Военные моряки получили уникальные глубоководные скафандры. Первые жесткие скафандры

Жесткий скафандр применяется для работы на больших глубинах. Он состоит из стальных корпуса и конечностей, которые должны обеспечить свободу движений рук и ног; для этого все соединения конечностей сделаны на шарнирах, представляющих наиболее слабое место жестких скафандров.

О герметичности мягких скафандров особенно беспокоиться не приходилось: там между наружным давлением воды и давлением воздуха в скафандре никакой разницы (перепада) не было. Совсем иначе в жестком скафандре. Здесь водолаз дышит воздухом, находящимся при атмосферном давлении, поэтому наружное давление воды не.уравновешивается давлением воздуха внутри скафандра. Достаточно появиться неплотности или небольшому отверстию в скафандре, как он будет мгновенно заполнен водой, и человек погибнет.

Количество воды, поступающее в отверстие любого погруженного сосуда, можно определить по формуле V=μ F√ 2gH
V - количество поступающей воды, м³ /сек;
F - площадь отверстия, м² ;
Н - глубина погружения, м;
μ =0,6 - коэффициент расхода;
g = 9,81 м/сек² - ускорение силы тяжести.
Для примера примем F= 1 см² , а H = 200 м; тогда
У = 0,0001-0,6√ 2*9,81*200 =0,0038 м³ /сек = 230 л/мин.

Это значит, что при площади отверстия всего 1 см² скафандр на глубине 200 м (был бы заполнен водой гораздо меньше чем за минуту.

Воде легче всего проникнуть в скафандр в местах уплотнений. В скафандре имеются неподвижные соединения, которые уплотняются либо прокладками из резины, кожи или пластмассы (например, в крышке люка и иллюминаторе), либо сальниками (например, в месте прохода телефонного кабеля). Подвижные соединения - шарниры уплотнять особенно сложно: ведь для того, чтобы две детали могли двигаться (вращаться) одна относительно другой, между ними должен быть зазор, а через этот зазор на глубине может ворваться вода.

Самые лучшие уплотнения для подвижных соединений - самоуплотняющие манжеты, изготовленные из пластичных материалов (резины или пластика). Первоначально манжета плотно прижимается к зазору специальным распорным кольцом. При погружении роль кольца выполняет вода: чем больше глубина и давление, тем плотнее прижимается манжета, обеспечивая тем самым водонепроницаемость соединения. Однако на больших глубинах манжета так сильно зажимает соединения, что водолаз уже не может пошевелить ни руками, ни ногами. Это - главная причина, ограничивающая глубину погружения в жестком скафандре величиной 200-250 м.

Рассмотрим жесткий панцирный водолазный скафандр системы Нейфельдт и Кунке, предназначенный для работы на глубине до 150 м и состоящий из стального корпуса и шарнирных конечностей.

В корпусе имеются люк для водолаза, иллюминаторы и осветительные приборы. Снаружи к корпусу прикреплены четыре кислородных баллона (емкостью каждый по 2 л при давлении -кислорода 150 атм), из которых по специальным трубопроводам кислород подается в скафандр. Количество подаваемого кислорода регулируется самим водолазом вручную посредством клапанов, расположенных внутри скафандра. Там же имеется химический поглотитель углекислоты.

Несмотря на огромный вес скафандра (в воздухе 450 кг), водолаз в нем легко передвигается по дну, так как благодаря потере веса в воде вес скафандра под водой равен всего 60 кг.

Для производства различных маневров на корпусе скафандра сзади и спереди установлены две балластные цистерны, заполняемые при погружении водой. Водолаз может вытеснить воздухом воду из цистерн (продуть цистерны), и тогда вес скафандра уменьшится до 10 кг. Продувая и заполняя цистерны водой, водолаз может самостоятельно погружаться, ложиться на дно и т. д. Хотя скафандр и подвешен к судну на канате, но в случае обрыва каната водолаз может всплыть самостоятельно. При аварийном всплытии для уменьшения веса скафандра отдается также электротелефонный кабель.

Скафандр снабжен приборами: глубиномером, манометром, термометром и телефонным аппаратом. В «руки» скафандра может быть вставлен любой нужный инструмент, в зависимости от рода выполняемой работы.

Океан был первой чужеродной средой, куда мы отправили своего представителя. И эволюционный путь, который прошёл костюм для изучения океанских глубин, поражает воображение…В древности при попытках погружения под воду (например, в охотничьих целях) человек мог рассчитывать только на свою выносливость и отвагу. При этом первые упоминания о технических приспособлениях для погружения под воду встречаются ещё в трудах Аристотеля в IV веке до нашей эры. В своих трудах он пишет, что во времена Александра Македонского ныряльщики могли дышать под водой, опуская в него перевёрнутый котёл, в котором оставался воздух. По сути, этот перевёрнутый котёл был прототипом придуманного лишь в XVI веке водолазного колокола.


1689 г.
Дени Папен предложил дополнить водолазный колокол мощным поршневым насосом, который позволял бы восполнять использованный воздух.


Конец 17 века. Устройство для погружения на большую глубину английского королевского астронома, геофизика, математика, метеоролога, физика и демографа Эдмунда Галлея, конец 17 века.

"Колокол опустился на дно. Затем ассистент одел на голову другой, маленький колокол, и смог немного походить по дну – насколько ему позволяла трубка, через которую он дышал оставшимся в большом колоколе воздухом. После этого сверху были сброшены бочки с дополнительным запасом воздуха, утяжелённые грузом. Ассистент отыскал их и подтащил к колоколу".



1715 г. Костюм для погружения французского аристократа Пьера Реми де Бова,
Один из двух шлангов тянулся к поверхности – через него поступал воздух для дыхания; другой служил для отвода выдыхаемого воздуха.


1715 г. Аппарат для погружения Джона Летбриджа.
Эта герметичная дубовая бочка предназначалась для поднятия ценностей с затонувших судов. В том же году, другой англичанин Эндрю Бекер разработал похожую систему, которая была снабжена системой трубок для вдоха и выдоха.


1797 г. Аппарат для погружения Карла Клингерта,
"Он состоял из куртки, штанов из непромокаемой кожи и шлема с иллюминатором. Шлем соединялся с башенкой, в которой находился резервуар с запасом воздуха. Резервуар не пополнялся, так что время пребывания под водой было ограничено".

1810 г. Костюм Чонси Холл.

1819 г. Первый глубоководный скафандр с тяжёлыми башмаками Августа Зибе (Германия)
Водолазное снаряжение, состоящее из металлического шлема с иллюминатором, жестко соединенного с открытой кожаной рубахой, которую утяжеляли грузы. В шлем с поверхности подавался воздух, излишек которого выходил из-под нижнего края рубахи. Водолазный скафандр Зибе представлял собой миниатюрный водолазный колокол, позволявший водолазу погружаться на небольшую глубину и находиться под водой только в вертикальном положении. Этот вариант скафандра нашел практическое применение в 1834 году при водолазных работах на затонувшем корабле «Ройял Джордж».

19 век Трёхболтовое водолазное снаряжение, «трёхболтовка»
Данное стандартное водолазное снаряжение используется в российском ВМФ и гражданском флоте с ХIХ века и по сей день. Им комплектуются водолазные станции морских и рейдовых водолазных ботов, спасательных судов и буксиров. Не изолирует водолаза от давления внешней среды (воды). Оснащается переговорным устройством.
Состав: медный шлем, водолазная рубаха, водолазные, водолазные груза, водолазный нож в футляре, воздушный шланг или шланг-кабель,сигнальный конец или кабель-сигнал, водолазное бельё.

1878 г. Водолазный костюм с 20 маленькими иллюминаторами Альфонса и Теодора Кармагноль, Марсель, Франция,


1878г.
Аппарат Генри Флюсса
Разработал устройство для спасения горных рабочих из затопленных водой участков шахт и горных выработок. Устройство представляло собой маску, закрывающую лицо водолаза и соединенную герметичными трубками с кислородным баллоном, дыхательным мешком и коробкой с веществом, поглощающим углекислый газ из выдыхаемого воздуха (каустической содой). Изобретение Флюсса явилось первым работоспособным ребризером. Водолаз спускается на дно у берегов Чили, где произошло крушение британского судна Cape Horn, чтобы поднять груз меди, 1900 г.

1906 г. Один из первых водолазных костюмов с поддержанием давления, разработан М. де Плюви

1911 г. Костюм из алюминиевого сплава Честера Макдуффи весом около 200 кг


1917-1940 гг. Три поколения водолазных костюмов немецкой фирмы «Нойфельд и Кунке»
Костюм третьего поколения (произведён между 1929 и 1940 годами) позволял погружаться на глубину 160 м. и был снабжён встроенным телефоном.


1925 г. Мистер Перес и его новый стальной водолазный костюм, г. Лондон


1930 г. Инструктор проверяет состояние студента, лежащего в декомпрессионной камере во время занятий в школе водолазов, Кент, Англия

Странички из журнала с инструкциями о том, как смастерить собственный костюм для подводного плавания из подручных материалов вроде банки для хранения печенья или сосуда для нагревания воды


Надувной костюм


1933 г. Мини-подводная лодка для одного человека

ОПТИМИЗАЦИЯ ТЕХНОЛОГИЙ ГЛУБОКОВОДНЫХ РАБОТ С ПРИМЕНЕНИЕМ ЖЕСТКИХ ВОДОЛАЗНЫХ СКАФАНДРОВ

Текст:
Б.А. Гайкович, к.т.н., заместитель генерального директора
ЗАО «НПП ПТ «Океанос»

Жесткие водолазные скафандры (ЖВС, Atmospheric Diving Suits) находятся в постоянной эксплуатации ВМС различных стран и коммерческих организаций с 1980-х годов. Военно-морские силы США, Италии, Франции, Японии, Турции оценили преимущества ЖВС перед традиционными водолазными глубоководными комплексами и комплексами телеуправляемых аппаратов рабочего класса при проведении спасательных операций и подводно-технических работ.

Основные преимущества систем ЖВС:

  • возможность переброски/доставки комплекса ЖВС любым видом транспорта, включая авиационный;
  • возможность работать с минимально оборудованного судна (или иного плавсредства);
  • быстрое (несколько часов) развертывание и свертывание (мобилизация/демобилизация);
  • возможность обеспечения практически 24-часовой работы (при наличии сменных пилотов). Отсутствие необходимости декомпрессии позволяет поднимать скафандр на поверхность только для перезарядки АКБ системы жизнеобеспечения, перезарядки химического поглотителя СО 2 и смены пилота, что при наличии тренированной команды технических специалистов возможно проделать за несколько минут;
  • присутствие человека непосредственно на месте работ, что позволяет произвести оценку ситуации в реальном времени, а при необходимости – прибегнуть к импровизации.

Оценив преимущества систем ЖВС, руководство Военно-морского флота РФ в ходе программы экстренного восстановления аварийно-спасательной службы после трагедии АПЛ «Курск» закупило четыре комплекта (восемь скафандров) типа Hardsuit, которые вместе с новыми на тот момент для отечественного флота телеуправляемыми подводными аппаратами рабочего класса (РТПА) составили костяк аварийно-спасательных сил на флотах РФ.

ЖВС - жесткий водолазный скафандр

Компания ЗАО «НПП ПТ «Океанос» является единственной в Европе компанией, имеющей высококлассных техников и сертифицированных пилотов ЖВС Hardsuit (в том числе нового поколения – Hardsuit Quantum), и на протяжении многих лет ведет от лица производителя авторский надзор, осуществляя обслуживание, необходимый ремонт, модернизацию и полную техническую поддержку находящихся на вооружении глубоководных систем ЖВС.

Высокий уровень специалистов ЗАО «НПП ПТ «Океанос» неоднократно подтверждался и отмечался, в том числе и зарубежными ведущими специалистами данного профиля.

Средства обеспечения глубоководных аварийно-спасательных работ

В настоящее время задачи проведения аварийно-спасательных и подводно-технических работ на глубинах свыше 100 м возлагаются на следующие системы:

  1. Обитаемые подводные аппараты (ОПА);
  2. Необитаемые телеуправляемые подводные аппараты рабочего класса (РТПА);
  3. Глубоководные водолазные комплексы и водолазы-глубоководники (ГВК);
  4. Жесткие водолазные скафандры (ЖВС).

Вкратце опишем специфику, преимущества и недостатки каждой системы.

  • Обитаемые подводные аппараты (ОПА)

К преимуществам ОПА относится большая (для большинства аппаратов) рабочая глубина, достаточно высокая автономность, непосредственное присутствие человека на месте работ для оценки ситуации (а иногда – и для столь необходимого импровизированного решения неожиданной проблемы). Спасательные ОПА (например, западные проекты PRMS или Remora, или созданные в СССР пр. 1855 «Приз» и пр. 1827 «Бестер» и их модификации) имеют возможность (при успешной стыковке) переводить спасаемых из терпящей бедствие ПЛ в спасательный аппарат «по сухому», без необходимости выхода в воду. Манипуляторные комплексы отечественных аппаратов обеспечивают и выполнение целого ряда работ.

К недостаткам спасательных ОПА можно отнести необходимость использования мощного судна обеспечения (своевременная мобилизация которого крайне затруднительна), высокая стоимость как создания, так и эксплуатации таких аппаратов, необходимость постоянных тренировок личного состава, подготовки и повышения уровня квалификации персонала (что весьма сложно обеспечить в условиях нормальной ротации военнослужащих ВМФ). Размеры аппаратов и крайне ограниченная обзорность делают невозможным применение их в сложных условиях малой видимости, узостях, на сильных течениях и т.д. Также необходимо наличие дополнительных резервных аварийно-спасательных глубоководных средств для обеспечения безопасности самого аппарата (всем памятны история аппарата АС-28 и целый ряд аналогичных ситуаций с отечественными и зарубежными ОПА).

  • Необитаемые телеуправляемые подводные аппараты рабочего класса (РТПА)

РТПА на сегодняшний день – лидирующая подводная система при производстве аварийно-спасательных и подводно-технических работ. Представляя собой мощную (до 250 л.с.) силовую платформу с промышленными манипуляторами, видеокамерами, системами позиционирования, освещения и возможностью монтажа навесного оборудования по требованию заказчика, рабочие ТПА способны выполнять широкий диапазон работ. Например, один из наиболее совершенных аппаратов, РТПА Schilling HD компании FMC Technologies Schilling Robotics имеет следующие характеристики:

  • Рабочая глубина: до 4000 м
  • Размеры: 3 x 1,7 x 2 м
  • Мощность основного привода: 150 л.с.
  • Мощность вспомогательного привода (привод навесных инструментов): 40–75 л.с.
  • Вес в воздухе: 3700 кг
  • Манипуляторы (стандартно): 1 х 7-функциональный, 200 кгс; 1 x 5-функциональный, 250 кгс.

Являясь весьма крупными аппаратами, РТПА требуют применения специализированных судов (однако меньшего размера, чем в случае с ОПА). С другой стороны, большинство судов обеспечения буровых платформ имеют возможность размещения РТПА (или уже имеют РТПА на борту), что дает преимущества в скорости мобилизации аппаратов при возникновении аварии.

К недостаткам РТПА относят большие габариты (что исключает работу в стесненных условиях), необходимость высокого уровня практической подготовки личного состава, ограниченный обзор. К преимуществам – наличие мощных силовых систем, позволяющих использовать гидравлические и иные инструменты, мощные манипуляторы, осветительные системы и др.

  • Глубоководные водолазные комплексы (ГВК)

Являясь наиболее традиционным способом проведения водолазных работ, водолазный труд при этом остается наиболее рискованным и дорогим. С развитием подводных технологий задач, которые может выполнить только водолаз, остается все меньше и меньше. Примером тому могут служить освоение и эксплуатация глубоководных месторождений нефти и газа (1500 м и более), где используется только робототехника. Проведение глубоководных водолазных операций рискованно само по себе, даже не учитывая риск, которому подвергается водолаз в ходе непосредственной работы. Воздействие высоких давлений на организм, компрессия и декомпрессия, проживание в стесненных условиях на протяжении нескольких недель, развитие специфичных водолазных заболеваний и другие вредные факторы приводят к стремлению обойтись без труда водолазов.

Преимущества использования водолазов: возможность работы в стесненных условиях и при плохой видимости (так как доступны тактильные ощущения), возможность непосредственно анализировать ситуацию на месте работ и принимать своевременные решения. К недостаткам можно отнести наибольшие для рассматриваемых систем затраты на строительство самого ГВК и строительство/переоборудование судна-носителя, невозможность быстрой мобилизации, высокие эксплуатационные расходы, невозможность продолжительной непрерывной работы и прочие факторы, связанные с тем, что мы имеем дело с тяжелым физическим трудом людей в крайне опасной среде.

  • Жесткие водолазные скафандры (ЖВС)

Изначально ЖВС создавались как средство объединения преимуществ ОПА (отсутствие необходимости декомпрессии, защита от факторов внешней среды, мобильность без расхода физических сил, присутствие человека на месте работ) с преимуществами водолаза-глубоководника (применение любого инструмента, высокая обзорность, высокая мобильность и ловкость, возможность работы в сложных условиях). Получившаяся в итоге система в высшей степени отвечает требованиям для аварийно-спасательной системы – она высокомобильна, не требует применения специальных приписанных к ней судов, обладает высокими экономическими показателями.

Жесткий водолазный скафандр

С точки зрения применения ЖВС имеет смысл обратиться к опыту ведущих мировых компаний и проводимых ими работ. Особую роль в таких работах играет компания Phoenix International (США), начавшая коммерческие работы с применением ЖВС в 2003 году по всему миру. Являясь компанией-оператором по проведению ПТР мирового класса и имея в своем распоряжении глубоководные водолазные комплексы, РТПА, крановые суда и баржи и т.д., компания Phoenix на тендерной основе была выбрана правительством США для осуществления популярного в Америке принципа совместной работы гражданских специалистов и военных структур – GOPO (Government Owned, Privately Operated – «Принадлежит государству, работает частным образом»). Суть принципа в том, что гражданская компания (в данном случае – Phoenix) получает в свое распоряжение сложные технические системы (в нашем случае системы ЖВС, принадлежащих ВМС США) и обязуется поддерживать их в полностью исправном состоянии, проводить обслуживание, ремонты, модернизации, обучение персонала и т.д. Компании предоставляется право использовать оборудование для коммерческих работ, но при этом при получении извещения от ВМС она обязана предоставить в крайне сжатый срок (например, в случае с аппаратом АС-28 этот срок составил 12 часов) полностью готовый к работе и мобилизованный комплекс в сопровождении технического и управляющего персонала. Таким образом, с государства снимается бремя по обслуживанию и содержанию техники и подготовке персонала (что очень важно для флота, имеющего естественную ротацию специалистов), при этом ВМС уверены, что в необходимый момент в их распоряжении будут полностью готовые к работе системы с персоналом, получившим максимально возможную подготовку и опыт в ходе многочисленных практических работ.

Как показывает конкретный опыт применения ЖВС, данный принцип функционирует весьма успешно. Получив коммерческий успех с использованием государственных скафандров, компания к настоящему моменту приобрела (сначала в лизинг, а потом выкупила) и свои собственные два комплекта ЖВС (четыре скафандра). За прошедшие годы компания Phoenix провела более 90 коммерческих работ по всему земному шару, от Средиземноморья и Мексиканского залива до Мадагаскара и Южно-Африканских морей, длительностью от нескольких недель до нескольких месяцев и с рабочими глубинами от 30 до более 300 метров. По мере накопления опыта стало возможным привлечение ЖВС ко все более сложным и тяжелым видам ПТР, особенно в области подводного строительства и обустройства нефтегазовых месторождений.

Совместное использование ЖВС и РТПА

Как показал опыт проведения практических работ с использованием ЖВС, наилучшие результаты достигаются при совместном использовании ЖВС и ТПА (РТПА). В этом случае за РТПА остается роль платформы обеспечения – аппарат обеспечивает освещение, видеодокументирование и наружный обзор места работ, подает и принимает инструменты, является силовым приводом для ручного гидравлического инструмента, манипулирует тяжелыми объектами и т.п. Пилот ЖВС осуществляет общее руководство работами, обеспечивает «тонкие» манипуляции, проникает внутрь пространственных конструкций и способен работать в более сложных условиях.

Платформа Schilling HD

Безопасность ЖВС обеспечивается экипажем РТПА, а недостающая РТПА гибкость и маневренность компенсируются высокими маневренными свойствами и относительно малыми размерами ЖВС. Например, компания Phoenix провела целый ряд работ именно в такой конфигурации и сообщает о высокой эффективности и высоких показателях безопасности при проведении работ.

Модернизация ЖВС

Столь интенсивное практическое использование ЖВС Hardsuit привело к естественной потребности увеличения его функциональных возможностей. Производитель Hardsuit, международная компания OceanWorks International (Канада-США) выпустила на рынок новое поколение жестких скафандров – Hardsuit Quantum. В ходе глубокой модернизации ЖВС получила новый двигательный комплекс – в отличие от старых двигателей постоянной частоты со сложным механизмом винтов изменяемого шага, на скафандре устанавливаются бесщеточные двигатели увеличенной мощности с винтами фиксированного шага. Это изменение не только увеличило мощность скафандра практически в два раза, но и на порядок сократило длительность обслуживания и ремонта – именно обслуживание сервоприводов лопастей ВИШ было наиболее трудоемким и технически сложным этапом при ТО ЖВС.

Выводы

Жесткий водолазный скафандр Hardsuit, особенно с учетом последних модернизаций, успешно зарекомендовал себя на практике как на коммерческом рынке, так и в области аварийно-спасательного дела.

По утверждению компании Phoenix, лучших результатов при работе им удалось добиться, используя ЖВС вместе с ТПА рабочего класса. В этом случае пилот ЖВС брал на себя руководство операцией на месте, выполнение тонких и сложных работ, использовал зрительное и тактильное восприятие, способность к импровизации, оставляя ТПА роль «рабочей лошади» – силовой и инструментальной платформы большой мощности. Очевидно, что совместная работа с РТПА (мощность которого 150–250 л.с.) требует большого опыта, филигранной техники и идеальной согласованности действий, что достигается исключительно в ходе продуманных и интенсивных тренировок и большого объема совместных практических работ. Не следует ожидать удовлетворительных результатов от пилотов и поверхностных групп обеспечения, имеющих возможность выполнять тренировочные спуски только в ходе учений и подобных редких событий.

Экономически эффективным решением данной проблемы может и должна стать подготовка экипажей в многофункциональных учебно-тренировочных комплексах, которые позволяют отработать сложные взаимодействия подводной техники в полностью контролируемых условиях, с имитацией течений, ограниченной видимости и моделированием подводной обстановки на месте предполагаемых работ.

ЗАО «НПП ПТ «ОКЕАНОС»
194295, Россия, г. Санкт-Петербург,
ул. Есенина, 19/2
тел. +7 812 292 37 16
www.oceanos.ru

Военно-морской флот закончил испытания уникальных нормобарических скафандров, создающих водолазу на большой глубине атмосферные «земные» условия. Скафандры серии АС, созданные петербургской компанией «Дайвтехносервис», представляют собой гибрид батискафа и водолазного костюма. Они позволяют подводникам выполнять работы на глубинах свыше 500 м.

При помощи механических манипуляторов скафандра водолаз может совершать почти ювелирные операции, доступные только человеческим рукам. Изделие также предотвращает развитие кессонной болезни, когда из-за быстрого понижения давления при подъеме с глубины газы, растворенные в крови и тканях организма (азот, гелий, водород), начинают выделяться в виде пузырьков в кровь, разрушая стенки сосудов и блокируя кровоток.

В настоящее время испытания скафандров уже завершены, - рассказал «Известиям» представитель Военно-морского флота, знакомый с ситуацией. - В ходе работ были проведены не только глубоководные погружения в различных гидрографических и гидрологических условиях, но и выполнен ряд сложных монтажных глубоководных работ. В частности, с помощью двух скафандров с номерами АС-54 и АС-55 провели на Северном флоте ремонт линий связи, расположенных на глубине в несколько сот метров.

В «Дайвтехносервисе» «Известиям» подтвердили, что поставили российскому Военно-морскому флоту два одноместных и два двухместных нормобарических скафандра, которые получили наименования АС (автономные станции) и порядковые номера с 54-го по 57-й. Правда, от дальнейших комментариев в «Дайвтехносервисе» воздержались.

По данным «Известий», в настоящее время одна пара АС передана Черноморскому флоту, оставшиеся два - Северному флоту.

Внешне нормобарический скафандр, несмотря на свое название, напоминает скорее миниатюрный батискаф. При длине 2,5 м и ширине 1,5 м одноместный АС весит 1,5 т. В верхней части аппарата размещен обзорный купол, а по бокам корпуса крепятся металлические руки-манипуляторы. За счет использования четырех электродвигателей одноместные скафандры могут развивать под водой скорость до трех узлов, а система погружения позволяет опускаться на глубину до 600 м.

Двухместная версия - это два соединенных друг с другом одноместных скафандра. Один оператор отвечает за передвижение самого аппарата, а второй управляет работой рук-манипуляторов. Такой вариант скафандра весит чуть более 3 т.

Погружаются АС только в паре, помогая друг другу выполнять работы, а в случае необходимости проводят эвакуацию вышедшего из строя скафандра. При этом обе версии аппарата чрезвычайно мобильны, компактны и приспособлены к доставке с помощью вертолета.

В настоящее время подводная инфраструктура достигла того уровня сложности, когда применение телеуправляемых подводных аппаратов уже не позволяет оперативно устранять все возникающие чрезвычайные ситуации, - рассказал «Известиям» редактор интернет-проекта «Отвага-2004» Леонид Карякин. - Манипуляторы телеуправляемых комплексов не имеют точности и ограничены по времени действия, при этом обслуживание подобных машин стоит значительных средств.

По словам эксперта, российскому флоту необходимы легкие обитаемые батискафы -нормобарические скафандры, способные погружаться на достаточную глубину, где применение специалистов-водолазов уже невозможно. В то же время они должны иметь достаточно совершенные манипуляторы, чтобы устранять неисправности инфраструктуры. Это особенно актуально в свете наращивания российского военного присутствия в Арктике.

От внешней среды.

Части снаряжения образуют специальную оболочку, непроницаемую для газов и воды. Скафандры подразделяются на жёсткие (нормобарические, или атмосферные) и мягкие.

Жёсткий водолазный скафандр

Также называется нормобарическим , или атмосферным .

По ГОСТ Р 52119-2003: Жёсткий водолазный скафандр предназначен для подводного наблюдения и выполнения водолазных работ оператором находящимся в условиях нормального внутреннего давления (Техника водолазная. Термины и определения ).

Снаряжение, предназначенное для глубоководных (до 600 метров) работ, во время которых на водолаза действует обычное атмосферное давление, что снимает проблему декомпрессии , исключает азотное , кислородное и иные отравления.

В настоящее время на снабжении ВМФ России находится четыре комплекта жёстких водолазных скафандров «HS-1200» (канадской фирмы «Oceanworks») с рабочей глубиной погружения 365 метров.

Мягкий водолазный скафандр

Изготовлен из резины, шлем сделан из металла. Не изолирует водолаза от воздействия давления внешней среды (воды). Самым простым примером мягкого водолазного скафандра может служить трехболтовое водолазное снаряжение .

См. также

Напишите отзыв о статье "Водолазный скафандр"

Ссылки

  • www.divingheritage.com/atmospheric.htm
  • www.divingheritage.com/armored.htm
  • www.divingheritage.com/sam.htm

Отрывок, характеризующий Водолазный скафандр

«Сами себя богу предадим, – повторила в своей душе Наташа. – Боже мой, предаю себя твоей воле, – думала она. – Ничего не хочу, не желаю; научи меня, что мне делать, куда употребить свою волю! Да возьми же меня, возьми меня! – с умиленным нетерпением в душе говорила Наташа, не крестясь, опустив свои тонкие руки и как будто ожидая, что вот вот невидимая сила возьмет ее и избавит от себя, от своих сожалений, желаний, укоров, надежд и пороков.
Графиня несколько раз во время службы оглядывалась на умиленное, с блестящими глазами, лицо своей дочери и молилась богу о том, чтобы он помог ей.
Неожиданно, в середине и не в порядке службы, который Наташа хорошо знала, дьячок вынес скамеечку, ту самую, на которой читались коленопреклоненные молитвы в троицын день, и поставил ее перед царскими дверьми. Священник вышел в своей лиловой бархатной скуфье, оправил волосы и с усилием стал на колена. Все сделали то же и с недоумением смотрели друг на друга. Это была молитва, только что полученная из Синода, молитва о спасении России от вражеского нашествия.
– «Господи боже сил, боже спасения нашего, – начал священник тем ясным, ненапыщенным и кротким голосом, которым читают только одни духовные славянские чтецы и который так неотразимо действует на русское сердце. – Господи боже сил, боже спасения нашего! Призри ныне в милости и щедротах на смиренные люди твоя, и человеколюбно услыши, и пощади, и помилуй нас. Се враг смущаяй землю твою и хотяй положити вселенную всю пусту, восста на ны; се людие беззаконии собрашася, еже погубити достояние твое, разорити честный Иерусалим твой, возлюбленную тебе Россию: осквернити храмы твои, раскопати алтари и поругатися святыне нашей. Доколе, господи, доколе грешницы восхвалятся? Доколе употребляти имать законопреступный власть?

Открытие бизнеса