Методы повышения надёжности и эффективности технологического и энергетического оборудования добычи и транспорта нефти и газа Смородов Евгений Анатольевич. Повышение надежности и эффективности действующего оборудования тэс

Дудникова, Вера Викторовна

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Ростов-на-Дону

Код cпециальности ВАК:

Специальность:

Материаловедение (по отраслям)

Количество cтраниц:

1. СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Амализ методов обеспечения заданного усталостного ресурса деталей машин.

1.2. Анализ методов определения минимальной усталостной прочности деталей машин.

1.3. Анализ методов определения максимальной нагруженности деталей машин.

1.4. Выводы, цели и задачи исследований.

2. МОДЕЛЬ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ КУЛЬТИВАТОРА ЗА СЧЕТ УВЕЛИЧЕНИЯ ЕГО НАДЕЖНОСТИ.

2.1. Модель обеспечения заданного усталостного гамма-процп ithoeo ресурса стойки культиватора .

2.2. Модель надежности культиваторного узла (группы стоек).

2.3. al 1али гическое определение параметров вероят1ioctiюго paci 1рнделения совокуш юсти конечного объема прочности и ресурса по их выборочным данным.

2.4. алгоритм и расчет эффективности работы культиватора за счет увеличения его надежности

2.5. Выводы.

3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОЙ УСТАЛОСТНОЙ ПРОЧНОСТИ, НАГРУЖЕННОСТИ И РЕСУРСА ДЕТАЛИ НА СТАДИИ ПРОЕКТИРОВАНИЯ.

3.1. расчетно-эксперименталыюе определение минимальной усталостной прочнос ти образцов (деталей) для совокупности конечного объема по выборочным данным.

3.2. расчетно-экспериментальное определение максимальной нагруженности деталей.

3.3. расчетно-экспериментальное определение гамма-процентного ресурса де тали.

3.4. Выводы.

4. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ.

4.1. методика повышения эффективности функционирования культиватора за счет увеличения его надежности.

4.2. Обеспечение гамма-процентного ресурса стойки культиватора.

4.3. Методика и результаты подтверждения расчетного гамма-процентного ресурса с тойки культиватора акв-4 после внедрения рекомендаций.

4.4. Расчет экономического эффекта от увеличения гамма-процентного ресурса стойки культиватора.

Введение диссертации (часть автореферата) На тему "Повышение надежности и эффективности функционирования культиватора за счет увеличения ресурса стоек"

Рост производительности труда в сельском хозяйстве связан с повышением эффективности функционирования сельскохозяйственных машин за счет увеличения их надежности. Большое значение имеет повышение эффективности работы машин начального этапа сельскохозяйственного производства; к ним относятся, в том числе культиваторы. При ограничении сроков подготовки почвы культиваторам предъявляются высокие требования по надежности. Отказы культиваторов приводят к простоям в ремонте и к ущербу от простоя техники, вызванному смещением сроков выполнения технологического процесса выращивания сельхозкультур.

В группу деталей, отказывающих и лимитирующих надежность культиваторов, входят S-образные пружинные стойки. Повышение надежности стоек культиватора, а также оптимизация их ресурса обеспечит снижение величины потока отказов, затрат на ремонт, сократит сроки и экономический ущерб вследствие уменьшения продолжительности технологического цикла.

Исследования эффективности и надежности сельскохозяйственных машин проводили Андросов A.A., Беленький Д.М., Грошев Л.М., Далальянц А.Г., Ермольев Ю.И., Жаров В.П. Полушкин O.A., Спиченков В.В., Хозяев И.А., однако выполненный анализ исследований в области эффективности и надежности сельхозмашин показал, что имеются резервы дальнейшего улучшения методов повышения их надежности.

Целью данного исследования является разработка метода повышения надежности и эффективности функционирования культиватора за счет увеличения ресурса его стоек.

Для достижения поставленной цели требуется решить, следующие задачи: разработать метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, учитывая аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности; разработать модель надежности культиваторного узла (группы стоек); разработать алгоритм расчета оптимальной вероятности безотказной работы Б-образной стойки культиватора; определить расчетно-экспериментальным методом параметры прочности, нагруженности и ресурса стойки культиватора на стадии проектирования; оптимизировать гамма-процентный ресурс стойки культиватора и подтвердить его стендовыми испытаниями; рассчитать экономический эффект от увеличения гамма-процентного ресурса группы стоек культиватора.

В первой главе выполнен анализ методов повышения надежности, эффективности и обеспечения заданного усталостного ресурса деталей машин. Освещены различные подходы к определению минимальной усталостной прочности и максимальной нагруженности деталей машин.

Во второй главе диссертации приводится описание модели, разработанной для повышения надежности и эффективности работы культиватора и обеспечения заданного усталостного ресурса его деталей.

В третьей главе приводится расчетно-экспериментальное определение параметров прочности, нагруженности и ресурса деталей на стадии проектирования. Определяется расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки культиватора для совокупности конечного объема по выборочным данным. Рассмотрен метод расчетно-экспериментального определения максимальной нагруженности деталей. Приведено расчетно-экспериментальное определение гамма-процентного Б-образной стойки культиватора.

В четвертой главе изложена методика повышения эффективности функционирования культиватора за счет увеличения ресурса стоек. Дана характеристика обеспечения гамма-процентного ресурса стойки культиватора, АКВ-4, выпущенной ЗАО «Красный Аксай ». Приведен расчет экономического эффекта от увеличения гамма-процентного ресурса группы стоек культиватора.

В заключении сделаны выводы о проделанной работе.

Научная новизна выполненной работы состоит в следующем:

Разработана модель, позволяющая установить закономерности повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющая оптимизировать гамма-процентное значение ресурса стоек по критерию - удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора. Получены аналитические решения для определения параметров трехпараметрического распределения Вейбулла прочности и ресурса для совокупности конечного объема по выборочным данным.

Практическая значимость: выполненных аналитических и экспериментальных исследований заключается в следующем:

Разработан алгоритм расчета эффективности работы культиватора за счет увеличения ресурса его стоек;

Определена расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки для совокупности конечного объема но выборочным данным;

Представлен разработанный алгоритм расчетно-экспериментального определения гамма-процентного ресурса детали; достигнуто увеличение вероятности безотказной работы стойки культиватора с 0,90 до 0,99 (оптимальное значение) при этом расчетный гамма-процентный ресурс составит около 229 ч (Р=0,99), что превышает заданный техническими условиями ресурс 200 ч.

Основные положения и результаты работы докладывались и обсуждались на научно-технических конференциях в Ростовском государственном строительном университете в 2001 - 2006 гг.

Заключение диссертации по теме "Материаловедение (по отраслям)", Дудникова, Вера Викторовна

ОБЩИЕ ВЫВОДЫ

1. Разработан метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющий оптимизировать гамма-процентное значение ресурса по критерию -удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора; получен аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности.

2. Предложена для стадии проектирования модель надежности культиваторного узла (группы стоек), в которой в качестве критерия оптимизации используются удельные затраты на создание и эксплуатацию стоек, а оптимальное значение у для ресурса определяется в интервале 0,9 - 0,94 при априорно установленном размахе ресурса 11=40-60; определен суммарный поток отказов для группы стоек. Разработан алгоритм определения параметров трехпараметрического распределения Вейбулла, описывающего распределения ресурса стоек и расчета этих параметров для потока отказов группы стоек.

3. Разработан алгоритм расчета оптимального гамма-процентного ресурса стойки культиватора. Проведенный расчет показал, что в результате применения мероприятий по увеличению прочности и снижению нагруженности стойки культиватора вероятность безотказной работы увеличивается с 0,9 до оптимального значения 0,99.

4. Для расчетно-экспериментального определения минимальной усталостной прочности для совокупности конечного объема по выборочным данным произведены испытания образцов из 13-ти углеродистых и легированных марок сталей, применяемых для изготовления деталей сельскохозяйственных машин. Получены для этих сталей значения относительной величины расхождения параметров сдвига для совокупности конечного объема и выборки: при Ь>2 расхождение S = 3-14%, при b

5. Для аппроксимации действующих напряжений в виде средневзвешенного напряжения использовано вероятностное распределение Фишера-Типпета, определяемого по аналогии с прочностью для выборки деталей. Выполнен вероятностный расчет с помощью метода статистических испытаний ресурса стойки для различных условий (размахи прочности =1,1-1,5, нагруженности Rctcb=1,16-1,5, значений у=80-99,99%, объем совокупности Nc=103-105).

6. Для увеличения вероятности безотказной работы S- образной стойки из стали 55С2 с 0,9 необходимо повысить качество ее наружной поверхности в области опасного сечения путем шлифования, что даст повышение коэффициента, учитывающего шероховатость поверхности, с 0,65 до 0,85, а предела выносливости в 1,3 раза, а также увеличить момент сопротивления с j

533 до 602 мм и сечение детали на 13% - это приведет к возрастанию вероятности безотказной работы до оптимального значения 0,99.

7. В результате внедрения предложенных рекомендаций достигается повышение эффективности работы культиватора: сокращение количества отказов стоек, снижение затрат на ремонт, сокращение простоев и сроков подготовки почвы для посевов. Ускоренные стендовые испытания S-образных стоек культиватора АКВ-4 производства ЗАО «Красный Аксай » подтвердили достоверность прогноза гамма-процентного ресурса.

8. Экономический расчет показал, что при прогнозируемом увеличении вероятности безотказной работы стойки культиватора с Р=0,9 до Р=0,99 эффект от внедрения результатов исследований составит 21060 рублей при годовой программе выпуска культиваторов 500 шт.

Список литературы диссертационного исследования кандидат технических наук Дудникова, Вера Викторовна, 2007 год

1. Абдуллаев A.A., Курбанов Ш.М., Саттаров A.C. О надежности хлопковых культиваторов // Тракторы и сельскохозяйственные машины. 1992. - №2. - С. 32-33.

2. Агамиров J1.B. О закономерностях рассеяния долговечности в связи с формой кривой усталости // Вестник машиностроения. 1997. - №5.- С. 37.

3. Агафонов Н.И. Эффективное использование сельскохозяйственной техники. М.: Знание 1997, № 4. - 63 с.

4. Александров A.B., Лащеников Б.Я., Шапошников H.H. Строительная механика. Тонкостенные пространственные системы. М.: Стройиздат, 1983.-488 с.

5. Андрющенко Ю.Е., Марисов А.Ф., КушнаревВ.И. Оценка требуемого уровня надежности элементов привода // Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ ДГТУ . Ростов-на-Дону, 1993. №5. - С. 16-21.

6. Анилович В.Я. и др. Прогнозирование надежности тракторов. М.: Машиностроение, 1986. - 224 с.

7. Аржанов М.И. Интерпретация значения нижней доверительной границы для вероятности безотказной работы // Надежность и контроль качества. 1993.-№5.-С. 6-11.

8. Беленький Д.М., Бескопыльный А.Н. Обеспечение высокой надежностидеталей строительно-дорожных машин // Строительные и дорожные машины, 1995. №4. - С. 24-27.

9. Беленький Д.М., Касьянов В.Е. Повышение надежности серийных машин путем увеличения ресурсов лимитирующих деталей // Вестник машиностроения, 1980. №1. - С. 12-14.

10. Беленький Д.М., Касьянов В.Е., Кубарев А.Е., Вернези H.JI. Определение установленных показателей надежности машины и ее составных частей (на примере одноковшового экскаватора) // Надежность и контроль качества. 1986.-№5.-С. 17-22.

11. Беленький Д.М., Ряднов В.Г. О законе распределения предельных напряжений. //Проблемы прочности. 1974. - №2. - С. 73-76.

12. Биргер И.А. Принципы построения норм прочности и надежности в машиностроении //Вестник машиностроения, 1988. № 7. - С. 3-5.

13. Бойцов Б.В. Надежность шасси самолета. М.: Машиностроение, 1976. -216.

14. Бойцов Б.В., Орлова Т.М., Сигалев В.Ф. Определение" закона распределения ресурса деталей машин и механизмов методов статистических испытаний // Вестник машиностроения. 1983. № 2. - С. 20-22.

15. Болотин В.В. Значение механики материалов и конструкций для обеспечения надежности и безопасности технических систем // Проблемы машиностроения и надежности машин. 1990. №5. - С. 3-8.

16. Болотин В.В. Ресурс машин и конструкций. М.: Машиностроение. 1990. -446 с.

17. Бондарович Б.А., Даугелло В.А. Метод статистического моделирования Монте-Карло при расчетах металлических конструкций землеройных машин на прочность //Строительные и дорожные машниы. 1990. № 12. -С. 20-21.

18. Василенко П.М., Бабий П.Г. Культиваторы, конструкции, теория и расчет. Киев, 1961.

19. Величкин И.Н. К вопросу обеспечения требуемой надежности машин // Тракторы и сельхозмашины. 1980. № 4. - С. 6-7.

20. Величкин И.Н. Улучшить нормирование показателей надежности машин // Тракторы и сельскохозяйственные машины. 1990. - №4. - С. 24-27.

21. Величкин И.Н., Коварский E.K. Пути повышения надежности парка тракторов // Тракторы и сельхозмашины, 1987. № 6. - С 32-36.

22. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. - 576 с.

23. Веремеенко A.A., Дудникова В.В. Определение напряженно-деформированного состояния стойки культиватора АКВ-4. //Деп. в ВИНИТИ №1586-в 2005.

24. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М.: Наука, 1965. - 524 с.

25. Гнеденко Б.В., Ушаков И.А. О некоторых современных проблемах теории и практики надежности // Вестник машиностроения. 1988. - №12. - С. 3-9.

26. Гоберман В.А. Вопросы качества и надежности зерноуборочных комбайнов «Дон-1500» // Стандарты и качество, 1988. № 8. - С. 30-34.

27. ГОСТ 11.007-75. Прикладная статистика. Правила определения оценок и доверительных границ для параметров распределения Вейбулла. М.: Изд-во стандартов, 1975

28. ГОСТ 25.502-83. Надежность в технике. Прогнозирование надежности изделий при проектировании.

29. ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.

30. Грошев JI.M. Оценка рассеивания характеристик нагруженности сельскохозяйственных машин // Динамика, прочность и надежность сельскохозяйственных машин / РИСХМ. Ростов -на- Дону, 1991. С.44-48.

31. Грошев JI.M., Дмитриченко С.С., Рыбак Т.И. Надежность сельскохозяйственной техники. Киев: Урожай, 1990. 188 с.

32. Гумбель Э. Статистика экстремальных значений. М.: Мир, 1965. - 464 с.

33. Гусев A.C. Сопротивление усталости и живучесть конструкций при случайных нагрузках. М.Машиностроение, 1989. - 248 с.

34. Гусев A.C. Структурный анализ случайных процессов с учетом реализационного рассеивания. // Проблемы машиностроения и надежности машин. 1995. - №2. - С. 42-47.

35. Даниев Ю.Ф., Кущ И.А., Переверзев Е.С. Нижняя и верхняя оценки надежности технических устройств// Надежность и контроль качества, 1993. -№ 11.-С. 11-16.

36. Диллон Б., Сингх Г. Инженерные методы обеспечения надежности систем. -М.: Мир, 1984.-318 с.

37. Димитров В.П. Об организации технического обслуживания машин с использованием экспертных систем // Вестник ДГТУ, 2003. - № 1 С. 5-10.

38. Дмитриченко С.С., Артемов В.А. Опыт расчета на усталость металлоконструкций тракторов и других машин //Вестник машиностроения, 1989. № 10. - С. 14-16.

39. Дмитриченко С.С., Егоров Д.К. Расчет долговечности корпусов мостов трактора //Вестник машиностроения, 1989. № 5. - С. 43-44.

40. Дмитриченко С.С., Завьялов Ю.А., Артемов В.А. Параметры случайных процессов нагружения металлоконструкций колесного трактора //Тракторы и сельскохозяйственные машины. 1987. № 1. - С. 21-26.

41. Дудникова В.В. Исследование причин отказа и рекомендации по увеличению гамма-процентного ресурса стойки культиватора АКВ 4.// Деп. в ВИНИТИ, № 1471 - в 2005.

42. Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. - 472 с.

43. Зорин В.А. Основы долговечности строительных и дорожных машин. М.: Машиностроение, 1986. - 248 с.

44. Игнатенко И.В. Исследование динамических характеристик крепления опор ротационных узлов на панели зерноуборочных комбайнов. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1970.

45. Капур К., Ламберсон Л. Надежность и проектирование систем. М.: Мир, 1980. - 640 с.

46. Карасев Г.Н. Технико-экономическая оценка конструкций строительных экскаваторов // Строительные и дорожные машины. 1997. - №4.- С. 1115.

47. Карпенко А.Н. и др. Сельскохозяйственные машины. Изд. 3-е, перераб. и доп. М., «Колос », 1975.

48. Касьянов В.Е, Анабердиев А.Х. М., Роговенко Т.Н. Оценка ресурса деталей с усталостными отказами методом статистических испытаний //Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ДГТУ. - Ростов-на-Дону. 1993. С. 67-71.

49. Касьянов В.Е, Андросов A.A., Роговенко Т.Н. Обеспечение минимального ресурса рамы энергосредства «Дон-800». // Вестник машиностроения, 2003, № 3.

50. Касьянов В.Е, Дудникова В.В., Ямоков С.Г. Модель и определение надежности культиваторного узла (группы стоек). // Деп. в ВИНИТИ, № -2006.

52. Касьянов В.Е. Анализ применения трехпараметрического распределения Вейбулла в расчетах надежности машин // Надежность и контроль качества. 1989. - №4. - С. 23-28.

53. Касьянов В.Е. и др. МР-92-83. Определение экономической эффективности повышения надежности выпускаемых машин. М.: ВНИИНМАШ, 1983. -24 с.

54. Касьянов В.Е. и др. МС-248-88. Надежность в технике. Методы расчета показателей надежности для моделей «прочность-нагрузка». М.: Издательство стандартов, 1988. - 20 с.

55. Касьянов В.Е. и др. Р 50-109-89. Надежность в технике. Обеспечение надежности изделий. Общие требования. М.: Издательство стандартов, 1989.- 15 с.

56. Касьянов В.Е. и др. РД 50-576-85. Методические указания. Надежность в технике. Установление норм показателей надежности изделий. Основные положения. М.: Издательство стандартов, 1985. - 22 с.

57. Касьянов В.Е. Интегральная оценка, повышение и оптимизация надежности машин (на примере одноковшового экскаватора) // Вестник машиностроения. 1990. - №4. - С. 7-8.

58. Касьянов В.Е. Принципы создания практически безотказных" машин. //Стандарты и качество. 1988. - №7. - С. 39-42.

59. Касьянов В.Е. Системное обеспечение надежности машин, применяемых в мелиоративном строительстве: Автореф. дис. . д-ра техн. наук. Ростов-на-Дону.-1991.-48 с.

60. Касьянов В.Е., Аннабердиев А. Х.-М. Определение статистического распределения действующих напряжений при нестационарном нагружении деталей одноковшовых экскаваторов. Деп. в ЦНИИТЭСТРОЙМАШ №51сд-85Деп., 20.04.85.

61. Касьянов В.Е., Кузьменко A.B. Определение плотности распределения отказов для машин. Деп в ВИНИТИ 8.04.04, №585.

62. Касьянов В.Е., Кузьменко A.B., Ямоков С.Г. Аналитический метод определения параметров распределения Вейбулла для совокупностиконечного объема действующих напряжений в деталях машин. Деп в ВИНИТИ № в 2006.

63. Касьянов В.Е., Прянишникова Л.И., Дудникова В.В., Кузьменко A.B. Определение параметров распределения Вейбулла для совокупности конечного объема по выборке прочностных характеристик сталей Деп в ВИНИТИ № 389 в 2004.

64. Касьянов В.Е., Прянишникова Л.И., Роговенко Т.Н., Дудникова В.В. Определение гамма процентного значения гипотетическогораспределения выборочных сдвигов для прочностных характеристик сталей // Деп. в ВИНИТИ №1411, 17.07.03.

65. Касьянов В.Е., Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса рамы машины // Вестник машиностроения. 1999. -№6. -С. 10-12.

66. Касьянов В.Е., Роговенко Т.Н. Выбор показателя степени кривой усталости в сверхмногоцикловой области/ Рост. гос. акад. стр-ва. Ростов н/Д, 1993. -8 с. - Деп. в ВИНИТИ №1594 - В95 от 31.05.95.

67. Касьянов В.Е., Роговенко Т.Н. Статистическая оценка прочности сталей с помощью полинома. //Надежность и контроль качества. 1996. - №8. - С. 28-36

68. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В. Анализ методов расчета усталостного ресурса деталей машин. / Деп. в ВИНИТИ № 827, 28.04.03.

69. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В, Кузьменко A.B. Определение средневзвешенных напряжений в деталях машин при переменных напряжениях. Деп. в ВИНИТИ 12.05.03, № 910.

70. Касьянов В.Е., Роговенко Т.Н., Кинсфатор A.A. Статистическая оценка механических характеристик сталей с помощью полинома рациональных степеней. Деп. ВИНИТИ №835 В00 в 2000.

71. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Анализ методов расчета минимального ресурса деталей машин // Деп. в ВИНИТИ №3002-В99, 8.07.99.

72. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение корреляционной связи параметров функции распределения генеральной совокупности конечного объема деталей и выборочных распределений // Деп. в ВИНИТИ №3038-В99, 11.10.99.

73. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение минимальных значений прочности деталей машин. // Методы менеджмента качества, 2001, № 12, с. 38-41.

74. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение связи между минимальными значениями ресурса деталей для генеральной совокупности конечного объема и выборки. Деп. в ВИНИТИ №611-В99, 26.02.99.

75. Касьянов В.Е., Роговенко Т.Н., Щулькин Л.П. Основы теории и практики создания надежных машин. // Вестник машиностроения, 2003, № 10, с. 3-6.

76. Касьянов В.Е., Топилин И.В. Определение функции распределения средневзвешенных напряжений по амплитудным значениям напряжений для расчета усталостного ресурса деталей методом Монте-Карло. Деп в ВИИТИ №364-В99,13.02.99.

77. Касьянов В.Е., Щулькин Л.П. Теоретические основы системного обеспечения надежности строительных машин // Известия высших учебных заведений «Строительство », 2001. №7. - 90-96.

78. Когаев В.П. Определение надежности механических систем по условию прочности. М.: Знание, 1976. - 48 с.

79. Когаев В.П. Расчеты на прочность при нагружениях переменных во времени. М.: Машиностроение, 1977. - 233 с.

80. Когаев В.П., Бойцов Б.В.Рассеивание пределов выносливости деталей машин в связи с конструктивными и технологическими факторами. // Надежность и контроль качества, 1969. № 10. - С. 53-66.

81. Когаев В.П., Махутов H.A., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность. М.: Машиностроение. 1985. - 224 с.

82. Когаев В.П., Петрова И.М. Расчет функции распределения ресурса деталей машин методом статистических испытаний //Вестник машиностроения. 1981. -№ 1.-С. 9-11.

83. Колокольцев В.А., Волжнов Е.Д. О расчете ресурса и сопротивлении усталости деталей машин при нерегулярных стационарных режимах нагружения // Вестник машиностроения. 1995. - №11. - С. 23-27.

84. Коновалов JI.B. Нагруженность , усталость, надежность ■ деталей металлургических машин. М.: Машиностроение. 1981. - 256 с.

85. Косов В.П., Сиделев В.И., Каменев M.JI., Морозов В.М. Методика определения надежности картофелеуборочных комбайнов // Тракторы и сельскохозяйственные машины. 1986. - №3. - С. 33-34.

86. Крамер Г. Математические методы статистики. М.: Мир, 1975. - 648 с.

87. Кугель Р.В. Надежность машин массового производства. М.: Машиностроение, 1981. 244 с.

88. Левицкий C.B. Исследование виброэффекта упругой подвески рабочих органов скоростного лапового культиватора с целью снижения тягового сопротивления. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1980.

89. Лукинский B.C., Зайцев E.H. Прогнозирование надежности автомобилей. -Л.: Политехника, 1991. 224 с.

90. Марковец М.П. определение механических свойств металлов по твердости. -М.: Машиностроение, 1979. 191 с.

91. Методика испытаний пружинных стоек. Порядок проведения H 043.14.514. Ростов-на-Дону,ЗАО «Красный Аксай » (В.И. Гасилин , В.Г. Торгало), 2005 г. с.5.

92. Методы оценки конструктивной прочности машин (Грошев Л.М., Спиченко В.В., Андросов A.A. и др.) Учебное пособие. Ростов-на-Дону.: Издательский центр ДГТУ. 1997. 163 с.

93. Миркитанов В.И., Журавель А.И., Почтенный Е.К., Щурик К.В. Расчетно-экспериментальная оценка долговечности несущих систем// тракторы и сельскохозяйственные машины. 1988. № 7. - С. 44-45.

94. Михлин В.М. Управление надежностью сельскохозяйственной техники. -М.: Колос, 1984.-335 с.

95. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет: B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 5.: Проектный анализ надежности / Под ред. В.И. Патрушева и А.И. Рембезы. -316с.

96. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет:

97. B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 6: Экспериментальная отработка и испытания / Под. Общ. Ред. P.C. Судакова , О.И. Тескина. - 376 с.

98. Нахатакян Р.Х., Клятис JI.M., Карпов Л.И. Прогнозирование надежности новых машин по результатам приемочных испытаний // Тракторы и сельскохозяйственные машины. 1991. - №11. - С. 30-32.

99. Оболенский Е.П., Сахаров Б.И., Стрекозов Н.П. Прочность агрегатов оборудования и элементов систем жизнеобеспечения летательных аппаратов. М.: Машиностроение, 1989. - 248 с.

100. Оськин C.B. Технико-экономическая оценка эффективности эксплуатации оборудования //Механизация и электрификация социалистического сельского хозяйства, 2006. № 1. - С. 2-3.

101. Почтенный Е.К., Капуста П.П. Вероятностные диаграммы многоцикловой усталости деталей машин. //Вестник машиностроения, 1993. № 12.1. C. 5-7.

102. Прянишникова Л.И., Прянишников A.B., Дудникова В.В. Аналитическое определение у процентного минимального значения для совокупности конечного объема по выборочным данным (случай средней гарантии) //Деп. в ВИНИТИ, № 1852 - в 2003.

103. Решетов Д.Н., Иванов A.C., Фадеев В.З. Надежность машин. М.: Высшая школа. - 1988.-238 с.

104. Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса ответственных деталей машин: Автореф. дис. канд. техн. наук. -Ростов-на-Дону, -1995. 24 с.

105. Роговенко Т.Н. Методы определения минимального значения прочности сталей для некоторых выборок // Рост. гос. акад. стр.-ва. Ростов-на-Дону, 1993. - 8 с. - Деп. В ВИНИТИ № 1593 - В95 от 31.05.95.

106. Ротенберг Р.В. Основы надежности системы водитель-автомобиль-дорога-среда. М.: Машиностроение, 1986. - 216 с.

107. Ряхин В.А. Нагруженность металлоконструкций строительных и дорожных машин циклического действия при оценке живучести // Строительные и дорожные машины. 1995. - №11. - С. 23-25.

108. Самойлов Д.Н., Ахтариев М.Р. Прогнозирование технического состояния автомобилей // Механизация и электрификация социалистического сельского хозяйства, 2006. № 7. - С. 30-31.

109. Седов Л.И. Механика сплошной среды. М.: Наука, 1976. Т. 1. - 536 е., Т. 2.-576 с.

110. Секулович М. Метод конечных элементов.-М.:Стройиздат,1993. 664 с.

111. ПЗ.Серенсен C.B., Когаев В.П., Шнейдерович P.M. Несущая способность ирасчет деталей машин на прочность. М.: Машиностроение, 1975. ~ 488 с.

112. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1969.- 512 с.

113. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973. - 280 с.

114. Соколов С.А. Вероятностные основы расчета ресурса металлических конструкций по методу предельных состояний // Проблемы машиностроения и надежности машин. 1997. - №4. - С. 105-111.

115. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969.-608 с.

116. Сопротивление материалов. Под ред. Писаренко Г.С. , Киев: Выща школа, 1979.-693 с.

117. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. М.: Гиле, 1969. 200 с.

118. Тензометрия в машиностроении. Справочное пособие. Под. Ред. канд. техн. наук P.A. Макарова. М.: Машиностроение, 1975. 288 с.

119. Ткаченко В.А., Львов Б.В., Стопалов С.Г. О показателях безотказности и долговечности высоконадежных изделий // Тракторы и сельскохозяйственные машины. 1991. - №1. - С. 43-45.

120. Топилин И.В. Определение связи между значениями ресурса для генеральной совокупности конечного объема и выборки / Известия РГСУ : Сб. ст. Ростов-на-Дону: РГСУ. - 1999. - №4. - с. 237 - 238.

121. Уилкс С. Математическая статистика. Перевод с англ. Наука, 1967. -632 с.

122. Федосов В.В., Шабанов Б.М. Оценка надежности несущих конструкций грейферных погрузчиков //ДГТУ. Ростов- на-Дону, 1993. С. 54-59.

123. Форрест П. Усталость металлов. Перевод с англ. Под ред. Академика АН УССР С.В. Серенсена. М. «Машиностроение ». 1968.

124. Хазов Б.Ф. Эффективность повышения показателей долговечности машин и комплексов // Строительные и дорожные машины. 1990. - №7. - С. 2224.

125. Хазов Б.Ф. Эффективность функционирования и надежность машин ремонтируемого класса // Вестник машиностроения. 1988.- №12.-С. 1821.

126. Халфин М.А. Управление надежностью машин в эксплуатации// Механизация и электрификация социалистического сельского хозяйства, 1982.-№ 1.-С. 46-52.

127. Хейвуд Р.Б. Проектирование с учетом усталости. М.: Машиностроение, 1969.-504 с.

128. Хозяев И.А. Исследование надежности машин для животноводства и кормопроизводства и оптимизация их показателей // Машины и оборудование для животноводства и кормопроизводства: Сб. тр. -ВНИИКОМЖ. М. 1985. - С. 24-30.

129. Хозяев И.А. Основы обеспечения надежности при проектировании производственных линий животноводческих ферм и комплексов: Учебное пособие /РИСХМ. Ростов-на-Дону, 1984. - 94 с.

130. Храмцов Л.Д, Сорваниди Ю.Г., Карпенко В.Д. Оценка надежности комбайнов «Дон-1500» в эксплуатационных условиях // Тракторы и сельскохозяйственные машины. 1991. - №12. - С. 44-46.

131. Червяков И.В. Математические методы теории надежности и контроль качества // Методы менеджмента качества. 2005. - № 5. С. 37-42.

132. Шевцов В.Г. Основные аспекты повышения конкурентоспособности отечественных сельскохозяйственных тракторов // Тракторы и сельскохозяйственные машины. 1992. - №7. - С.9-16.

133. Шор Я.Б. Статистические методы анализа и контроля качества и надежности. М.: Советское радио, 1962. - 552 с.

134. Dubey S.D. Hyper efficient of the location parameter of the Weibull laws // Naval Research Logistics Quarterly. 1966. - N13. - P.253.

135. Epstein B. Application о the theory extreme values in fracture problems, J. Amer. Statist. Assoc. 1948, v.43, p. 403-412.

136. Fisher R.A., Tippet L.H.C. Limiting forms of the frequency distribution of longest of smallest member of a sample. OCPS, 24 (1928). 180 p.

137. Gumbel E.J. Les valeurs extremes des distributions statistiques, Annales de Г Institute Henri Poincare, 1935. v. 4, Fasc, 2 p 115.

138. Isermann R., Balle P. Trends in the application of model based Fault detection and diagnosis of technical processes. 13th World congress of IFAC. Preprints, Vol. 4, 1996.-P. 1-12.

139. Newton D.W. Reliability Mathematics. In: Reliability Engineering (Ed.: O"Connor PDT), Hemisphere Publishing Corporation, Washington, 1998.

140. Oakland J.S. Total quality management: The route to improving performance. -2nd edition. Butterworth Heinemann Professional Publishing Ltd., Oxford, 1994.

141. Sholtes P. Total quality or performance appraisal: choose one // Nation Prod Rev, 1993. 12. - №3. - P. 349 - 363.

142. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. p. 293-297.

143. Weibull W. A statistical theory of the strength of materials, Ing. Vetenskaps Akad. Handl, N151.1939.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

1.4.1. Введение. Самодействующие клапаны поршневых компрессоров

Клапан - самостоятельная сборочная единица в составе ступени компрессора. Он служит для периодического подключения рабочей камеры к полостям всасывания и нагнетания.

Рис. 5.9. Принципиальная схема клапана.

1 – седло, 2 – ограничитель, 3 – пружина, 4 ­– запорный орган.

Несмотря на многообразие конструкций клапанов, их можно свести к единой принципиальной схеме, показанной на рис. 5.9. В общем случае клапан состоит из седла 1, ограничителя 2, запорного органа 4, и одной или нескольких пружин 3, а также содержит элементы крепления седла с ограничителем. В некоторых конструкциях в качестве запорного органа применяют упругий элемент, одновременно выполняющий и функции пружины. В собранном виде запорный орган клапана прижат к седлу и отделяет полости с различным давлением относительно друг друга.

В соответствии с рис. 5.9 поток газа через клапан возможен лишь при перемещении запорного органа на величину 0 < h ≤ h кл в случае р 1 > р 2 . Условием начала перемещения запорного органа является превышение газовой силы , действующей на запорный орган, над упругой силой пружин .

Упругая сила пружин при определяется соотношением

Из данного выражения следует, что при известном числе пружин , действующих на пластину клапана, их жесткости и предварительном натяге в собранном клапане величина .

Сила определяется давлениями газа, действующими с обеих сторон на лобовую поверхность запорного органа , т.е.

где - коэффициент, учитывающий форму эпюры давлений на поверхностях запорного органа, определяемый, как правило, экспериментальным путем. Примем: – давление газа в цилиндре ступени компрессора переменное по углу поворота вала при давлении нагнетания . При выполнении условия клапаны компрессорных ступеней автоматически открываются. По этому признаку их и называют самодействующими, т.е. автоматически открывающимися при определенной разности давлений в полостях, разделенных клапаном. При снижении действующего перепада давлений клапан автоматически закрывается под действием пружин.

По конструктивному исполнению проточная часть клапана представляет собой совокупность одного или нескольких каналов близких по закономерности изменения сечений в направлении потока газа к соплово­му. При этом сечения каналов на входе (со стороны седла) и выходе (со стороны ограничителя) постоянны, в то время как сечение в щели клапана минимально, зависит от перемещения запорного органа и меняется в процессе работы в диапазоне , где – максимальная величина геометрического сечения щели для полностью открытого клапана. Объем газа, содержащийся в каналах клапанов, составляет основную долю мертвого объема ступени компрессора и с этой точки зрения подлежит минимизации.

По сути протекающих физических процессов клапан можно рассматривать как местное сопротивление с геометрическим сечением и эквивалентным сечением , где – коэффициент расхода газа через клапан, зависящий от формы каналов клапана.

Особенностью работы клапанов является возникновение ударных напряжений в элементах клапана при контакте запорного органа с седлом и ограничителем, величина которых зависит в первую очередь от высоты перемещения запорного органа и частоты вращения вала компрессора n.

На проталкивание газа через клапан требуется дополнительная затрата работы пропорциональная действующему перепаду давления


,

где –плотность газа на входе в каналы клапана;

m – массовый расход газа через клапан.

Из приведенного выражения следует, что для снижения величины эквивалентное сечение щели клапана должно выбираться максимально возможным. Однако это приводит к увеличению мертвого пространства в каналах клапанов и, как правило, сопровождается увеличением высоты перемещения запорных органов, что ухудшает показатели эффективности и надежности работы ступени компрессора.

Учитывая сказанное, к конструкции клапанов предъявляется ряд требований. Выделим среди них основные:

1. Высокий уровень эффективности работы клапанов, обеспечиваемый за счет максимально возможного увеличения сечения щели при заданных поверхностях ступени компрессора, на которых размещаются клапаны. При этом обычно ограничивают дополнительные затраты энергии в клапанах величиной для стационарных компрессоров и 12÷15% для передвижных и специальных компрессоров высокого давления от индикаторной мощности.

2. Гарантируемый уровень надежности, показателем которого обычно является расчетная наработка клапана до первого отказа. В современных конструкциях поршневых компрессоров эта величина лежит в диапазоне от 2 до 10 тысяч часов, где верхний предел соответствует крупным стационарным компрессорам, а нижний - высокооборотным малорасходным компрессорам.

Указанные требования вступают в противоречие друг с другом. В частности, желание повысить эффективность обычно приводит к снижению надежности работы клапана. Поэтому при проектировании клапанов, как правило, идут по пути отыскания компромиссного решения.

Кроме указанных выше, к клапанам предъявляется ряд дополнительных требований, среди которых отметим следующие:

Динамическая герметичность, т.е. своевременность их за­крытия;

Статическая герметичность клапанов в закрытом состоянии;

Минимальное мертвое пространство в каналах клапанов;

Удобство монтажа, демонтажа и ремонтопригодность, особенно в случаях работы на загрязненных газах и при отсутствии смазки цилиндров;

Минимальные массогабаритные параметры, стоимость и сроки поставки;

Гарантированное сервисное обслуживание фирмой-изготовителем.

Характеризуя конструкцию клапанов, обычно рассматривают 2 основных сечения каналов для прохода газа: сечение в седле и в щели полностью открытого клапана. В общем случае величина определяется уравнением

F щ = П∙h кл,

где П – уплотняемый периметр закрытого клапана;

– максимальная величина перемещения пластины клапана.

Величины П и для основных типов клапанов приведены в табл. 5.3.

Таблица 5.3

Параметры сечения щели самодействующих клапанов.

Примечание: L(l), B(b) – размеры запорного органа;

– средний диаметр кольцевой пластины;

– диаметр отверстия на входе в клапан;

Z – число подвижных элементов клапана.

Основной задачей при предварительном обосновании конструкции клапана выбранного типа для рассматриваемой ступени компрессора является определение требуемого сечения щели зависящего от числа клапанов Z, активной площади поршня , его средней скорости с п, температуры газа на входе в клапан Т , газовой постоянной R и показателя адиабаты k. Связь указанных параметров для полностью открытого клапана описывается критериальной зависимостью

,

где М – критерий скорости потока газа в клапане. Его величина для современных конструкций клапанов лежит в диапазоне ;

– коэффициент расхода клапана.

Величину для конкретного типа клапана обычно определяют экспериментальным путем, рассматривая ее зависящей от текущей высоты перемещения клапанных пластин. Для полностью открытых клапанов можно рекомендовать величины, приведенные в табл. 5.4.


Таблица 5.4

Коэффициент расхода основных конструкций клапанов

В справочной литературе клапан характеризуется эквивалентным сечением . Его величина согласно приведенной выше критериальной зависимости будет равна

По найденной величине Ф подбирается стандартный клапан или разрабатывается новый со специфическими геометрическими параметрами.

Подобный метод подбора клапанов не гарантирует требуемого уровня показателей эффективности и надежности. Поэтому на заключительном этапе целесообразно выполнение расчетного анализа работы выбранных клапанов в составе реальной ступени компрессора. Для этого используют апробированные программы расчета, предусматривающие математическое моделирование комплекса рабочих процессов и динамики движения запорных органов, которые позволяют на стадии проектирования обосновывать оптимальное сочетание геометрических параметров элементов клапанов применительно к компрессору с заданной геометрией ступеней, известными режимными параметрами и свойствами рабочего вещества.

Показателем надежности разработанных клапанов, сформировавшимся в результате многолетнего опыта ряда поколений исследователей, изготовителей и потребителей компрессорной техники, является выполнение условия: расчетная (на стадии проектирования) или экспериментально определённая скорость посадки пластин клапана на седло W с ≤ 1.5 м/с .

Окончательно оценка эффективности и надежности клапанов принимается на основании расширенных теплотехнических испытаний компрессоров, предусматривающих определение производительности, потребляемой мощности, температур нагнетания по ступеням и наработку до 1-го отказа.

В приведенных ниже материалах автор ставит и решает задачу разработки, исследования и создания самодействующих клапанов, эффективность и надежность которых обосновываются на стадии проектирования при использовании модернизированной программы КОМДЕТ-М.

1.4.2. Основы оптимизации клапанов поршневых компрессоров

Выбор характерных параметров клапанов по величине эквивалентного сечения в щели полностью открытых клапанов Ф щ не гарантирует оптимального сочетания конструктивных параметров клапанов (толщины δ пл и массы m пл подвижных клапанных пластин, их максимального перемещения h кл, жесткости С пр, числа Z пр и предварительного натяга пружин h 0 , действующих на отдельные пластины клапана), а следовательно, не позволяет прогнозировать действительный уровень статической ν пр и динамической ν пер не герметичности клапанов с выбранными в ходе предварительного термодинамического расчета габаритными размерами или посадочными диаметрами d 1 . Следствием такого подхода является расхождение в той или иной степени между расчетной и фактической производительностью, мощностью на валу машины и показателями надежности и эффективности работы ступеней и агрегата в целом.

С учетом указанных факторов целесообразным является выполнение комплексного поверочного расчета в виде численного эксперимента , в ходе которого проводится сравнительный анализ вариантов ступени компрессора укомплектованного клапанами различного конструктивного исполнения. По результатам численного эксперимента рекомендуется «оптимальныйвариант » клапанов, при которых обеспечивается требуемая производительность ступени, современный уровень эффективности и надежности клапанов при работе на номинальном и других режимах.

Подробно данный аспект работы представлен в разделе 7.

1.4.3. О целесообразности применения клапанов грибкового типа

в составе ступеней оппозитных компрессоров

Под «грибковыми» клапанами в литературе понимают индивидуальные клапаны с запорным органом в виде круглой пластины, поверхность которой со стороны седла выполнена по профилю, обеспечивающему минимальное газодинамическое сопротивление при течении газа по каналам клапана. Подвижный орган клапанов внешне напоминает грибок со «шляпкой» сферической формы, обращенной в сторону седла клапана. Конструктивно грибковые клапаны практически не отличаются от клапанов с пластинами сферической формы (см. рис. 5.10-А и 5.10-Б). В силу ряда особенностей клапаны подобного типа находят применения, как правило, в малорасходных машинах объёмного действия и на ступенях высокого давления с малыми диаметрами цилиндров. Существующие методы расчета сферических клапанов вполне применимы и при анализе работы ступеней компрессоров укомплектованных грибковыми клапанами.

В настоящем разделе работы автор анализирует целесообразность применения грибковых клапанов в ступенях современных высокооборотных (n ≥ 750 об/мин) оппозитных компрессорах с поршнями двойного действия, что предопределяет боковое расположение индивидуальных клапанов с посадочным диаметром d 1 на боковых стенках цилиндра.

Поскольку грибковые клапаны конструктивно идентичны сферическим, то их расчетный анализ может быть выполнен на основе прикладной программы КОМДЕТ-М. Программа хорошо зарекомендовала себя в практике расчетных и конструкторских подразделений ОАО «КОМПРЕССОР» г. С.Петербург на стадии разработки и обоснования оптимальных вариантов малорасходных компрессоров низкого, среднего и высокого давления на У-образных базах.

Рис. 5.11. Наборный грибковый клапан

с неметаллическими запорными органами

с посадочным диаметром 125 мм (Z кл =20)

Главным преимуществом клапанов тарельчатого типа (грибковых и сферических) с неметаллическими запорными органами считается их повышенная герметичность в закрытом состоянии.

Главный недостаток – низкий коэффициент использования лобовой поверхности клапанной плиты с посадочным диаметром d 1 , в пределах которой устанавливается n-е количество сферических или грибковых клапанов (см. рис. 5.11).

В качестве объекта исследования выбрана I ступень газового компрессора 4ГМ2.5-6.67/4-50С с поршнями двойного действия. Рабочие полости ступени (А и Б) могут быть укомплектованы разнотипными индивидуальными клапанами с посадочным диаметром ø125 мм с размещением их на боковой поверхности цилиндра. В ходе численного эксперимента оценивалась эффективность работы ступени при комплектации её прямоточными (ПИК), ленточными (ЛУ), полосовыми (ПК) и грибковыми клапанами при сохранении режимных параметров.

На предварительном этапе исследования определялась оптимальная величина подъёма запорного органа грибкового клапана. Результаты исследования приведены в табл. 5.6. Их анализ позволил обосновать оптимальный вариант клапана ГрК125-20-14 -2.0 с диаметром отверстия в седле d с = 14 мм и высотой подъёма запорного органа h кл.опт = 2 мм.

Результаты 2-го этапа исследования, приведенные в табл. 5.7 и на рис. 5.12 в виде текущих и интегральных параметров ступени компрессора укомплектованной клапанами различного типа, позволяют сделать следующие выводы:

1. Наборные грибковые клапаны, смонтированные в плите с посадочным диаметром ø125, при расположении на боковой поверхности цилиндра проигрывают клапанам других типов по основным показателям, включая:

Снижение производительности - на 4.3 %;

Увеличение суммарных относительных потерь в клапанах χ вс+нг в 2 раза;

Снижение изотермного индикаторного КПД η из.инд - на 8.0 %;

Повышение температуры нагнетаемого газа - на 14 К.

Таблица 5.6

Интегральные параметры I ступени компрессора 4ГМ2.5-6.67/4-50С при комплектации клапанами грибкового типа с переменной высотой подъёма h кл

Параметры Размер-ность Число и тип установленных клапанов:
Z кл = 1 вс + 1 нг, тип – Грибковые
Обозначение клапана I ст. - ГрК125- 20-14-1.5 ГрК125- 20-14-1.8 ГрК125- 20-14-2.0 ГрК125- 20-14-2.2 ГрК125- 20-14-2.5
h кл мм 1.5 1.8 2.0 2.2 2.5
р нг / р вс МПа 1.2 / 0.4
П = р нг /р вс - 3.0
а 0.34
Т вс К
T ст 345.2 334.9 343.1 342.9 342.7
T нг.ц 433.5 430.3 428.3 427.8 427.4
m 1.А кг/ч 513.44 517.26 519.94 518.58 523.88
V н.у.1А нм 3 /мин 7.1011 7.154 7.1911 7.1723 7.2455
N инд.1А кВт 20.470 20.150 19.961 19.826 19.974
N ном.1А 16.736 16.781 16.841 16.796 16.938
∆N ∑ 3.634 3.369 3.120 3.030 3.036
χ вс - 0.118 0.108 0.103 0.103 0.100
χ нг 0.105 0.093 0.082 0.077 0.079
L уд кДж/кг 143.5 140.2 138.2 137.6 137.3
h вс 528.87
h нг. S 637.43
h нг 670.56 667.33 665.24 664.66 664.33
η из.инд - 0.643 0.658 0.667 0.670 0.672
λ 0.5304 0.5344 0.5372 0.5358 0.5412
λ д 0.9521 0.9632 0.9664 0.9609 0.9709
λ т 0.9619 0.9631 0.9642 0.9658 0.9639
λ о 0.5669 0.5733 0.5746 0.5719 0.5769
∆λ вс - 0.0225 - 0.0123 - 0.0104 - 0.0139 - 0.0131
∆λ нг 0.0026 0.0021 0.0007 0.0005 0.0041
ρ 3 кг/м 3 9.919 9.962 9.988 9.984 10.005
ρ 1 4.362 4.418 4.437 4.419 4.458
ρ 3 /ρ 1 - 2.274 2.255 2.251 2.259 2.244
W с.вс м/с 1.14 0.91 0.96 1.21 2.26
W с.нг 1.94 1.93 1.39 1.42 2.42

Шифр варианта - ГМ25-6.7-4-12-Г. Рабочая полость– А .

ВОЗДУХ,D ц. I = 200 мм, S п = 110 мм, L ш = 220 мм, n = 980 об/мин, с п = 3.593 м/с

Таблица 5.7

Параметры I ступени дожимающего компрессора 4ГМ2.5-6.67/4-50С

при комплектации клапанами различного типа

Z кл = 1 + 1, δ усл.кл = 1 мкм, ρ вс.реальная = 4.7635 кг/м 3

Параметры Размер-ность Вариант исполнения I ступени
А Б В Г
Тип клапанов - ПИК125- 1.0БМ-1.5 ЛУ125-9- 96-8-0.6-1.8 ПК125-9- 96-8-0.6-1.8 ГрК125- 20-14-2
Т нг К 412.9 414.6 413.7 428.3 + 14 К
m 1.А кг/ч 532.3 545.4 542.2 519.9
V н.у.1А нм 3 /мин 7.362 7.544 7.499 7.191 - 4.3%
V вс.1А м 3 /мин 1.862 1.908 1.897 1.819
N инд.1А кВт 18.221 18.809 18.568 19.961
∑∆N кл 1.036 1.502 1.392 2.957 в 2 раза
χ вс - 0.034 0.048 0.044 0.103
χ нг 0.026 0.039 0.037 0.082
η из.инд 0.749 0.743 0.748 0.667 -8%

Рис. 5.12. Текущие параметры I ступени компрессора

4ГМ2.5-6.67/4-50С при n = 980 об/мин

ГрК125-20-12-2 ------ ПК125-9-96-8-0.6-1.8

2. Высокая частота и амплитуда колебаний клапанных пружин в периоды всасывания и нагнетания (см. рис. 5.12) способствуют преждевременному выходу их из строя.

Обобщая полученные данные, следует указать, что применение набора грибковых клапанов в клапанной плите круглой формы в составе ступеней крупных оппозитных компрессоров с поршнями двойного действия при высоких частотах вращения вала не целесообразно. Исключение могут составлять отдельные случаи применения грибковых клапанов при комплектации ступеней низкооборотных компрессоров, сжимающих «тяжёлые»-«легкие» газы (например, ВОЗДУХ - Водород и Водород-содержащие смеси) в период пуско-наладочных испытаний.

Список литературы

1. Прилуцкий И. К., Прилуцкий А.И. Расчет и проектирование

поршневых компрессоров и детандеров на нормализованных базах:

Учебное пособие для студентов вузов. – СПбГАХПТ, 1995 . – 194 с.

2. Поршневые компрессоры: Учебное пособие для студентов вузов.

Б.С. Фотин, И.Б. Пирумов, И.К. Прилуцкий, П.И. Пластинин.

– Л.: Машиностроение, 1987. - 372 с.

3. Френкель М. И. Поршневые компрессоры.

– Л.: Машиностроение, 1969. - 744 с.

– М.: Машиностроение, 1979. - 616 с.

4. Каталог электродвигателей. Филиал ООО «Элком». – Москва, Россия

Ворошилов - Рыжков :

1. Дожимающие компрессоры без охлаждения цилиндров -

тепловая задача (эксперимент и Колеснев) +

оребрение крышек (эксперимент с участием представителя ККЗ и Галяева??)

2. Унификация клапанов I и II ступеней компрессора 4ГМ2.5-6.67/11-64

3. Рациональные технические решения Маша, Демпфирование, Унификация – Z кл 3:1 (ПАИ)

4. Прямоугольные клапаны транспортных компрессоров - альтернатива индивидуальным клапанам круглой формы форсированных по средней скорости поршня и частоте вращения вала (УКЗ-Демаков и ККЗ)

5. Разработка форсированной по средней скорости базы 4У4 ………….

6. Достигнутый технический уровень компрессоров.

Перспективы его дальнейшего повышения

7. Комплексный расчетно-теоретический анализ (2ВМ2.5-14/9) ………..

10.04.2018

Источник: Журнал «PROнефть»

Management of reliability and integrity of equipment is an important tool for enhancing business efficiency

УДК 338.45:622.276

В.Р. Амиров
ПАО «Газпром нефть»

Ключевые слова: надежность, целостность, оборудование, риск, затраты, эффективность, бюджет, планирова- ние, производственная безопасность, система управления операционной деятельностью (СУОД)

V.R. Amirov
Gazprom Neft PJSC, RF, Saint-Petersburg

The article is devoted to improvement of operational efficiency of oil and gas fields and examines one of the key direc- tions of the operational management system (OMS). This direction is the management of reliability and integrity of equipment – implemented by the Deming cycle. A prerequisite of effective management of reliability and integrity is a correct assessment of the current condition of the asset through the risk assessment and registration costs and damages. The risk-based approach allows for comparable levels of direct costs for management of reliability and in- tegrity, to improve the total economic result (direct costs + damage) while reducing the number of failures. In conclu- sion, the assessment of the current state of management of reliability and integrity in Upstream Division of GPN

Keywords: reliability, integrity, equipment, risk, cost, efficiency, budget, planning, production safety, operational management system (OMS)

DOI : 10.24887/2587-7399-2018-1-10-15

Введение

Задачей программы «Эталон» (система управления операционной деятельностью (СУОД)) ПАО «Газпром нефть» является обеспечение максимальной операционной эффективности компании за счет надежности и безопасности производственной деятельности и вовлечения всех сотрудников в процесс непрерывных улучшений. Управление надежностью и целостностью оборудования (УНЦО) представляет собой комплекс мероприятий, обеспечивающий бесперебойную работу нефтепромыслового оборудования на протяжении всего периода эксплуатации. Важность этого направления производственной деятельности отражена в его выделении в отдельный элемент СУОД.

Прямые затраты и совокупный экономический результат

В условиях объективного ухудшения условий эксплуатации в нефтегазодобывающей отрасли (истощение месторождений, увеличение обводненности продукции скважин и др.) целесообразно оценить «свежим взглядом» структуру затрат на поддержание текущей деятельности активов. Значительную долю (до 20) занимают затраты на УНЦО. Они распределены по различным статьям бюджета актива и могут быть разделены по следующим направлениям (прямые затраты):

1.1. текущий ремонт оборудования;

1.2. капитальный ремонт (или замена) оборудования (частично осуществляется за счет капитальных вложений);

1.3. диагностика состояния оборудования (включая экспертизу промышленной безопасности оборудования с истекшим сроком эксплуатации, мероприятия по коррозионному мониторингу и др.);

1.4. защита оборудования (включая выбор материалов, нанесение защитных покрытий, ингибирование коррозии и др.).

Кроме того, в процессе операционной деятельности возникают дополнительные затраты на УНЦО, которые также влияют на себестоимость добычи нефти:

2.1. затраты на устранение отказов оборудования и ликвидацию последствий этих отказов;

2.2. штрафы и платежи, связанные с нарушением целостности и отказами оборудования.

Третья группа затрат, а точнее, потерь, которые влияют на финансовый результат деятельности актива за отчетный период включает:

3.1. потери продукции, связанные с нарушением целостности и отказами оборудования. Эти три группы затрат актива по-разному соотносятся с рисками нарушения целостности оборудования. Затраты 1.1., 1.2., 1.4. снижают эти риски (как вероятность, так и последствия), затраты 2.1., 2.2., 3.1. возникают вследствие реализовавшихся рисков. Затраты 1.3. обеспечивают оценку данных рисков и не влияют на величину риска. Эффективность УНЦО оценивается по совокупному экономическому результату, который представляет собой сумму всех вышеперечисленных затрат. Управление совокупным экономическим результатом составляет основу УНЦО и включает: планирование, выполнение, контроль выполнения и оценку эффективности и актуализацию подхода к УНЦО.

Риск и ущерб

Стоимостная оценка риска и ущерб – величины, которые характеризуют прогнозный и фактический результат деятельности, связанной с УНЦО.

Риск нарушения целостности – прогнозируемая величина ущерба от отказов и нарушения целостности оборудования за планируемый период. Качество оценки данного риска определяется сравнением этой оценки с суммой понесенного ущерба в течение данного периода с учетом предотвращенного ущерба. Поскольку в настоящее время величина ущерба от отказов и нарушения целостности оборудования учитывается неполностью, то и качество оценки соответствующего риска определить непросто из-за отсутствия базы сравнения.

В этих условиях обоснованием деятельности, связанной УНЦО, может быть только уверенность в том, что затраты (1.1., 1.2., 1.3., 1.4.) существенно меньше ущерба, который они должны предотвратить. Для новых растущих активов такое предположение, как правило, верно, но по мере снижения маржинальности

бизнеса, ставится вопрос обоснованности этих затрат.

В общем случае деятельность, связанная с УНЦО имеет экономический смысл, если

где Зi – затраты по направлениям 1.1., 1.2., 1.3., 1.4. за отчетный период; У – ущерб от отказов и нарушения целостности оборудования в течение отчетного периода (2.1., 2.2., 3.1.); Упр – предотвращенный ущерб в течение отчетного периода.

Для того, чтобы экономически обосновать затраты на УНЦО, необходим учет затрат 1.1., 1.2., 1.3., 1.4. за отчетный период, ущерба от отказов и нарушения целостности оборудования (затраты 2.1., 2.2., 3.1.), а также предотвращенного ущерба в течение этого периода.

Указанные задачи решаются в рамках организации соответствующей отчетности: о прямых затратах на УНЦО, об ущербе от отказов оборудования и нарушения целостности оборудования, об эффективности прямых затрат на УНЦО.

Риск-ориентированный подход к управлению надежностью и целостностью оборудования

В настоящее время в нефтегазодобывающей отрасли используются в основном два подхода к УНЦО.

1. Ремонт и замена оборудования проводятся в минимальном объеме по факту отказа. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.). Совокупный экономический результат этого подхода представлен на рисунке, а в виде ромба красного цвета и далек от оптимального по числу предотвращенных отказов (кружок зеленого цвета). Этот подход характерен для зрелых активов на поздней стадии разработки месторождений со значительными операционными затратами.

2. Ремонт и замена оборудования проводятся в соответствии с нормативными сроками, рекомендациями изготовителя с учетом результатов технического освидетельствования. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.).

Совокупный экономический результат реализации подходов 1 и 2 (а) и риск-ориентированного подхода (б)

Этот подход характерен для развивающихся активов с растущей добычей. Совокупный экономический результат такого подхода показан на рисунке, а ромбом желтого цвета и также не оптимален. Кроме того, сумма прямых затрат на УНЦО в этом случае больше ущерба и для выполнения указанного выше условия необходимо оценивать сумму предотвращенного ущерба, что, как уже отмечалось, довольно сложно.

Альтернативным является подход, основанный на оценке риска отказов и нарушения целостности оборудования (RBI – Risk Based Inspection, RCM – Reliability Centered Maintenance), который называют риск-ориентированным. Результат реализации этого подхода представлен на рисунке, б. Следует обратить внимание, что при таком подходе форма кривой, характеризующей ущерб от отказов, отличается от приведенной на рисунке, а. Это связано с тем, что при риск-ориентированном подходе затраты в первую очередь направляются на предотвращение отказов с наиболее негативными последствиями (ущерб людям, окружающей среде, репутации компании, значительные производственные потери), т.е. неприемлемых рисков. На отрезке кривой, соответствующем 70 – 100 предотвращенных отказов, остаются отказы с незначительными последствиями. Сравнение кривых на рисунке, а, б показывает, что рискориентированный подход позволяет при сравнимых уровнях прямых затрат на УНЦО улучшить совокупный экономический результат при одновременном снижении числа отказов. Оптимальный совокупный экономический результат показан на рисунке, б зеленым кружком. Особенно эффективен этот подход в компаниях с разными активами (новыми, развивающимися, зрелыми).

Для использования риск-ориентированного подхода к УНЦО необходимо решить две задачи.

1. Выполнить качественную оценку рисков нарушения целостности различных видов оборудования на планируемый период, включающую разработку и внедрение модели расчета:

– вероятности отказа оборудования в зависимости от ключевых (внутренних и внешних)

факторов влияния, к которым относятся срок службы, результаты технического освидетельствования, состояние защищенности оборудования, материал изготовления, условия и история его эксплуатации и др.;

– последствий отказа оборудования в зависимости от его производительности, рабочих параметров, стоимости, места установки (по отношению к другому оборудованию, местам нахождения персонала, населенным пунктам, водоохранным зонам и др.), временного интервала реагирования на критические отклонения рабочих параметров, состояния ремонтопригодности оборудования, состояния систем внешней защиты и реагирования и др.

2. Сформировать автоматизированную отчетность за определенный период

– о прямых затратах на УНЦО по видам оборудования (1.1, 1.2, 1.3, 1.4);

– о реализовавшихся рисках отказов и нарушения целостности оборудования (2.1, 2.2, 3.1).

Представленный подход применяется для кратко-, среднеи долгосрочного планирования деятельности, связанной с УНЦО.

Текущее состояние и перспективы унцо блока разведки и добычи ПАО «Газпром нефть»

Для решения первой задачи в Дирекции по добыче (ДД) Блока Разведки и Добычи (БРД) ПАО «Газпром нефть» разработана и реализуется программа надежности и целостности нефтепромыслового оборудования (НПО), включающая:

– оценку риска нарушения целостности НПО через заполнение и анализ оценочных листов по видам НПО;

– разработку на основе этой оценки методологии планирования затрат на УНЦ НПО;

– формирование подразделений по УНЦО в дочерних обществах;

– оценку эффективности реализации программы технического обслуживания и ремонта НПО.

В Дирекции по газу и энергетике (ДГиЭ) в настоящее время реализуется пилотный проект «Создание единой системы планирования и контроля планово-предупредительного ремонта энергооборудования», основными задачами которого являются снижение числа ремонтов и затрат на них за счет определения вида и объема ремонта на основании оценки технического состояния энергооборудования (RBI) и баланса между требуемым уровнем надежности и затратами на его поддержание (RCM). Кроме того, в ближайшее время ДГиЭ планирует начать реализацию пилотного проекта «Испытание систем предиктивной аналитики на основном оборудовании электростанций и объектов транспорта газа», задача которого – повышение надежности работы, сокращение времени внеплановых простоев оборудования путем предупреждения и устранения неисправностей на ранней стадии (RBI).

Вторую задачу в части оценки ущерба предполагается решить с помощью внедрения разработанного в ПАО «Газпром нефть» методического документа МД-16.10-05 «Методика финансовой оценки ущерба от происшествий в области производственной безопасности» путем выделения из существующих информационных систем происшествий по КТ-55, которые классифицируются как нарушения целостности оборудования (все отказы, порывы трубопроводов и др.).

Организация отчетности о прямых затратах на УНЦО должна осуществляться на основе:

– внедрения основополагающего стандарта ПАО «Газпром нефти» на УНЦО, разработку которого Центр развития СУОД завершает в 2018 г.;

– анализа существующей автоматизированной системы управленческой отчетности.

Выводы

1. Совокупный экономический результат – ключевой показатель эффективности деятельности, связанной с УНЦО.

2. Внедрение и анализ отчетности о затратах и ущербе от отказов и нарушения целостности оборудования дают возможность приоритизации затрат на УНЦО.

3. Риск-ориентированный подход обеспечивает наиболее эффективное распределение прямых затрат на УНЦО.

4. Текущее состояние УНЦО в БРД в части как процедур, так и обеспечения нормативно-методической документацией позволяет внедрить основополагающий стандарт на УНЦО без значительных изменений действующих документов.



Енвд