Программирование и создание действующих моделей. Методологии разработки программного обеспечения: понятие, принципы, методы и этапы разработки

Аннотация: Понятие процесса разработки ПО. Универсальный процесс. Текущий процесс. Конкретный процесс. Стандартный процесс. Совершенствование процесса. Pull/Push стратегии. Классические модели процесса: водопадная модель, спиральная модель. Фазы и виды деятельности.

Достоинством этой модели явилось ограничение возможности возвратов на произвольный шаг назад, например, от тестирования – к анализу, от разработки – к работе над требованиями и т.д. Отмечалось, что такие возвраты могут катастрофически увеличить стоимость проекта и сроки его выполнения. Например, если при тестировании обнаруживаются ошибки проектирования или анализа, то их исправление часто приводит к полной переделке системы. Этой моделью допускались возвраты только на предыдущий шаг, например, от тестирования к кодированию , от ПО эта модель активно критиковалась, практически, каждым автором соответствующих статей и учебников. Стало общепринятым мнение, что она не отражает особенностей разработки ПО . Недостатками водопадной модели являются:

  • отождествление фаз и видов деятельности, что влечет потерю гибкости разработки, в частности, трудности поддержки итеративного процесса разработки;
  • требование полного окончания фазы-деятельности, закрепление результатов в виде подробного исходного документа (технического задания, проектной спецификации); однако опыт разработки ПО показывает, что невозможно полностью завершить разработку требований, дизайн системы и т.д. – все это подвержено изменениям; и причины тут не только в том, что подвижно окружение проекта, но и в том, что заранее не удается точно определить и сформулировать многие решения, они проясняются и уточняются лишь впоследствии;
  • интеграция всех результатов разработки происходит в конце, вследствие чего интеграционные проблемы дают о себе знать слишком поздно;
  • пользователи и заказчик не могут ознакомиться с вариантами системы во время разработки, и видят результат только в самом конце; тем самым, они не могут повлиять на процесс создания системы, и поэтому увеличиваются риски непонимания между разработчиками и пользователями/заказчиком;
  • модель неустойчива к сбоям в финансировании проекта или перераспределению денежных средств, начатая разработка, фактически, не имеет альтернатив "по ходу дела".

Однако данная модель продолжает использоваться на практике – для небольших проектов или при разработке типовых систем, где итеративность не так востребована. С ее помощью удобно отслеживать разработку и осуществлять поэтапный контроль за проектом. Эта модель также часто используется в оффшорных проектах 1От английского offshore – вне берега, в расширенном толковании – вне одной страны. с почасовой оплатой труда. Водопадная модель вошла в качестве составной части в другие модели и методологии, например, в MSF .

Спиральная модель была предложена Бэри Боемом в 1988 году для преодоления недостатков водопадной модели, прежде всего, для лучшего управления рисками. Согласно этой модели разработка продукта осуществляется по спирали, каждый виток которой является определенной фазой разработки. В отличие от водопадной модели в спиральной нет предопределенного и обязательного набора витков, каждый виток может стать последним при разработке системы, при его завершении составляются планы следующего витка. Наконец, виток является именно фазой, а не видом деятельности, как в водопадной модели, в его рамках может осуществляться много различных видов деятельности, то есть модель является двумерной.

Последовательность витков может быть такой: на первом витке принимается решение о целесообразности создания ПО , на следующем определяются системные требования , потом осуществляется проектирование системы и т.д. Витки могут иметь и иные значения.

Каждый виток имеет следующую структуру (секторы):

  • определение целей, ограничений и альтернатив проекта;
  • оценка альтернатив, оценка и разрешение рисков; возможно использование прототипирования (в том числе создание серии прототипов), симуляция системы, визуальное моделирование и анализ спецификаций; фокусировка на самых рисковых частях проекта;
  • разработка и тестирование – здесь возможна водопадная модель или использование иных моделей и методов разработки ПО;
  • планирование следующих итераций – анализируются результаты, планы и ресурсы на последующую разработку, принимается (или не принимается) решение о новом витке; анализируется, имеет ли смысл продолжать разрабатывать систему или нет; разработку можно и приостановить, например, из-за сбоев в финансировании; спиральная модель позволяет сделать это корректно.

Отдельная спираль может соответствовать разработке некоторой программной компоненты или внесению очередных изменений в продукт. Таким образом, у модели может появиться третье измерение.

Спиральную модель нецелесообразно применять в проектах с небольшой степенью риска, с ограниченным бюджетом, для небольших проектов. Кроме того, отсутствие хороших средств прототипирования может также сделать неудобным использование спиральной модели.

Спиральная модель не нашла широкого применения в индустрии и важна, скорее в историко-методологическом плане: она является первой итеративной моделью, имеет красивую метафору – спираль, – и, подобно водопадной модели, использовалась в дальнейшем при создании других моделей процесса и методологий разработки ПО .

Методология - это система принципов, а также совокупность идей, понятий, методов, способов и средств, определяющих стиль разработки программного обеспечения.

Методология - это реализация стандарта. Сами стандарты лишь говорят о том, что должно быть, оставляя свободу выбора и адаптации.

Конкретные вещи реализуется через выбранную методологию. Именно она определяет, как будет выполняться разработка. Существует много успешных методологий создания программного обеспечения. Выбор конкретной методологии зависит от размера команды, от специфики и сложности проекта, от стабильности и зрелости процессов в компании и от личных качеств сотрудников.

Методологии представляют собой ядро теории управления разработкой программного обеспечения. К существующей классификации в зависимости от используемой в ней модели жизненного цикла (водопадные и итерационные методологии) добавилась более общая классификация на прогнозируемы и адаптивные методологии.

Прогнозируемые методологии фокусируются на детальном планировании будущего. Известны запланированные задачи и ресурсы на весь срок проекта. Команда с трудом реагирует на возможные изменения. План оптимизирован исходя из состава работ и существующих требований. Изменение требований может привести к существенному изменению плана, а также дизайна проекта. Часто создается специальный комитет по «управлению изменениями», чтобы в проекте учитывались только самые важные требования.

Адаптивные методологии нацелены на преодоление ожидаемой неполноты требований и их постоянного изменения. Когда меняются требования, команда разработчиков тоже меняется. Команда, участвующая в адаптивной разработке, с трудом может предсказать будущее проекта. Существует точный план лишь на ближайшее время. Более удаленные во времени планы существуют лишь как декларации о целях проекта, ожидаемых затратах и результатах.

SCRUM - методология, предназначенная для небольших команд (до 10 человек). Весь проект делится на итерации (спринты) продолжительностью 30 дней каждый. Выбирается список функций системы, которые планируется реализовать в течение следующего спринта. Самые важные условия - неизменность выбранных функций во время выполнения одной итерации и строгое соблюдение сроков выпуска очередного релиза, даже если к его выпуску не удастся реализовать весь запланированный функционал. Руководитель разработки проводит ежедневные 20 минутные совещания, которые так и называют - scrum, результатом которых является определение функции системы, реализованных за предыдущий день, возникшие сложности и план на следующий день. Такие совещания позволяют постоянно отслеживать ход проекта, быстро выявлять возникшие проблемы и оперативно на них реагировать.

KANBAN – гибкая методология разработки программного обеспечения, ориентированная на задачи.

  • Основные правила:
  • визуализация разработки:
    • разделение работы на задачи;
    • использование отметок о положение задачи в разработке;
  • ограничение работ, выполняющихся одновременно, на каждом этапе разработки;
  • измерение времени цикла (среднее время на выполнение одной задачи) и оптимизация процесса.
Преимущества KANBAN:
  • уменьшение числа параллельно выполняемых задач значительно уменьшает время выполнения каждой отдельной задачи;
  • быстрое выявление проблемных задач;
  • вычисление времени на выполнение усредненной задачи.

DYNAMIC SYSTEM DEVELOPMENT METHOD появился в результате работы консорциум из 17 английских компаний. Целая организация занимается разработкой пособий по этой методологии, организацией учебных курсов, программ аккредитации и т.п. Кроме того, ценность DSDM имеет денежный эквивалент.

Все начинается с изучения осуществимости программы и области ее применения. В первом случае, вы пытаетесь понять, подходит ли DSDM для данного проекта. Изучать область применения программы предполагается на короткой серии семинаров, где программисты узнают о той сфере бизнеса, для которой им предстоит работать. Здесь же обсуждаются основные положения, касающиеся архитектуры будущей системы и план проекта.

Далее процесс делится на три взаимосвязанных цикла: цикл функциональной модели отвечает за создание аналитической документации и прототипов, цикл проектирования и конструирования - за приведение системы в рабочее состояние, и наконец, последний цикл - цикл реализации - обеспечивает развертывание программной системы.

Базовые принципы, на которых строится DSDM, это активное взаимодействие с пользователями, частые выпуски версий, самостоятельность разработчиков в принятии решений и тестирование в течение всего цикла работ. Как и большинство других гибких методологий, DSDM использует короткие итерации, продолжительностью от двух до шести недель каждая. Особый упор делается на высоком качестве работы и адаптируемости к изменениям в требованиях.

MICROSOFT SOLUTIONS FRAMEWORK - методология разработки программного обеспечения, предложенная корпорацией Microsoft. MSF опирается на практический опыт Microsoft и описывает управление людьми и рабочими процессами в процессе разработки решения.
Базовые концепции и принципы модели процессов MSF:

  • единое видение проекта - все заинтересованные лица и просто участники проекта должны чётко представлять конечный результат, всем должна быть понятна цель проекта;
  • управление компромиссами - поиск компромиссов между ресурсами проекта, календарным графиком и реализуемыми возможностями;
  • гибкость – готовность к изменяющимся проектным условиям;
  • концентрация на бизнес-приоритетах - сосредоточенность на той отдаче и выгоде, которую ожидает получить потребитель решения;
  • поощрение свободного общения внутри проекта;
  • создание базовых версии - фиксация состояния любого проектного артефакта, в том числе программного кода, плана проекта, руководства пользователя, настройки серверов и последующее эффективное управление изменениями, аналитика проекта.

MSF предлагает проверенные методики для планирования, проектирования, разработки и внедрения успешных IT-решений. Благодаря своей гибкости, масштабируемости и отсутствию жестких инструкций MSF способен удовлетворить нужды организации или проектной группы любого размера. Методология MSF состоит из принципов, моделей и дисциплин по управлению персоналом, процессами, технологическими элементами и связанными со всеми этими факторами вопросами, характерными для большинства проектов.

RATIONAL UNIFIED PROCESS - методология разработки программного обеспечения, созданная компанией Rational Software.
В основе методологии лежат 6 основных принципов:

  • компонентная архитектура, реализуемая и тестируемая на ранних стадиях проекта;
  • работа над проектом в сплочённой команде, ключевая роль в которой принадлежит архитекторам;
  • ранняя идентификация и непрерывное устранение возможных рисков;
  • концентрация на выполнении требований заказчиков к исполняемой программе;
  • ожидание изменений в требованиях, проектных решениях и реализации в процессе разработки;
  • постоянное обеспечение качества на всех этапах разработки проекта.
Использование методологии RUP направлено на итеративную модель разработки. Особенность методологии состоит в том, что степень формализации может меняться в зависимости от потребностей проекта. Можно по окончании каждого этапа и каждой итерации создавать все требуемые документы и достигнуть максимального уровня формализации, а можно создавать только необходимые для работы документы, вплоть до полного их отсутствия. За счет такого подхода к формализации процессов методология является достаточно гибкой и широко популярной. Данная методология применима как в небольших и быстрых проектах, где за счет отсутствия формализации требуется сократить время выполнения проекта и расходы, так и в больших и сложных проектах, где требуется высокий уровень формализма, например, с целью дальнейшей сертификации продукта. Это преимущество дает возможность использовать одну и ту же команду разработчиков для реализации различных по объему и требованиям.

Таким образом, существует множество различных методологий разработки программного обеспечения, они не универсальны и описываются различными принципами. Выбор методологии разработки для конкретного проекта зависит от предъявляемых требований.

Теги: методологии разработки, scrum, kanban, dsdm, msf, rup

За 50 лет развития программной инженерии накопилось большое количество моделей разработки ПО . Интересно провести аналогию между историей развития методов, применяемых в системах автоматического управления летательными аппаратами, и эволюцией подходов к управлению программными проектами.

«Как получится». Разомкнутая система управления. Полное доверие техническим лидерам. Представители бизнеса практически не участвуют в проекте. Планирование, если оно и есть, то неформальное и словесное. Время и бюджет, как правило, не контролируются. Аналогия: баллистический полет без обратной связи. Можно, но недалеко и неточно.

«Водопад» или каскадная модель. Жесткое управление с обратной связью. Расчет опорной траектории (план проекта), измерение отклонений, коррекция и возврат на опорную траекторию. Лучше, но не эффективно.

«Гибкое управление». Расчет опорной траектории, измерение отклонений, расчет новой попадающей траектории и коррекция для выхода на нее. «Планы - ничто, планирование - все» (Эйзенхауэр, Дуайт Дэвид)

«Метод частых поставок». Самонаведение. Расчет опорной траектории, измерение отклонений, уточнение цели, расчет новой попадающей траектории и коррекция для выхода на нее.

Классические методы управления перестают работать в случаях, когда структура и свойства управляемого объекта нам не известны и/или изменяются со временем. Эти подходы так же не помогут, если текущие свойства объекта не позволяют ему двигаться с требуемыми характеристиками. Например, летательный аппарат не может развить требуемое ускорение или разрушается при недопустимой перегрузке. Аналогично, если рабочая группа проекта не может обеспечить требуемую эффективность и поэтому постоянно работает в режиме аврала, то это приводит не к росту производительности, а к уходу профессионалов из проекта.

Когда структура и свойства управляемого объекта нам не известны, необходимо использовать адаптивное управление, которое, дополнительно к прямым управляющим воздействиям, направлено на изучение и изменение свойств управляемого объекта. Продолжая аналогию с управлением летательными аппаратами - это расчет опорной траектории, измерение отклонений, уточнение цели, уточнение объекта управления, адаптация (необходимое изменение) объекта управления, расчет новой попадающей траектории и коррекция для выхода на нее.

Для того чтобы понять структуру и свойства объекта и воздействовать на него с целью их приведения к желаемому состоянию, в проекте должен быть дополнительный контур обратной связи - контур адаптации.

Известно, что производительность разных программистов может отличаться в десятки раз. Утверждаю, что производительность одного и того же программиста может так же отличаться в десятки раз. Заставьте лучшего в мире бегуна бегать в мешке, и он покажет в 10 раз худший результат. Заставьте лучшего программиста заниматься «сизифовым трудом»: плодить документацию (которую, как правило, никто не читает) в угоду «Методологии» (именно с большой буквы М), - и его производительность снизится в 10 раз.

Поэтому, помимо чисто управленческих задач руководитель, если он стремится получить наивысшую производительность рабочей группы, должен направлять постоянные усилия на изучение и изменение объекта управления: людей и их взаимодействия.

Модели (или, как еще любят говорить, методологии ) процессов разработки ПО принято классифицировать по «весу» – количеству формализованных процессов (большинство процессов или только основные) и детальности их регламентации. Чем больше процессов документировано, чем более детально они описаны, тем больше «вес» модели.

Наиболее распространенные современные модели процесса разработки ПО представлены на рис. 2.3.

Рис. 2.3. Различные модели процесса разработки ПО

ГОСТы

ГОСТ 19 «Единая система программной документации» и ГОСТ 34 «Стандарты на разработку и сопровождение автоматизированных систем» ориентированы на последовательный подход к разработке ПО. Разработка в соответствии с этими стандартами проводится по этапам, каждый из которых предполагает выполнение строго определенных работ, и завершается выпуском достаточно большого числа весьма формализованных и обширных документов. Таким образом, строгое следование этим гостам не только приводит к водопадному подходу, но и требует очень высокой степени формализованности разработки. На основе этих стандартов разрабатываются программные системы по госзаказам в России.

В середине 80-х годов минувшего столетия Министерство обороны США крепко задумалось о том, как выбирать разработчиков ПО при реализации крупномасштабных программных проектов. По заказу военных Институт программной инженерии, входящий в состав Университета Карнеги-Меллона, разработал SW-CMM, Capability Maturity Model for Software в качестве эталонной модели организации разработки программного обеспечения.

Данная модель определяет пять уровней зрелости процесса разработки ПО.

1) Начальный - процесс разработки носит хаотический характер. Определены лишь немногие из процессов, и успех проектов зависит от конкретных исполнителей.

2) Повторяемый - установлены основные процессы управления проектами: отслеживание затрат, сроков и функциональности. Упорядочены некоторые процессы, необходимые для того, чтобы повторить предыдущие достижения на аналогичных проектах.

3) Определенный - процессы разработки ПО и управления проектами описаны и внедрены в единую систему процессов компании. Во всех проектах используется стандартный для организации процесс разработки и поддержки программного обеспечения, адаптированный под конкретный проект.

4) Управляемый - собираются детальные количественные данные по функционированию процессов разработки и качеству конечного продукта. Анализируется значение и динамика этих данных.

5) Оптимизируемый - постоянное улучшение процессов основывается на количественных данных по процессам и на пробном внедрении новых идей и технологий.

Документация с полным описанием SW-CMM занимает около 500 страниц и определяет набор из 312 требований, которым должна соответствовать организация, если она планирует аттестоваться по этому стандарту на 5-ый уровень зрелости.

Унифицированный процесс (Rational Unified Process, RUP) был разработан Филиппом Крачтеном (Philippe Kruchten), Иваром Якобсоном (Ivar Jacobson) и другими сотрудниками компании "Rational Software" в качестве дополнения к языку моделирования UML. Модель RUP описывает абстрактный общий процесс, на основе которого организация или проектная команда должна создать конкретный специализированный процесс, ориентированный на ее потребности. Именно эта черта RUP вызывает основную критику - поскольку он может быть чем угодно, его нельзя считать ничем определенным. В результате такого общего построения RUP можно использовать и как основу для самого что ни на есть традиционного водопадного стиля разработки, так и в качестве гибкого процесса.

Microsoft Solutions Framework (MSF) - это гибкая и достаточно легковесная модель, построенная на основе итеративной разработки. Привлекательной особенностью MSF является большое внимание к созданию эффективной и небюрократизированной проектной команды. Для достижения этой цели MSF предлагает достаточно нестандартные подходы к организационной структуре, распределению ответственности и принципам взаимодействия внутри команды.

Одна из последних разработок Института программной инженерии Personal Software Process / Team Software Process . Personal Software Process определяет требования к компетенциям разработчика. Согласно этой модели, каждый программист должен уметь:

· учитывать время, затраченное на работу над проектом;

· учитывать найденные дефекты;

· классифицировать типы дефектов;

· оценивать размер задачи;

· осуществлять систематический подход к описанию результатов тестирования;

· планировать программные задачи;

· распределять их по времени и составлять график работы.

· выполнять индивидуальную проверку проекта и архитектуры;

· осуществлять индивидуальную проверку кода;

· выполнять регрессионное тестирование.

Team Software Process делает ставку на самоуправляемые команды численностью 3-20 разработчиков. Команды должны:

· установить собственные цели;

· составить свой процесс и планы;

· отслеживать работу;

· поддерживать мотивацию и максимальную производительность.

Последовательное применение модели PSP/TSP позволяет сделать нормой в организации пятый уровень CMM.

Основная идея всех гибких моделей заключается в том, что применяемый в разработке ПО процесс должен быть адаптивным. Они декларируют своей высшей ценностью ориентированность на людей и их взаимодействие, а не на процессы и средства. По сути, так называемые, гибкие методологии - это не методологии, а набор практик, которые могут позволить (а могут и нет) добиваться эффективной разработки ПО, основываясь на итеративности, инкрементальности, самоуправляемости команды и адаптивности процесса.

Выбор модели процесса

Тяжелые и легкие модели производственного процесса имеют свои достоинства и свои недостатки, которые представлены в табл. 2.1.

Те, кто пытается следовать описанным в книгах моделям, не анализируя их применимость в конкретной ситуации, показания и противопоказания, уподобляются последователям культа «Карго» - религии самолетопоклонников. В Меланезии верят, что западные товары (карго, англ. груз) созданы духами предков и предназначены для меланезийского народа.

Таблица 2.1

Плюсы и минусы тяжелых и легких моделей процессов разработки программного обеспечения

Вес модели Плюсы Минусы
Тяжелые Процессы рассчитаны на среднюю квалификацию исполнителей. Большая специализация исполнителей. Ниже требования к стабильности команды. Отсутствуют ограничения по объему и сложности выполняемых проектов. Требуют существенной управленческой надстройки. Более длительные стадии анализа и проектирования. Более формализованные коммуникации.
Легкие Меньше непроизводительных расходов, связанных с управлением проектом, рисками, изменениями, конфигурациями. Упрощенные стадии анализа и проектирования, основной упор на разработку функциональности, совмещение ролей. Неформальные коммуникации. Эффективность сильно зависит от индивидуальных способностей, требуют более квалифицированной, универсальной и стабильной команды. Объем и сложность выполняемых проектов ограничены.

Считается, что белые люди нечестным путём получили контроль над этими предметами. В наиболее известных культах карго из кокосовых пальм и соломы строятся точные копии взлётно-посадочных полос, аэропортов и радиовышек. Члены культа строят их, веря в то, что эти постройки привлекут транспортные самолёты (которые считаются посланниками духов), заполненные грузом (карго). Верующие регулярно проводят строевые учения («муштру») и некое подобие военных маршей, используя ветки вместо винтовок и рисуя на теле ордена и надписи «USA». Все это для того чтобы снова с неба спустились самолеты и этих предметов стало больше.

Алистер Коуберн, один из авторов «Манифеста гибкой разработки ПО» проанализировал очень разные программные проекты, которые выполнялись по разным моделям от совершенно облегченных и «гибких» до тяжелых (СММ-5) за последние 20 лет . Он не обнаружил корреляции между успехом или провалом проектов и моделями процесса разработки, которые применялись в проектах. Отсюда он сделал вывод о том, что эффективность разработки ПО не зависит от модели процесса, а также о том, что:

· У каждого проекта должна быть своя модель процесса разработки.

· У каждой модели - свое время.

Это означает, что не существует единственного правильного процесса разработки ПО, в каждом новом проекте процесс должен определяться каждый раз заново, в зависимости от проекта, продукта и персонала, в соответствие с «Законом 4-х П» (рис. 2.4). Совершенно разные процессы должны применяться в проектах, в которых участвуют 5 человек, и в проектах, в которых участвуют 500 человек. Если продуктом проекта является критическое ПО, например, система управления атомной электростанцией, то процесс разработки должен сильно отличаться от разработки, например, сайта «отдохни.ру». И, наконец, по-разному следует организовывать процесс разработки в команде вчерашних студентов и в команде состоявшихся профессионалов.

Команда, которая начинала проект, не остается неизменной, она проходит определенные стадии формирования и, как правило, количественно растет по мере развития проекта. Поэтому процесс должен постоянно адаптироваться к этим изменениям. Главный принцип: не люди должны строиться под выбранную модель процесса, а модель процесса должна подстраиваться под конкретную команду, чтобы обеспечить ее наивысшую эффективность.

Рис. 2.4. «Закон 4-х П». Процесс в проекте должен определяться в зависимости от проекта, продукта и персонала

Существует несколько моделей разработки (жизненного цикла) программного обеспечения. Но для начала давайте определимся с тем, что же это такое - жизненный цикл. В это понятие включаются все этапы, которые проходит программный продукт. Первым из которых будет постановка задачи, а последним - внедрение. Ознакомиться с этапами жизненного цикла программного обеспечения можно на примере существующих моделей (концепций) разработки по.

Модель жизненного цикла программного обеспечения - структура, содержащая процессы действия и задачи, которые осуществляются в ходе разработки, использования и сопровождения программного продукта.На данный момент существует три основные группы, на которые условно можно разбить все известные модели разработки программного обеспечения:

    Инженерный подход

    С учетом специфики задачи

    Современные технологии быстрой разработки

Теперь рассмотрим непосредственно существующие модели (подклассы) и оценим их преимущества и недостатки.

Давайте, более подробно рассмотрим подклассы моделей.

Модель кодирования и устранения ошибок

Самая простая из моделей очень часто применяемая студентами в учебном процессе.Алгоритм этой модели состоит из следующих шагов:

    Шаг 1: постановка задачи

    Шаг 2: создание программы

    Шаг 3: тестирование

    Шаг 4: анализ результата тестирования и возможный переход к шагу 1

Эта модель относится к первой группе и совсем не актуальна при профессиональной разработке программного обеспечения. По таким алгоритмам работали программисты 50-60 лет назад. Излишняя простота в данном случае не позволяет конкурировать с другими существующими моделями. Недостатки

"Водопад" или каскадная модель жизненного цикла программного обеспечения

Это модель жизненного цикла программного обеспечения тоже относится к первой группе.Алгоритм данного метода, который я привожу на схеме, имеет ряд преимуществ перед алгоритмом предыдущей модели, но также имеет и ряд весомых недостатков.

Алгоритм каскадной модели

Преимущества:

    Последовательное выполнение этапов проекта в строгом фиксированном порядке

    Позволяет оценивать качество продукта на каждом этапе

Недостатки:

    Отсутствие обратных связей между этапами

    Не соответствует реальным условиям разработки программного продукта

    Относится к первой группе моделей.

"Водоворот" или каскадная модель с промежуточным контролем

В этой модели предусмотрен промежуточный контроль за счет обратных связей. Но это достоинство порождает и недостатки. Затраты на реализацию проекта при таком подходе возрастают практически в 10 раз. Эта модель, как вы уже поняли, является незначительной модификацией предыдущей и относится к первой группе.

При реальной работе в соответствии с моделью, допускающей движение только в одну сторону, обычно возникают проблемы при обнаружении недоработок и ошибок, сделанных на ранних этапах. Но еще более тяжело иметь дело с изменениями окружения, в котором разрабатывается ПО (это могут быть изменения требований, смена подрядчиков, изменения политик разрабатывающей или эксплуатирующей организации, изменения отраслевых стандартов, появление конкурирующих продуктов и пр.).

Итеративная модель

Итеративные или инкрементальные модели (известно несколько таких моделей) предполагают разбиение создаваемой системы на набор кусков, которые разрабатываются с помощью нескольких последовательных проходов всех работ или их части.

Каскадная модель с возможностью возвращения на предшествующий шаг при необходимости пересмотреть его результаты, становится итеративной.

Итеративный процесс предполагает, что разные виды деятельности не привязаны намертво к определенным этапам разработки, а выполняются по мере необходимости, иногда повторяются, до тех пор, пока не будет получен нужный результат.

Вместе с гибкостью и возможностью быстро реагировать на изменения, итеративные модели привносят дополнительные сложности в управление проектом и отслеживание его хода. При использовании итеративного подхода значительно сложнее становится адекватно оценить текущее состояние проекта и спланировать долгосрочное развитие событий, а также предсказать сроки и ресурсы, необходимые для обеспечения определенного качества результата.

V модель - разработка через тестирование

Данная модель имеет более приближенный к современным методам алгоритм, однако все еще имеет ряд недостатков.Является одной из основных практик экстремального программирования и предполагает регулярное тестирование продукта во время разработки.

Модель на основе разработки прототипа

Данная модель основывается на разработки прототипов и прототипирования продукта и относится ко второй группе.

Прототипирование используется на ранних стадиях жизненного цикла программного обеспечения:

    Прояснить не ясные требования (прототип UI)

    Выбрать одно из ряда концептуальных решений (реализация сцинариев)

    Проанализировать осуществимость проекта

Классификация протопипов:

    Горизонтальные прототипы - моделирует исключительно UI не затрагивая логику обработки и базу данных.

    Вертикальные прототипы - проверка архитектурных решений.

    Одноразовые прототипы - для быстрой разработки.

    Эволюционные прототипы - первое приближение эволюционной системы.

Спиральная модель жизненного цикла программного обеспечения

Данная модель прекрасно сочетает в себе постадийное прототипирование и проектирование. И из восходящей и нисходящей концепций в эту модель было взято все лучшее.

Преимущества модели:

    Результат достигается в кратчайшие сроки.

    Конкурентоспособность достаточно высокая.

    При изменении требований, не придется начинать все с "нуля".

Но у этой модели есть один существенный недостаток : невозможность регламентирования стадий выполнения.

Отдельного рассказа заслуживают модели экстремального программирования (ХР), SCRUM, инкриментальная модель (RUP). Это все модели, относятся к третьей группе, но для их анализ будет проведен в отдельной статье.

И в заключении

Несмотря на большой прогресс в области разработки программного обеспечения много проектов в наше время разрабатывается и будет разрабатываться по такой схеме:

  • Программирование ,
  • Разработка мобильных приложений
  • Разработка программного продукта знает много достойных методологий - иначе говоря, устоявшихся best practices. Выбор зависит от специфики проекта, системы бюджетирования, субъективных предпочтений и даже темперамента руководителя. В статье описаны методологии, с которыми мы регулярно сталкиваемся в Эдисоне .

    1. «Waterfall Model» (каскадная модель или «водопад»)


    Одна из самых старых, подразумевает последовательное прохождение стадий, каждая из которых должна завершиться полностью до начала следующей. В модели Waterfall легко управлять проектом. Благодаря её жесткости, разработка проходит быстро, стоимость и срок заранее определены. Но это палка о двух концах. Каскадная модель будет давать отличный результат только в проектах с четко и заранее определенными требованиями и способами их реализации. Нет возможности сделать шаг назад, тестирование начинается только после того, как разработка завершена или почти завершена. Продукты, разработанные по данной модели без обоснованного ее выбора, могут иметь недочеты (список требований нельзя скорректировать в любой момент), о которых становится известно лишь в конце из-за строгой последовательности действий. Стоимость внесения изменений высока, так как для ее инициализации приходится ждать завершения всего проекта. Тем не менее, фиксированная стоимость часто перевешивает минусы подхода. Исправление осознанных в процессе создания недостатков возможно, и, по нашему опыту, требует от одного до трех дополнительных соглашений к контракту с небольшим ТЗ.

    С помощью каскадной модели мы создали множество проектов «с нуля», включая разработку только ТЗ. Проекты, о которых написано на Хабре: средний - , мелкий - .

    Когда использовать каскадную методологию?

    • Только тогда, когда требования известны, понятны и зафиксированы. Противоречивых требований не имеется.
    • Нет проблем с доступностью программистов нужной квалификации.
    • В относительно небольших проектах.

    2. «V-Model»


    Унаследовала структуру «шаг за шагом» от каскадной модели. V-образная модель применима к системам, которым особенно важно бесперебойное функционирование. Например, прикладные программы в клиниках для наблюдения за пациентами, интегрированное ПО для механизмов управления аварийными подушками безопасности в транспортных средствах и так далее. Особенностью модели можно считать то, что она направлена на тщательную проверку и тестирование продукта , находящегося уже на первоначальных стадиях проектирования. Стадия тестирования проводится одновременно с соответствующей стадией разработки, например, во время кодирования пишутся модульные тесты.

    Пример нашей работы на основе V-методологии - мобильное приложение для европейского сотового оператора, который экономит расходы на роуминг во время путешествий. Проект выполняется по четкому ТЗ, но в него включен значительный этап тестирования: удобства интерфейса, функционального, нагрузочного и в том числе интеграционного, которое должно подтверждать, что несколько компонентов от различных производителей вместе работают стабильно, невозможна кража денег и кредитов.

    Когда использовать V-модель?

    • Если требуется тщательное тестирование продукта, то V-модель оправдает заложенную в себя идею: validation and verification.
    • Для малых и средних проектов, где требования четко определены и фиксированы.
    • В условиях доступности инженеров необходимой квалификации, особенно тестировщиков.

    3. «Incremental Model» (инкрементная модель)

    В инкрементной модели полные требования к системе делятся на различные сборки. Терминология часто используется для описания поэтапной сборки ПО. Имеют место несколько циклов разработки, и вместе они составляют жизненный цикл «мульти-водопад». Цикл разделен на более мелкие легко создаваемые модули. Каждый модуль проходит через фазы определения требований, проектирования, кодирования, внедрения и тестирования. Процедура разработки по инкрементной модели предполагает выпуск на первом большом этапе продукта в базовой функциональности, а затем уже последовательное добавление новых функций, так называемых «инкрементов». Процесс продолжается до тех пор, пока не будет создана полная система.

    Инкрементные модели используются там, где отдельные запросы на изменение ясны, могут быть легко формализованы и реализованы. В наших проектах мы применяли ее для создания читалки DefView, а следом и сети электронных библиотек Vivaldi.

    Как пример опишем cуть одного инкремента. пришла на смену DefView. DefView подключалась к одному серверу документов, а теперь может подключаться ко многим. На площадку учреждения, желающего транслировать свой контент определенной аудитории, устанавливается сервер хранения, который напрямую обращается к документам и преобразует их в нужный формат. Появился корневой элемент архитектуры - центральный сервер Vivaldi, выступающий в роли единой поисковой системы по всем серверам хранения, установленным в различных учреждениях.

    Когда использовать инкрементную модель?

    • Когда основные требования к системе четко определены и понятны. В то же время некоторые детали могут дорабатываться с течением времени.
    • Требуется ранний вывод продукта на рынок.
    • Есть несколько рисковых фич или целей.

    4. «RAD Model» (rapid application development model или быстрая разработка приложений)

    RAD-модель - разновидность инкрементной модели. В RAD-модели компоненты или функции разрабатываются несколькими высококвалифицированными командами параллельно, будто несколько мини-проектов. Временные рамки одного цикла жестко ограничены. Созданные модули затем интегрируются в один рабочий прототип. Синергия позволяет очень быстро предоставить клиенту для обозрения что-то рабочее с целью получения обратной связи и внесения изменений.

    Модель быстрой разработки приложений включает следующие фазы:

    • Бизнес-моделирование: определение списка информационных потоков между различными подразделениями.
    • Моделирование данных: информация, собранная на предыдущем этапе, используется для определения объектов и иных сущностей, необходимых для циркуляции информации.
    • Моделирование процесса: информационные потоки связывают объекты для достижения целей разработки.
    • Сборка приложения: используются средства автоматической сборки для преобразования моделей системы автоматического проектирования в код.
    • Тестирование: тестируются новые компоненты и интерфейсы.
    Когда используется RAD-модель?

    Может использоваться только при наличии высококвалифицированных и узкоспециализированных архитекторов. Бюджет проекта большой, чтобы оплатить этих специалистов вместе со стоимостью готовых инструментов автоматизированной сборки. RAD-модель может быть выбрана при уверенном знании целевого бизнеса и необходимости срочного производства системы в течение 2-3 месяцев.

    5. «Agile Model» (гибкая методология разработки)


    В «гибкой» методологии разработки после каждой итерации заказчик может наблюдать результат и понимать, удовлетворяет он его или нет. Это одно из преимуществ гибкой модели. К ее недостаткам относят то, что из-за отсутствия конкретных формулировок результатов сложно оценить трудозатраты и стоимость, требуемые на разработку. Экстремальное программирование (XP) является одним из наиболее известных применений гибкой модели на практике.

    В основе такого типа - непродолжительные ежедневные встречи - «Scrum» и регулярно повторяющиеся собрания (раз в неделю, раз в две недели или раз в месяц), которые называются «Sprint». На ежедневных совещаниях участники команды обсуждают:

    • отчёт о проделанной работе с момента последнего Scrum’a;
    • список задач, которые сотрудник должен выполнить до следующего собрания;
    • затруднения, возникшие в ходе работы.
    Методология подходит для больших или нацеленных на длительный жизненный цикл проектов, постоянно адаптируемых к условиям рынка. Соответственно, в процессе реализации требования изменяются. Стоит вспомнить класс творческих людей, которым свойственно генерировать, выдавать и опробовать новые идеи еженедельно или даже ежедневно. Гибкая разработка лучше всего подходит для этого психотипа руководителей. Внутренние стартапы компании мы разрабатываем по Agile. Примером клиентских проектов является Электронная Система Медицинских Осмотров , созданная для проведения массовых медосмотров в считанные минуты. Во втором абзаце этого отзыва , наши американские партнеры описали очень важную вещь, принципиальную для успеха на Agile.

    Когда использовать Agile?

    • Когда потребности пользователей постоянно меняются в динамическом бизнесе.
    • Изменения на Agile реализуются за меньшую цену из-за частых инкрементов.
    • В отличие от модели водопада, в гибкой модели для старта проекта достаточно лишь небольшого планирования.

    6. «Iterative Model» (итеративная или итерационная модель)

    Итерационная модель жизненного цикла не требует для начала полной спецификации требований. Вместо этого, создание начинается с реализации части функционала, становящейся базой для определения дальнейших требований. Этот процесс повторяется. Версия может быть неидеальна, главное, чтобы она работала. Понимая конечную цель, мы стремимся к ней так, чтобы каждый шаг был результативен, а каждая версия - работоспособна.

    На диаграмме показана итерационная «разработка» Мона Лизы. Как видно, в первой итерации есть лишь набросок Джоконды, во второй - появляются цвета, а третья итерация добавляет деталей, насыщенности и завершает процесс. В инкрементной же модели функционал продукта наращивается по кусочкам, продукт составляется из частей. В отличие от итерационной модели, каждый кусочек представляет собой целостный элемент.

    Примером итерационной разработки может служить распознавание голоса. Первые исследования и подготовка научного аппарата начались давно, в начале - в мыслях, затем - на бумаге. С каждой новой итерацией качество распознавания улучшалось. Тем не менее, идеальное распознавание еще не достигнуто, следовательно, задача еще не решена полностью.

    Когда оптимально использовать итеративную модель?

    • Требования к конечной системе заранее четко определены и понятны.
    • Проект большой или очень большой.
    • Основная задача должна быть определена, но детали реализации могут эволюционировать с течением времени.

    7. «Spiral Model» (спиральная модель)


    «Спиральная модель» похожа на инкрементную, но с акцентом на анализ рисков. Она хорошо работает для решения критически важных бизнес-задач, когда неудача несовместима с деятельностью компании, в условиях выпуска новых продуктовых линеек, при необходимости научных исследований и практической апробации.

    Спиральная модель предполагает 4 этапа для каждого витка:

    1. планирование;
    2. анализ рисков;
    3. конструирование;
    4. оценка результата и при удовлетворительном качестве переход к новому витку.
    Эта модель не подойдет для малых проектов, она резонна для сложных и дорогих, например, таких, как разработка системы документооборота для банка, когда каждый следующий шаг требует большего анализа для оценки последствий, чем программирование. На проекте по разработке СЭД для ОДУ Сибири СО ЕЭС два совещания об изменении кодификации разделов электронного архива занимают в 10 раз больше времени, чем объединение двух папок программистом. Государственные проекты, в которых мы участвовали, начинались с подготовки экспертным сообществом дорогостоящей концепции, которая отнюдь не всегда бесполезна, поскольку окупается в масштабах страны.

    Подытожим


    На слайде продемонстрированы различия двух наиболее распространенных методологий.

    В современной практике модели разработки программного обеспечения многовариантны. Нет единственно верной для всех проектов, стартовых условий и моделей оплаты. Даже столь любимая всеми нами Agile не может применяться повсеместно из-за неготовности некоторых заказчиков или невозможности гибкого финансирования. Методологии частично пересекаются в средствах и отчасти похожи друг на друга. Некоторые другие концепции использовались лишь для пропаганды собственных компиляторов и не привносили в практику ничего нового.

    О технологиях разработки:
    .
    .
    .
    .

    Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.



    Енвд