Тэц состоит. Процессы в пароводяном контуре. Что такое ТЭС

24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.


1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

ТЭС — это (расшифровка с амой аббревиатуры выглядит как "тепловая электростанция"), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 - 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как "конденсационная электростанция".

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как "теплоэнергоцентраль".

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

  • парогазовые.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Принцип работы ТЭС

ТЭС — это электростанция , на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

    Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

    Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

    Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

    Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

    Деаэ рированная вода подогревается и подается в котел.

    Преимущества ТЭС

    ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

    Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 - 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

    Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 - 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

    Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

    Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

    Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

    Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

    ТЭЦ-26 «Мосэнерго» (1800 МВт).

    Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.



Отчетность за сотрудников