложения в рабочие прототипы. Жизненный цикл ПО по методологии RAD состоит из четырёх фаз (рисунок 21):

1. Анализа и планирования требований;

2. Проектирования;

3. Построения;

4. Внедрения.


На первой фазе анализа и планирования требований пользователи системы определяют функции, которые она должна выполнять, выделяют наиболее приоритетные из них, требующие проработки в первую очередь, описывают информационные потребности (связи). Формулирование требований к системе осуществляется в основном силами пользователей под руководством специалистов-разработчиков. Ограничивается масштаб проекта, устанавливаются временные рамки для каждой из последующих фаз. Кроме того, определяется сама возможность реализации проекта в заданных размерах финансирования, на имеющихся аппаратных средствах и т.п.

Результатом фазы должны быть: список расставленных по приоритету функций будущей ПС; предварительная функциональная модель ПС; предварительная информационная модель ПС.

На второй фазе проектирования часть пользователей принимают участие в техническом проектировании системы под руководством специалистов-разработчиков и, взаимодействуя с ними, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей фазе. Более подробно рассматриваются процессы системы . При необходимости корректируется функциональная модель, создаются частичные прототипы: экранов, отчетов, устраняющие неясности или неоднозначности. Устанавливаются требования разграничения доступа к данным . На этой же фазе происходит определение необходимой документации. После детального определения состава процессов оценивается количество функциональных элементов разрабатываемой системы и принимается решение о разделении системы на подсистемы.

Результатом данной фазы должны быть: общая информационная модель системы; функциональные модели системы в целом и подсистем; точно определенные интерфейсы между автономно разрабатываемыми подсистемами; построенные прототипы экранов, отчетов, диалогов.

В отличие от традиционного подхода, при котором использовались специфические средства прототипирования, не предназначенные для построения реальных приложений, а прототипы выбрасывались после того, как выполняли задачу устранения неясностей в проекте, в подходе RAD каждый прототип развивается в часть будущей системы . Таким образом, на следующую фазу передается более полная и полезная информация.

На третьей фазе построения выполняется непосредственно сама быстрая разработка приложения (реализация подсистем). На данной фазе разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется в процессе разработки.

После окончания разработки подсистем производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование системы в целом. Завершается физическое проектирование системы: определяется необходимость распределения данных; осуществляется анализ использования данных; производится физическое проектирование базы данных; определяются требования к аппаратным ресурсам; определяются способы увеличения производительности; завершается разработка документации проекта.

Результатом фазы является готовая система, удовлетворяющая всем согласованным требованиям.

На четвертой фазе внедрения производятся обучение пользователей, организационные изменения и параллельно с внедрением новой системы осуществляется работа с существующей системой (до полного внедрения новой). Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на этапе проектирования системы.

Технология RAD (как и любая другая) не может претендовать на универсальность, она хороша в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика. Она неприменима для разработки операционных систем; сложных расчетных программ с большим объемом программного кода и сложными уникальными алгоритмами управления; приложений, в которых отсутствует ярко выраженная интерфейсная часть, наглядно определяющая логику работы системы (приложения реального времени), так как итерационный подход предполагает, что несколько первых версий не будут полностью соответствовать требованиям.

В заключение перечислим основные принципы технологии RAD:

Ø разработка приложений итерациями;

Ø необязательность полного завершения работ на каждом этапе ЖЦ;

Ø обязательное вовлечение пользователей на этапе разработки;

Ø использование прототипирования, позволяющего выяснить и удовлетворить все требования конечного пользователя;

Ø тестирование и развитие проекта одновременно с разработкой;

Ø грамотное руководство разработкой, четкое планирование и контроль выполнения работ.


Контрольные вопросы к главе 3:

1. Что такое стандартизация и сертификация программного продукта?

2. Какие существуют типы стандартов?

3. Перечислите наиболее известные стандарты жизненного цикла, которые использовались для разработки программного обеспечения?

4. Что такое жизненный цикл ПО?

5. Перечислите основные этапы жизненного цикла ПО. Что такое процесс, действие, задача?

6. Какие типы процессов и конкретные процессы вы запомнили?

7. Расскажите об основных инженерных процессах жизненного цикла ПО.

8. Что такое модель жизненного цикла ПО? Дайте определения основных понятий, связанные с понятием «модель».

9. Какие типы моделей вы знаете? В чем их преимущества, недостатки, область применимости?

10.Что вы можете сказать об особенностях каскадной модели жизненного цикла?

11.В чем отличие обобщенной каскадной модели от базовой?

12.Что вы можете сказать об особенностях спиральной модели жизненного цикла?

13.Перечислите составляющие технологии RAD. Для разработки каких типов ПО можно применять технологию RAD?

14.Опишите основные фазы жизненного цикла по технологии RAD.

15.Перечислите основные принципы технологии RAD.


СПИСОК ЛИТЕРАТУРЫ

1. Аптекарь М. Д., Рамазанов С. К., Фрегер Г. Е. История инженерной деятельности. – Киев, 2003. – 204 с. : ил.

2. Арчибальд Р. Модели жизненного цикла высокотехнологичных проектов. http://www.pmprofy.ru/content/rus/107/1073-article.html

3. Брукс Ф. Мифический человеко-месяц или как создаются программные системы. – СПб. : Символ-плюс, 1999. – 321 с. : ил.

4. Буч Г. Объектно-ориентированное проектирование с примерами применения. – М.: Конкорд, 1992. – 586с. : ил.

5. Буч Г. Объектно-ориентированный анализ и объектно-ориентированное проектирование на С++. – М. : Бином, – 2001. – 558 с. : ил.

6. Вендров А. М. CASE-технологии. Современные методы и средств проектирования информационных систем. – М. : Финансы и статистика, – 1999. – 256 с. : ил.

7. Вирт Н. Алгоритмы + структуры данных = программы: Пер. с англ. – М. : Мир, 1985. – 406 с.: ил.

8. Дал О., Дейкстра Э., Хоор К. Структурное программирование: Пер. с англ. – М.: Мир, 1975. – 247 с. : ил.

9. Дзержинский Ф. Я., Калиниченко И.М. Дисциплина программирования: концепция и опыт реализации методических средств программной инженерии. – М.: ЦНИИ информации и технико-экономических исследований по атомной науке и технике, 1988. – 245 с. : ил.

10. Жоголев Е. А. Технологии программирования. – М. : Научный мир, 2004. – 216 с. : ил.

11. Закон РФ № 149-ФЗ от 29.07.2006. «Об информации, информационных технологиях и защите информации»// Российская газета, № 165 от 27.07.2006 г.

12. Иванова Г. С. Технология программирования: Учебник для вузов. – 2-е изд., стереотип. – М. : Изд-во МГТУ им. Н.Э.Баумана, 2003. – 320 с.: ил.

13. Калянов Г. Н. CASE: Структурный системный анализ (автоматизация и применение). – М. : «Лори», 1996. – 356 с. : ил.

14. Кораблин М. А. Программирование, ориентированное на объекты: Учебное пособие. – Самара: изд-во СГАУ, 1994. – 94 с.

15. Леоненков А. В. Самоучитель UML. – СПб: ВХВ Петербург, – 2001. – 304 с. : ил.

16. Липаев В. В. Качество программного обеспечения. – М.: Финансы и статистика, 1983. – 263 с. : ил.

17. Липаев В. В. Отладка сложных программ: Методы, средства, технология. –М. : Энергоатомиздат, 1993. – 384 с. : ил.

18. Липаев В. В., Филиппов Е. Н. Мобильность программ и данных в открытых информационных системах. – М. : Научная книга, 1997. – 297 с. : ил.

20. Ожегов С. И. Словарь русского языка. – М. : Мир и образование, 2006. – 1328 с.

21. Технология проектирования комплексов программ АСУ/ В. В. Липаев, Л. А. Серебровский, П. Г. Гаганов и др.; Под ред. Ю. В. Афанасьева, В. В. Липаева. – М. : Радио и связь, 1983. – 256 с. : ил.

22. Хювенен Э., Сеппянен Й. Мир ЛИСПа: Пер. с финск. В 2 т. Т.1: Введение в язык Лисп и функциональное программирование.– М. : Мир, 1990. – 447 с. : ил.

23. Хювенен Э., Сеппянен Й. Мир ЛИСПа: Пер. с финск. В 2 т. Т.2: Методы и системы программирования.– М. : Мир, 1990. – 319 с. : ил.

24. Boehm B.«A Spiral Model of Software Development and Enhancement», IEEE Computer, Vol. 21, No. 5, pp. 61–72, 1988.

25. Courtois P. June 1985. On Time and Space Decomposition of Complex Structures. Communications of the ACM vol.28(6), p.596.

26. Criteria for Evaluation of Software. ISO TC97/SC7 #383.

27. Dijktra E. 1979. Programming Considered as a Human Activity. Classics in Software Engineering. New York, NY: Yourdon Press.

28. http://www.pmi.ru/glossary/.

29. http://www.staratel.com/iso/InfTech/DesignPO/ISO12207/ISO12207-99/ISO12207.htm.

30. Microsoft Corporation. Принципы проектирования и разработки программного обеспечения. Учебный курс MCSD: Пер. с англ. – М.: Издательско-торговый дом «Русская редакция», 2000. –608 с. : ил.

31. Parnas D., Clements P., Weiss D. 1983. Enhancing Reusability with Information Hiding. Proceedings of the Workshop on Reusability in Programming. Stratford, CT: ITT Programming. p.241.

32. Rechtin E. October 1992. The Art of Systems Architecting. IEEE Spectrum, vol.29 (10), p.66.

33. Royce W.W. Managing the Development of Large Software Systems. http://facweb.cti.depaul.edu/jhuang/is553/Royce.pdf.

34. Shaw M. October 1984. Abstraction Techniques in Modern Programming Languages. IEEE Software vol.1 (4).

35. Simon H. 1982. The Sciences of the Artificial. Cambridge, MA: The MIT Press. – p.218.

36. Sommerville I. Software engineering. – Addison-Wesley Publishing Company, 1992. p.87.

37. Tesler L. August 1981. The Smalltalk Environment. Byte vol.6(8), p.142.

38. Yonezawa A., Tokoro M. 1987. Objectt-Oriented Concurrent Programming. Cambridge, MA: The MIT Press.


список терминов


Одним из возможных подходов к разработке ПО в рамках спиральной модели ЖЦ является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки ПО, содержащий 3 элемента:

    небольшую команду программистов (от 2 до 10 человек);

    короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

    повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Команда разработчиков должна представлять из себя группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств. Члены коллектива должны также уметь трансформировать в рабочие прототипы предложения конечных пользователей.

Жизненный цикл ПО по методологии RAD состоит из четырех фаз:

    фаза анализа и планирования требований;

    фаза проектирования;

    фаза построения;

    фаза внедрения.

На фазе анализа и планирования требований пользователи системы определяют функции, которые она должна выполнять, выделяют наиболее приоритетные из них, требующие проработки в первую очередь, описывают информационные потребности. Определение требований выполняется в основном силами пользователей под руководством специалистов-разработчиков. Ограничивается масштаб проекта, определяются временные рамки для каждой из последующих фаз. Кроме того, определяется сама возможность реализации данного проекта в установленных рамках финансирования, на данных аппаратных средствах и т.п. Результатом данной фазы должны быть список и приоритетность функций будущей ИС, предварительные функциональные и информационные модели ИС.

На фазе проектирования часть пользователей принимает участие в техническом проектировании системы под руководством специалистов-разработчиков. CASE-средства используются для быстрого получения работающих прототипов приложений. Пользователи, непосредственно взаимодействуя с ними, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей фазе. Более подробно рассматриваются процессы системы. Анализируется и, при необходимости, корректируется функциональная модель. Каждый процесс рассматривается детально. При необходимости для каждого элементарного процесса создается частичный прототип: экран, диалог, отчет, устраняющий неясности или неоднозначности. Определяются требования разграничения доступа к данным. На этой же фазе происходит определение набора необходимой документации.

После детального определения состава процессов оценивается количество функциональных элементов разрабатываемой системы и принимается решение о разделении ИС на подсистемы, поддающиеся реализации одной командой разработчиков за приемлемое для RAD-проектов время - порядка 60 - 90 дней. С использованием CASE-средств проект распределяется между различными командами (делится функциональная модель). Результатом данной фазы должны быть:

    общая информационная модель системы;

    функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

    точно определенные с помощью CASE-средства интерфейсы между автономно разрабатываемыми подсистемами;

    построенные прототипы экранов, отчетов, диалогов.

Все модели и прототипы должны быть получены с применением тех CASE-средств, которые будут использоваться в дальнейшем при построении системы. Данное требование вызвано тем, что в традиционном подходе при передаче информации о проекте с этапа на этап может произойти фактически неконтролируемое искажение данных. Применение единой среды хранения информации о проекте позволяет избежать этой опасности.

В отличие от традиционного подхода, при котором использовались специфические средства прототипирования, не предназначенные для построения реальных приложений, а прототипы выбрасывались после того, как выполняли задачу устранения неясностей в проекте, в подходе RAD каждый прототип развивается в часть будущей системы. Таким образом, на следующую фазу передается более полная и полезная информация.

На фазе построения выполняется непосредственно сама быстрая разработка приложения. На данной фазе разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Программный код частично формируется при помощи автоматических генераторов, получающих информацию непосредственно из репозитория CASE-средств. Конечные пользователи на этой фазе оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется непосредственно в процессе разработки.

После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения с остальными, а затем тестирование системы в целом. Завершается физическое проектирование системы:

    определяется необходимость распределения данных;

    производится анализ использования данных;

    производится физическое проектирование базы данных;

    определяются требования к аппаратным ресурсам;

    определяются способы увеличения производительности;

    завершается разработка документации проекта.

Результатом фазы является готовая система, удовлетворяющая всем согласованным требованиям.

На фазе внедрения производится обучение пользователей, организационные изменения и параллельно с внедрением новой системы осуществляется работа с существующей системой (до полного внедрения новой). Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на этапе проектирования системы. Приведенная схема разработки ИС не является абсолютной. Возможны различные варианты, зависящие, например, от начальных условий, в которых ведется разработка: разрабатывается совершенно новая система; уже было проведено обследование предприятия и существует модель его деятельности; на предприятии уже существует некоторая ИС, которая может быть использована в качестве начального прототипа или должна быть интегрирована с разрабатываемой.

Следует, однако, отметить, что методология RAD, как и любая другая, не может претендовать на универсальность, она хороша в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика. Если же разрабатывается типовая система, которая не является законченным продуктом, а представляет собой комплекс типовых компонент, централизованно сопровождаемых, адаптируемых к программно-техническим платформам, СУБД, средствам телекоммуникации, организационно-экономическим особенностям объектов внедрения и интегрируемых с существующими разработками, на первый план выступают такие показатели проекта, как управляемость и качество, которые могут войти в противоречие с простотой и скоростью разработки. Для таких проектов необходимы высокий уровень планирования и жесткая дисциплина проектирования, строгое следование заранее разработанным протоколам и интерфейсам, что снижает скорость разработки.

Методология RAD неприменима для построения сложных расчетных программ, операционных систем или программ управления космическими кораблями, т.е. программ, требующих написания большого объема (сотни тысяч строк) уникального кода.

Не подходят для разработки по методологии RAD приложения, в которых отсутствует ярко выраженная интерфейсная часть, наглядно определяющая логику работы системы (например, приложения реального времени) и приложения, от которых зависит безопасность людей (например, управление самолетом или атомной электростанцией), так как итеративный подход предполагает, что первые несколько версий наверняка не будут полностью работоспособны, что в данном случае исключается.

Оценка размера приложений производится на основе так называемых функциональных элементов (экраны, сообщения, отчеты, файлы и т.п.) Подобная метрика не зависит от языка программирования, на котором ведется разработка. Размер приложения, которое может быть выполнено по методологии RAD, для хорошо отлаженной среды разработки ИС с максимальным повторным использованием программных компонентов, определяется следующим образом:

В качестве итога перечислим основные принципы методологии RAD:

    разработка приложений итерациями;

    необязательность полного завершения работ на каждом из этапов жизненного цикла;

    обязательное вовлечение пользователей в процесс разработки ИС;

    необходимое применение CASE-средств, обеспечивающих целостность проекта;

    применение средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы;

    необходимое использование генераторов кода;

    использование прототипирования, позволяющее полнее выяснить и удовлетворить потребности конечного пользователя;

    тестирование и развитие проекта, осуществляемые одновременно с разработкой;

    ведение разработки немногочисленной хорошо управляемой командой профессионалов;

    грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.



Енвд