Расчет взлетной массы ракеты по формуле циолковского. Школьная энциклопедия

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью U относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия):, V= - где V - скорость ракеты после истечения газов.

Здесь предполагалось, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью V. В течение малого промежутка времени Дt из ракеты будет выброшена некоторая порция газа с относительной скоростью U. Ракета в момент t + Дt будет иметь скорость а ее масса станет равной M + ДM, где ДM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна -ДM > 0. Скорость газов в инерциальной системе OX будет равна V+U. Применим закон сохранения импульса. В момент времени t + Дt импульс ракеты равен ()(M + ДM)а импульс испущенных газов равен В момент времени t импульс всей системы был равен MV. Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ДM| << M. Разделив обе части последнего соотношения на Дt и перейдя к пределу при Дt > 0, получим

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги F p Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение

выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

где u - модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости х ракеты:

где - отношение начальной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости х = х 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2-4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости х = 4u отношение должно быть = 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Космонавтика регулярно достигает ошеломительных успехов. Искусственным спутникам Земли постоянно находятся все более разнообразные применения. Пребывание космонавта на околоземной орбите стало обычным явлением. Это было бы невозможно без главной формулы космонавтики - уравнения Циолковского.

В наше время продолжается изучение как планет и других тел нашей Солнечной системы (Венеры, Марса, Юпитера, Урана, Земли и пр.), так и удаленных объектов (астероиды, другие системы и галактики). Умозаключения о характеристике космического движения тел Циолковского положили начало теоретическим основам космонавтики, которые привели к изобретению десятков моделей электро-реактивных двигателей и крайне интересных механизмов, например, солнечного паруса.

Основные проблемы освоения космоса

В качестве проблем освоения космоса четко выделяются три области исследования и разработок в науке и технике:

  1. Полеты около Земли или конструирование искусственных спутников.
  2. Лунные полеты.
  3. Планетарные полеты и полеты к объектам Солнечной системы.

Уравнение Циолковского для реактивного движения способствовало тому, что человечество в каждой из этих областей достигло удивительных результатов. А также появилось множество новых прикладных видов наук: космическая медицина и биология, системы жизнеобеспечения на космическом аппарате, космическая связь, и др.

Большинство людей сегодня слышали об основных достижениях: первая высадка на луну (США), первый спутник (СССР) и подобное. Помимо самых известных достижений, которые у всех на слуху, существует много и других. В частности, СССР принадлежат:

  • первая орбитальная станция;
  • первый облет Луны и фотографии обратной стороны;
  • первая посадка на Луну автоматизированной станции;
  • первые полеты аппаратов к другим планетам;
  • первая посадка на Венеру и Марс и пр.

Многие даже не представляют, насколько огромными были достижения СССР в сфере космонавтики. Во всяком случае, они были значительно больше, чем просто первый спутник.

Но и США внесли не меньший вклад в развитие космонавтики. В США провели:

  • Все крупные достижения в использовании околоземной орбиты (спутники и спутниковая связь) для научных целей и решения прикладных задач.
  • Множество экспедиций на Луну, исследования Марса, Юпитера, Венеры и Меркурия с расстояния пролетных траекторий.
  • Множество научных и медицинских экспериментов, проводимых в невесомости.

И хотя на данный момент достижения других стран меркнут на фоне СССР и США, но Китай, Индия и Япония активно присоединились к изучению космоса в период после 2000 года.

Однако достижения космонавтики не ограничиваются только верхними слоями планеты и высокими научными теориями. На простую жизнь она тоже оказала большое влияние. В результате изучения космоса в нашу жизнь пришли такие вещи: молния, липучка, тефлон, спутниковая связь, механические манипуляторы, беспроводные инструменты, солнечные батареи, искусственное сердце и многое другое. И именно формула скорости Циолковского, которая помогла преодолеть гравитационное притяжение и способствовала появлению в науке космической практики, помогла всего этого добиться.

Термин "космодинамика"

Уравнение Циолковского легло в основу космодинамики. Однако следует разобраться с этим термином подробнее. Особенно в вопросе близких к нему по смыслу понятий: космонавтика, небесная механика, астрономия и др. Космонавтика переводится с греческого "плавание во Вселенной". В обычном случае этим термином обозначается масса всех технических возможностей и научных достижений, позволяющих изучать комическое пространство и небесные тела.

Космические полеты - это то, о чем человечество мечтало столетиями. И эти мечты превратились в реальность, из теории - в науку, а все благодаря формуле Циолковского для скорости ракеты. Из трудов этого великого ученого нам известно, что теория космонавтики стоит на трех столпах:

  1. Теория, описывающая движение космических аппаратов.
  2. Электро-ракетные двигатели и их производство.
  3. Астрономические знания и исследования Вселенной.

Как уже ранее отмечалось, в космическую эру появилось множество других научно-технических дисциплин, таких как: системы управления космическими кораблями, системы связи и передачи данных в космосе, навигация в космическом пространстве, космическая медицина и многое другое. Стоит отметить, что во времена зарождения основ космонавтики даже не было как такового радио. Изучение электромагнитных волн и передачи на большие расстояния с их помощью информации только начиналось. Поэтому основатели теории серьезно рассматривали в качестве способа передачи данных световые сигналы - отраженные в сторону Земли солнечные лучи. Сегодня невозможно представить космонавтику без всех смежных с ней прикладных наук. В те далекие времена воображение ряда ученых действительно поражало. Помимо способов связи ими также затрагивались такие темы, как формула Циолковского для многоступенчатой ракеты.

Можно ли выделить среди всего многообразия какую-либо дисциплину в качестве главной? Ею является теория движения космических тел. Именно она служит главным звеном, без которого невозможна космонавтика. Эту область науки принято называть космодинамикой. Хотя у нее существует множество тождественных названий: небесная или космическая баллистика, механика полета в космосе, прикладная небесная механика, наука о движении искусственных небесных тел и т. д. Все они обозначают одну и ту же область изучения. Формально космодинамика входит в небесную механику и использует ее методы, однако есть крайне важное отличие. Небесная механика только изучает орбиты у нее нет возможности выбора, а вот космодинамика призвана определять оптимальные траектории достижения тех или иных небесных тел космическими аппаратами. И уравнение Циолковского для реактивного движения позволяет кораблям определить как именно можно влиять на траекторию полета.

Космодинамика как наука

С тех пор, как К. Э. Циолковский вывел формулу, наука о движении небесных тел прочно оформилась как космодинамика. Она позволяет космическим кораблям пользоваться методами поиска оптимального перехода между разными орбитами, что называется орбитальным маневрированием, и является основой теории передвижения в космосе, точно так же как базой для полетов в атмосфере является аэродинамика. Однако она не единственная наука, занимающуюся данным вопросом. Помимо нее существует еще и ракетодинамика. Обе эти науки составляют прочную основу для современной космической техники и обе входят в раздел небесной механики.

Космодинамика состоит из двух основных разделов:

  1. Теория о движении центра инерции (масс) объекта в космосе, или теория о траекториях.
  2. Теория о движении космического тела относительно его центра инерции, или теория вращения.

Чтобы разобраться что представляет собой уравнение Циолковского, нужно хорошо понимать механику, т. е. законы Ньютона.

Первый закон Ньютона

Любое тело движется равномерно и прямолинейно или находится в покое до тех пор, пока приложенные к нему внешние силы не вынудят его изменить это состояние. Иными словами вектор скорости такого движения остается постоянным. Такое поведение тел также называется инерциальным движением.

Любой другой случай, при котором происходит какой-либо изменение вектора скорости, означает, что тело обладает ускорением. Интересным примером в данном случае является движение материальной точки по окружности или любого спутника по орбите. В данном случае происходит равномерное движение, но не прямолинейное, ведь вектор скорости постоянно меняет направление, а значит, ускорение не равно нулю. Данное изменение скорости можно вычислить по формуле v 2 / r, где v - постоянная величина скорости, а r - радиус орбиты. Ускорение в этом примере будет направлено к центру окружности в любой точки траектории движения тела.

Исходя из определения закона, причиной изменения направления материальной точки может быть только сила. В ее роли (для случая со спутником) выступает гравитация планеты. Притяжение планет и звезд, как легко можно догадаться, имеет большое значение в космодинамике в целом и при использовании уравнения Циолковского, в частности.

Второй закон Ньютона

Ускорение прямо пропорционально силе и обратно пропорционально массе тела. Или в математической форме: a = F / m, или более привычно - F = ma, где m - это коэффициент пропорциональности, который представляет собой меру для инерции тела.

Так как любая ракета представляется, как движение тела с переменной массой, уравнение Циолковского будет изменяться каждую единицу времени. В вышеописанном примере о спутнике, движущемся вокруг планеты, зная его массу m, можно легко выяснить силу, под действием которой он вращается по орбите, а именно: F = mv 2 /r. Очевидно, что данная сила будет направлена к центру планеты.

Возникает вопрос: почему спутник не падает на планету? Он не падает, так как его траектория движения не пересекается с поверхностью планеты, потому что природа не заставляет его двигаться вдоль действия силы, ибо ей сонаправлен только вектор ускорения, а не скорости.

Также следует отметить, что в условиях, когда известна сила, действующая на тело, и его масса, можно выяснить ускорение тела. А по нему математическими методами определяется путь, по которому двигается это тело. Здесь мы приходим к двум основным задачам, решением которых занимается космодинамика:

  1. Выявление сил, при помощи которых можно манипулировать движением космического корабля.
  2. Определение движения этого корабля, если известны действующие на него силы.

Вторая задача является классическим вопросом для небесной механики в то время, как первая показывает исключительную роль космодинамики. Поэтому в данной области физики помимо формулы Циолковского для реактивного движения крайне важно понимать ньютоновскую механику.

Третий закон Ньютона

Причиной силы, действующей на какое-либо тело, всегда является другое тело. Но верно также и обратное. В этом заключается суть третьего закона Ньютона, который гласит, что всякому действию есть действие, равное по величине, но противоположно направленное, называемое противодействием. Другими словами, если тело А действует с силой F на тело B, то тело B действует на тело А с силой -F.

В примере со спутником и планетой третий закон Ньютона приводит нас к пониманию того, что с какой силой планета притягивает спутник, точно с такой же спутник притягивает планету. Данная сила притяжения ответственна за придание ускорения спутнику. Но она также придает ускорение и планете, но ее масса так велика, что данное изменение скорости ничтожно мало для нее.

Формула Циолковского для реактивного движения полностью строится на понимании последнего закона Ньютона. Ведь именно за счет выбрасываемой массы газов основное тело ракеты приобретает ускорение, которое позволяет ему двигаться в нужном направление.

Немного о системах отсчета

Рассматривая какие-либо физические явления, сложно не затрагивать такую тему, как систему отсчета. Движение космического корабля, как и любого другого тела в пространстве, может фиксироваться в разных координатах. Не существует неправильных систем отсчета, есть лишь более удобные и менее. Например, движение тел в Солнечной системе лучше всего описывать в гелиоцентрической системе отсчета, то есть в координатах, связанных с Солнцем, также именуемых системой Коперника. Однако движение Луны в данной системе рассматривать менее удобно, поэтому ее изучают в геоцентрических координатах - отсчет ведется относительно Земли, это называется системой Птолемея. А вот, если стоит вопрос в том, попадет ли пролетающий рядом астероид в Луну, удобнее будет использовать опять гелиоцентрические координаты. Важно уметь пользоваться всеми координатными системами и быть способным смотреть на задачу с разных точек зрения.

Ракетное движение

Основным и единственным способом передвижения в космическом пространстве является ракета. Впервые этот принцип был выражен, по данным сайта "Хабр", формулой Циолковского в 1903 году. С тех пор инженеры космонавтики изобрели десятки видов ракетных двигателей, использующих самые разнообразные виды энергии, но все они объединены одним принципом работы: выбрасывание части массы из запасов рабочего тела для получения ускорения. Силу, которая образуется в результате данного процесса, принято называть силой тяги. Приведем некоторые умозаключения, которые позволят прийти к уравнению Циолковского и выводу его основной формы.

Очевидно, что тяговая сила будет увеличиваться в зависимости от объемов выбрасываемой из ракеты массы в единицу времени и той скорости, которую удается этой массе сообщить. Таким образом, получается соотношение F = w * q, где F - тяговая сила, w - скорость отбрасываемой массы (м/с) и q - масса, расходуемая в единицу времени (кг/с). Стоит отдельно отметить важность системы отсчета, связанной именно с самой ракетой. В противном случае невозможно характеризовать силу тяги ракетного двигателя, если измерять все относительно Земли или других тел.

Исследования и эксперименты показали, что соотношение F = w * q остается справедливым только для случаев, когда выбрасываемая масса представляет собой жидкость или твердое тело. Но в ракетах используется струя раскаленного газа. Поэтому в соотношение нужно ввести ряд поправок, и тогда получим дополнительный член соотношения S * (p r - p a), который суммируется с изначальным w * q. Здесь p r - давление, оказываемое газом, на срезе сопла; p a - атмосферное давление и S - площадь сопла. Таким образом, уточненная формула будет выглядеть следующим образом:

F = w * q + Sp r - Sp a.

Откуда видно, что по мере набора высоты ракетой атмосферное давление будет становиться меньше, а сила тяги - возрастать. Однако физики любят удобные формулы. Поэтому зачастую используется формула, похожая на свою первоначальную форму F = w э * q, где w э - эффективная скорость истечения массы. Она определяется экспериментальным путем во время испытания двигательной установки и численно равна выражению w + (Sp r - Sp a) / q.

Рассмотрим понятие, тождественное w э - удельный импульс тяги. Удельный - значит относящийся к чему-то. В данном случае это к гравитации Земли. Для этого в вышеописанной формуле правая часть умножается и делится на g (9,81 м/с 2):

F = w э * q = (w э / g) * q * g или F = I уд * q * g

Измеряется данная величина I уд в Н*с/кг или что тоже самое м/с. Иными словами удельный импульс тяги измеряется в единицах скорости.

Формула Циолковского

Как легко можно догадаться, помимо тяги двигателя на ракету действует множество других сил: притяжение Земли, гравитация других объектов Солнечной системы, атмосферное сопротивление, давление света и т. д. Каждая из этих сил придает свое ускорение ракете, а суммарное из действие сказывается на итоговом ускорение. Поэтому удобно ввести понятие реактивного ускорения или a r = F т / M, где М - масса ракеты в определенный период времени. Реактивное ускорение - это ускорение, с которым двигалась бы ракета при отсутствии действующих на нее сил из вне. Очевидно, что по мере расходования массы, ускорение будет увеличиваться. Поэтому есть еще одна удобная характеристика - начальное реактивное ускорение a r0 = F т * M 0 , где М 0 - это масса ракеты в момент начала движения.

Логичным будет звучать вопрос о том, какую скорость способна развить ракета в подобном пустом пространстве, после того как израсходует какое-то количество массы рабочего тела. Пусть масса ракеты изменилась от m 0 до m 1 . Тогда скорость ракеты после равномерного израсходования массы до значения m 1 кг будет определяться формулой:

V = w * ln(m 0 / m 1)

Это не что иное, как формула движения тел с переменной массой или уравнение Циолковского. Она характеризует энергетический ресурс ракеты. А скорость, получаемая данной формулой, называется идеальной. Можно записать данную формулу в ином тождественном варианте:

V = I уд * ln(m 0 / m 1)

Стоит отметить, применение Формулы Циолковского для расчета топлива. Точнее сказать, массы ракеты носителя, которая потребуется для выведения определенного веса на орбиту Земли.

В конце следует сказать и о таком великом ученом, как Мещерский. Вместе с Циолковским они являются праотцами космонавтики. Мещерский внес огромный вклад в создание теории движения объектов переменной массы. В частности, формула Мещерского и Циолковского выглядит следующим образом:

m * (dv / dt) + u * (dm / dt) = 0,

где v - скорость материальной точки, u - скорость отброшенной массы относительно ракеты. Данная соотношение также называется дифференциальным уравнением Мещерского, тогда формула Циолковского получается из нее как частное решение для материальной точки.

Формула Константина Эдуардовича Циолковского выражает максимальную скорость летательного аппарата, которой он достигает во время полета при реактивном движении. Она получается при интегрировании уравнения Мещерского.

Эта формула выражает скорость ракеты, переданную газами от сожженного топлива. Уравнение Мещерского и формула Циолковского неразрывно связаны - уравнение Мещерского описывает массу материальной точки, которая изменяется со временем, в то время как при реактивном движении ракеты постоянно идет уменьшение ее массы из-за сгорания топлива. Изменение скорости при изменяющейся массе (уменьшающейся в нашем случае) движущегося тела - вот что подразумевает под собой реактивное движение. Формула Циолковского основывается именно на нем.

Для решения ряда задач теоретической механики в области реактивного движения используют уравнение Мещерского (основное уравнение материальной точки переменной массы) и формулу Циолковского (формула конечной скорости летательного аппарата), которые называются основными соотношениям теории реактивного движения.

Основой при проектировании и планировании в области космических полетов является именно формула Циолковского, вывод которой стал настоящим прорывом для освоения космоса.

Задачи Циолковского

Для того, чтобы разрешить проблему межпланетных перелетов, К. Э. Циолковский рассмотрел в качестве средства перелета ракету. Он вывел формулу, с помощью которой можно получить зависимость массы летательного аппарата с топливом и скорости отдаления продуктов сгорания используемого топлива ракеты относительно нее. Покажем две его задачи:

  • Исследование движения тела с переменной массы с действующей на него одной реактивной силы.
  • Исследование движение тела в однородном поле силы тяжести переменной массы вблизи поверхности Земли.

Предисловие

Для всех космических полетов изначальной и основополагающей стала формула Циолковского для скорости ракеты, вывод которой представлен ниже.

Для начала необходимо приняв ее, грубо говоря, за материальную точку. На нее будут действовать силы притяжения Земли и других небесных тел (в момент взлета сила гравитации Земли будет, конечно же, наиболее сильной), сила сопротивления воздуха с одной стороны и противоположно им направленная реактивная сила, возникающая из-за выброса сгоревшего газа у основания тела. Ракета с большой силой выбрасывает эти газы, которые сообщают ей ускорение, направленное противоположно стороне выброса. Теперь необходимо представить эти рассуждения в виде формулы.

Сам принцип полета ракеты достаточно простой. С большой скоростью из ракеты вырывается газ, полученный при сгорании топлива, который сообщает самой ракете определенную силу, которая действует противоположно направлению движения. Так как считается, что внешние силы не действуют на ракету, то система будет замкнутой, и импульс ее не зависит от времени.

Уравнение Мещерского

Одним из основных примеров движения тела с изменяющейся массой является ракета с одной ступень, масса которой изменяется только из-за сжигания топлива, содержащегося в ней. Масса такой ракеты складывается из неизменяющейся (сама ракета и ее полезная нагрузка) и изменяющейся (топливо). Такой пример является упрощенной моделью.

Однако в современном ракетостроении используются многоступенчатые ракеты. Принцип их работы заключается в том, что благодаря большому объему ступеней они способны перевозить и использовать после взлета гораздо большее количество топлива. После его сгорания, ракете сообщается значительный импульс (гораздо больший, чем тот, которого можно добиться, используя одну ступень), а ставшие ненужными части открепляются от основы, уменьшая общий вес на 80-90%. Тем не менее, для расчета параметров многоступенчатой ракеты необходимо сложить показатели каждой из ее составляющей.

Дифференциальное уравнение Мещерского описывает движение материальной точки с переменной массой.

(m+dm)(υ+dυ) + dm′ υ′ - mυ = Fdt - в момент времени dt (разность между силой в момент времени t и dt+t и будет приращением).

Где m и υ зависят от времени, dt - какое-то время полета. За его образуется сила перемещения газа - dm′ υ′, dm′ - масса образованного из топлива газа. F - равнодействующая сила.

В описанном выше выражении приращения массы ракеты и газа и скорости устремляется к нулю, поэтому выражение принимает следующий вид:

mdυ = υ′′dm + Fdt,

причем υ′′ равняется разности скорости газа и скорости и является скоростью истечения газа.

Уравнение по форме начинает совпадать со вторым законом Ньютона - F = ma = m

Оно и называется уравнением Мещерского.

Вывод формулы Циолковского

Необходимо вывести формулу, описывающую движение тела с переменной массой. Формула Циолковского таковой и является. Вывод представлен ниже.

В данных вычислениях считается, что на движущееся тело не действуют внешние силы, то есть F = 0.

Тогда mdυ = υ′′dm

Так как воздействие внешних сил на летящую ракету равно нулю, то она движется прямолинейно, а скорость движения противоположно направлена скорости выхода газа. Соответственно, υ = -υ′′

Получается выражение, которое необходимо проинтегрировать.

Необходимо найти константу. Для этого достаточно подставить в уравнение начальные условия - скорость равна нулю, а масса - сумме массы топлива и массы ракеты (m 0 + m)

Вообще говоря, m в формуле складывается из двух параметров - из полезной нагрузки и конструкции ракеты. Полезной нагрузкой называется общая масса груза и экипажа.

Подставляем найденную константу в формулу. В результате и получается выражение искомой формулы.

Это и есть один из вариантов формулы Циолковского для скорости. Однако иногда необходимо принять во внимание именно массу. Поэтому ее иногда записывают следующим образом:

Данная формула используется для расчета массы топлива, которая требуется для развития определенной скорости при заданных условиях.

Рассмотрю далее небольшую задачу. Предположим, ракете необходимо развить первую космическую скорость для вращения по орбите Земли. Тогда для этого необходимо в первую очередь рассчитать массу топлива, конечно же. Тогда ее очень просто выразить из формулы Циолковского.

Релятивистская механика

Все вышеописанные формулы могут применяться только в том случае, когда скорость ракеты много меньше скорости света (υ<

Однако если скорость движения ракеты можно сравнить со скоростью света, то необходимо применять уже другие законы.

Пусть m и υ - масса ракеты в состояние и ее скорость в любое время t, а υ′ и m′ - скорость выхода газа и его масса в это же время. То есть m′ - масса вышедшего газа, поэтому его значение для расчета неважно, m′ = 0.

Необходимо расписать закон сохранения импульса и закон сохранения энергии в релятивистской механике, затем продифференцировать первое уравнение, учитывая, что m′=0 и получить выражение третье.

где u - скорость испускания газов.

Исходя из закона сложения скоростей в релятивистской, механике следует такое выражение. Его необходимо преобразовать относительно υ′ и проинтегрировать для получения окончательного варианта уравнения.

Можно несколько усложнить задачу и рассмотреть в качестве примера ракету с несколькими ступенями. Таким образом, формула Циолковского для многоступенчатой ракеты представляет собой сумму необходимых для расчета параметров. То есть, для того, чтобы рассчитать скорость для многоступенчатой ракеты, следует сложить скорость каждой из составляющей части.

Несколько выводов из формулы Циолковского

Основа всех космических полетов - формула Циолковского.

  • Скорость движения непосредственно зависит от относительной скорости выбрасывания газов, поэтому, чем больше скорость выбрасывания, тем быстрее летит ракета.
  • Чем больше отношение суммы массы ракеты и массы топлива к массе ракеты, тем больше скорость ракеты. Увеличение происходит даже по определенной зависимости - если отношение масс увеличивается в геометрической прогрессии, то есть, каждое предыдущее число меньше последующего в определенное количество раз, то скорость растет в арифметической прогрессии - каждое предыдущее число меньше последующего на определенное число. Однако это совершенно не означает, что скорость пропорциональна массе. Сам Циолковский в своих трудах замечал, что скорость растет медленнее по сравнению с увеличением топлива, однако не имеет предела.
  • Соответственно, для развития больше скорости необходимо увеличивать скорость выбрасывания газа и массу топлива.

КПД ракеты

При расчете полета важно четко осознавать, какой именно процент полученной после сгорания топлива энергии используется в качестве полезной работы?

Таким образом, коэффициентом полезного действия принято называть отношение кинетических энергий ракеты и газов после выбрасывания. Обозначим m и m′ за массу ракеты в начале и в конце полета, продолжающийся время t. Соответственно, - скорость выбрасывания газов.

Тогда, по формуле Циолковского, КПД двигателя ракеты можно найти следующим образом:

Следует заметить, что данный КПД является очень небольшим и не превышает 5%, притом как у тепловых двигателей этот показатель равняется и 80%.

Другая форма формулы

В некоторых ресурсах применяется несколько иная формула Циолковского, уравнение, в котором вместо υ′ применяется другой параметр - I. В данном случае I называют удельным импульсом, и даже приводится объяснение, что удельный импульс выражается через тягу двигателя и его сжиганию массы топлива за единицу времени. Первый вопрос, который приходит на ум - вопрос о размерности. В отличие от скорости, импульс имеет другую размерность, которая будет противоречить сути формулы. Однако, непосредственно удельный импульс совпадает по размерности со скоростью.

Удельный импульс показывает количество секунд, при котором двигатель, истратив единицу топлива, получит единицу силы. Применяется сугубо в описании реактивного двигателя.

Использование при создании ракет

Формулу Циолковского для многоступенчатой ракеты применяют и при проектировании ракеты. Для этого используется совершенно логичная зависимость, которая практически является прямопропорциональной - чем больше используется при полете топлива, тем больше будет масса самой ракеты. Это обуславливается тем, что для перевозки большого количества топлива требуются, соответственно, и большие резервуары, поэтому увеличивается в результате и размер корабля, и даже сам двигатель. Некоторым решением возникающей проблемы является использование твердого топлива, которое требует меньше условий для хранения. Однако в настоящий момент оно обладает наименьшим удельным импульсом из существующих.

Космические скорости

Формула Циолковского используется также для расчета необходимого количества топлива для развития определенной скорости - обычно это одна из четырех космических.

  • Первая космическая скорость - корабль выходит на орбиту планеты. Для Земли равняется примерно 7.91 км/с.
  • Вторая космическая скорость - ракета преодолевает силу притяжения и выходит в открытое пространство. Для Земли - 11.2 км/с.
  • Третья космическая скорость - ракета преодолевает силу притяжения звезды в системе (например, Солнца) и выходит за пределы. Для Солнечной системы - 42 км/с, однако эти расчеты являются неточными из-за необходимости преодолевать притяжение планеты.
  • Четвертая космическая скорость - корабль способен покинуть Галактику. Для Млечного пути - более 500 км/с, рассчитывается в зависимости от точки нахождения.

Требуется вывести искусственный спутник Земли массой на круговую орбиту высотой 250 км. Располагаемый двигатель имеетудельный импульсм/c. Коэффициент– это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массуракеты-носителя.

Первая космическая скоростьдля выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь – вдвое ниже). Характеристическая скорость, таким образом, равнам/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина. Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Расчёт для двухступенчатой ракеты.

Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двухступенчатой ракеты м/c. На этот раз, что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения,

для 2-й ступени получаем:

т;

т;

полная масса 2-й ступени составляет 55,9 т.

Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем:

т;

полная масса 1-й ступени составляет 368,1 т;

общая масса двухступенчатой ракеты с полезным грузом составит 10 + 55,9 +368,1 = 434 т.

Аналогичным образом выполняются расчёты для большего количества ступеней. В результате получаем:

Стартовая масса трёхступенчатой ракеты составит 323,1 т.

Четырёхступенчатой – 294,2 т.

Пятиступенчатой – 281 т.

На этом примере видно, как оправдывается многоступенчатостьв ракетостроении: при той же конечной скорости ракета с большим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это – сильное упрощение. Ступени соединяются между собой специальными секциями – переходниками – несущими конструкциями. Каждая из них должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значениеперегрузки, которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента, а, вместе с ним, и положительного эффектамногоступенчатости. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Анализ баллистических возможностей ракет говорит о следующем:

При этом приращения скорости, сообщаемые ступенями для двух- и трехступенчатых ракет, имеют различные пропорции (табл. 2).

Оптимальное соотношение масс ступеней зависит от коэффициента тяговооруженности, представляющего собой отношение тяги двигателя к начальной массе ракеты. Поэтому для анализа влияния различных параметров ракеты на оптимальное соотношение масс ступеней обычно рассматривают скорость полета, определяемую с учетом величины коэффициента тяговооруженности. При баллистическом проектировании в качестве предварительных можно принимать соотношения масс ступеней, как в табл. 3.

Такого рода расчёты выполняются не только на первом этапе проектирования – при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции. Формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке, и т.д., с целью контроля достижения ракетой заданной скорости.

Рассмотрим движение ракеты в невесомости, т.е.. Пусть в начальный момент времени t = 0 скорость ракеты
. Масса ракеты вместе с топливом равна M , масса самой ракеты
. Ракета при горении топлива может выбрасывать газы со скоростью u . Какую максимальную скорость v может развить ракета при полном расходовании топлива?

Из уравнения Мещерского в этом случае получаем

md v = - udm , или

Проинтегрируем левую и правую части этого уравнения

- уравнение Циолковского ,

где
- число Циолковского .

Чтобы ракета при существовавших на то время видах топлива развивала первую космической скорости 8 км /с , необходимо было иметь очень большое число
, т.е. масса топлива во много раз должна была превышать массу оболочки ракеты. Чтобы избежать этого Циолковский предложил использовать многоступенчатые ракеты. После выгорания топлива в одной ступени ракеты эта ступень отбрасывается, и начинает работать следующая ступень ракеты. Циолковский таким образом предсказал полеты человека в космическое пространство.

Момент импульса материальной точки относительно начала координат

Для простоты рассмотрим случай плоского движения, т.е. траектория движения материальной точки лежит в одной плоскости, которую мы расположим перпендикулярно плоскости листа. Выберем на плоскости начало координат О и положение материальной точки будем описывать радиус-вектором . Скорость точки , ее импульс
, ускорение , и сила будут расположены в плоски движения материальной точки, как показано на рисунке.

Введем две новые физические величины: момент силы и момент импульса относительно начала координат O .

-

- момент силы относительно начала координат.

Модуль вектора
равен

, где
- угол между векторами и . Если опустить перпендикуляр из точки O на направление действия силы, то его длина будет плечом силы ,
и модуль момента сил будет равен произведению силы на плечо, т.е.
, что совпадает со школьным определением момента силы.

Аналогично моменту силы вводится момент импульса

-

- момент импульса материальной точки относительно начала координат .

,

где
- угол между векторами и ,
-плечо импульса , т.е. длина перпендикуляра, опущенного из точки O на направление вектора материальной точки. Оба вектора
и , согласно определения направлены перпендикулярно плоскости движения материальной точки.

В общем случае неплоского движения, направление векторов
и не совпадают, но существует закон, который связывает момент импульса с моментом силы
. Чтобы установить этот закон, возьмем производную от вектора :

.

В результате получаем:

-

- закон изменения момента импульса материальной точки относительно начала координат .

Закон сохранения момента импульса системы материальных точек

Рассмотрим систему, состоящую из n материальных точек: Выберем начало координат О , тогда положение точек будет задаваться радиус-векторами

.

Пусть материальные точки обладают импульсами

,

и пусть между материальными точками системы действуют силы внутреннего взаимодействия , а также на материальные точки действуют внешние силы . Определим моменты этих сил относительно начала координат:

- момент внутренней силы ,

- момент внешней силы .

Определим также моменты импульсов материальных точек

.

Просуммировав левые и правые части этих уравнений, получим

Силы взаимодействия между материальными точками действуют в противоположные стороны вдоль одной и той же прямой. Их моменты относительно начала координат О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил равна нулю. В результате получим

.

Если система материальных точек является замкнутой, то
, и тогда имеет место закон сохранения момента импульса

-

- закон сохранения момента импульса системы материальных точек.

Если система материальных точек является замкнутой, то суммарный момент импульса системы остаётся постоянным, т.е. сохраняется во времени .



Отчетность за сотрудников