Какие процессы происходят в ядерном реакторе. Школьная энциклопедия. Управление ядерного реактора

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

Ядерный реактор — устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

История

Самоподдерживающаяся управляемая цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 г. Группа физиков Чикагского университета , возглавляемая Э. Ферми , построила первый в мире ядерный реактор, названный СР-1 . Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ураном.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова . Первый советский реактор Ф-1 выведен в критическое состояние 25 декабря 1946 г. Реактор Ф-1 набран из графитовых блоков и имеет форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1949 г. введён в действие реактор по производству плутония, а 27 июня 1954 г. вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Схематическое устройство гетерогенного реактора на тепловых нейтронах1 — управляющий стержень; 2 — биологическая защита; 3 — тепловая защита; 4 — замедлитель; 5 — ядерное топливо; 6 — теплоноситель.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

    управляющий стержень;

    биологическая защита;

    тепловая защита;

    замедлитель;

    ядерное топливо;

    теплоноситель.

Конструкция

Любой ядерный реактор состоит из следующих частей:

    Активная зона с ядерным топливом и замедлителем;

    Отражатель нейтронов, окружающий активную зону;

    Теплоноситель;

    Система регулирования цепной реакции, в том числе аварийная защита

    Радиационная защита

    Система дистанционного управления

Основная характеристика реактора — его выходная мощность. Мощность в 1 МВт соответствует цепной реакции, при которой происходит 3·1016 делений в 1 сек.

Физические принципы работы

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

    k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;

    k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;

    k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

    ω есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объема.

    k 0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

    μ — коэффициент размножения на быстрых нейтронах;

    φ — вероятность избежать резонансного захвата;

    θ — коэффициент использования тепловых нейтронов;

    η — выход нейтронов на одно поглощение.

Объёмы современных энергетических реакторов могут достигать сотен м 3 и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu — 0,5 кг. Теоретически, наименьшей критической массой обладает 251 Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e — 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ — 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252 Cf или других веществ.

Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона (135 Xe). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1—2 суток).

Классификация

По характеру использования

По характеру использования ядерные реакторы делятся на:

    Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает несколько кВт;

    Исследовательские реакторы, в которых потоки нейтронов и γ-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 Мвт; выделяющаяся энергия, как правило, не используется.

    Изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu.

    Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, при опреснении воды, для привода силовых установок кораблей и т. д.; Тепловая мощность современного энергетического реактора достигает 3—5 ГВт.

По спектру нейтронов

    Реактор на тепловых нейтронах («тепловой реактор»)

    Реактор на быстрых нейтронах («быстрый реактор»)

    Реактор на промежуточных нейтронах

По размещению топлива

    Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

    Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими элементами (ТВЭЛ’ами), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

По степени обогащения:

    Естественный уран

    Слабо обогащённый уран

    Чистый делящийся изотоп

По химическому составу:

    металлический U

    UO 2 (диоксид урана)

    UC (карбид урана) и т. д.

По виду теплоносителя

    H 2 O (вода, см. Водо-водяной реактор)

    Газ, (см. Графито-газовый реактор)

    Реактор с органическим теплоносителем

    Реактор с жидкометаллическим теплоносителем

    Реактор на расплавах солей

По роду замедлителя

    С (графит, см. Графито-газовый реактор, Графито-водный реактор)

    H 2 O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

    D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

    Гидриды металлов

    Без замедлителя

По конструкции

    Корпусные реакторы

    Канальные реакторы

По способу генерации пара

    Реактор с внешним парогенератором

    Кипящий реактор

В начале XXI века наиболее распространены гетерогенные ядерные реакторы на тепловых нейтронах с замедлителями — H 2 O, С, D 2 O и теплоносителями — H 2 O, газ, D 2 O, например, водо-водяные ВВЭР, канальные РБМК.

Перспективными являются также быстрые реакторы. Топливом в них служит 238U, что позволяет в десятки раз улучшить использование ядерного топлива по сравнению с тепловыми реакторами, это существенно увеличивает ресурсы ядерной энергетики.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несуществен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135 Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135 Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135 I (T½ = 6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

    К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см 2 ·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135 Xe.

    Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см 2 ·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

    235 U + n → 236 U + n → 237 U →(7 сут)→ 237 Np + n → 238 Np →(2,1 сут)→ 238 Pu

    238 U + n → 239 U →(23 мин)→ 239 Np →(2,3 сут)→ 239 Pu (+осколки) + n → 240 Pu + n → 241 Pu (+осколки) + n → 242 Pu + n → 243 Pu →(5 ч)→ 243 Am + n → 244 Am →(26 мин)→ 244 Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239 Pu, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Далее концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

    ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

    ˜ 20—30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);

    до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов». Такой режим называется непрерывной перегрузкой топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1—2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4—1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

    Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;

    Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);

    Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности — система аварийной защиты.

Мы настолько привыкли к электричеству, что не задумываемся, откуда оно берётся. В основном, оно вырабатывается на электростанциях, которые используют для этого различные источники. Электростанции бывают тепловые, ветряные, геотермальные, солнечные, гидроэлектростанции, атомные. Именно последние вызывают больше всего споров. Спорят об их нужности, надёжности.

По производительности атомная энергетика сегодня – одна из самых эффективных и её доля в мировом производстве электрической энергии довольно значительна, более четверти.

Как устроена атомная электростанция, за счёт чего она вырабатывает энергию? Основной элемент атомной электростанции – ядерный реактор. В нём протекает цепная ядерная реакция, в результате которой выделяется тепло. Реакция эта управляемая, именно поэтому мы можем использовать энергию постепенно, а не получаем ядерный взрыв.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Видео работы ядерного реактора

Как работает ядерный реактор?

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо. Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель. ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня. Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами. В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию в виде гамма излучения и тепла. Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается. Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур). Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию. Преобразование ядерной энергии в электрическую можно представить схематично:

  1. Внутренняя энергия уранового ядра,
  2. Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов,
  3. Внутренняя энергия воды и пара,
  4. Кинетическая энергия воды и пара,
  5. Кинетическая энергия роторов турбины и генератора,
  6. Электрическая энергия.

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов. Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора. Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.

Где используются ядерные реакторы?

  • Энергетические ядерные реакторы используются на атомных электростанциях, в судовых электрических установках, на атомных станциях теплоснабжения.
  • Реакторы конвекторы и размножители применяются для производства вторичного ядерного топлива.
  • Исследовательские реакторы нужны для радиохимических и биологических исследований, производства изотопов.

Несмотря на все споры и разногласия по поводу ядерной энергетики атомные электростанции продолжают строиться и эксплуатироваться. Одна из причин – экономичность. Простой пример: 40 цистерн мазута или 60 вагонов угля производят столько же энергии, сколько 30 килограммов урана.

Так же при необходимости быстро охладить реактор используются ведро воды и лёд .

Элемент Теплоемкость
Охлаждающий стержень 10к (англ. 10k Coolant Cell)
10 000

Охлаждающий стержень 30к (англ. 30К Coolant Cell)
30 000

Охлаждающий стержень 60к (англ. 60К Coolant Cell)
60 000

Красный конденсатор (англ. RSH-Condensator)
19 999
Поместив перегретый конденсатор в сетку крафта вместе с пылью редстоуна можно восполнить его запас тепла на 10000 еТ. Таким образом для полного восстановления конденсатора нужно две пыли.
Лазуритовый конденсатор (англ. LZH-Condensator)
99 999
Восполняется не только редстоуном (5000 еТ), но ещё и лазуритом на 40000 еТ.

Охлаждение ядерного реактора (до версии 1.106)

  • Охлаждающий стержень может хранить 10 000 еТ и каждую секунду охлаждается на 1 еТ.
  • Обшивка реактора так же хранит 10 000 еТ, каждую секунду охлаждается с шансом 10 % на 1 еТ (в среднем 0.1 еТ). Через термопластины твэлы и теплораспределители могут распредилить тепло на большее число охлаждающих элементов.
  • Теплораспределитель хранит 10 000 еТ, а также балансирует уровень тепла близлежащих элементов, но перераспределяя не более 6 еТ/с на каждый. Также перераспределяет тепло на корпус, до 25 еТ/с.
  • Пассивное охлаждение.
  • Каждый блок воздуха, окружающий реактор в области 3х3х3 вокруг ядерного реактора, охлаждает корпус на 0.25 еТ/с, и каждый блок воды охлаждает на 1 еТ/с.
  • Кроме того, реактор сам по себе охлаждается на 1 еТ/с, благодаря внутренней системе вентиляции.
  • Каждая дополнительная камера реактора тоже обладает вентиляцией и охлаждает корпус ещё на 2 еТ/с.
  • Но если в зоне 3х3х3 есть блоки лавы (источники или течения), то они уменьшают охлаждение корпуса на 3 еТ/с. И горящий огонь в этой же области уменьшает охлаждение на 0,5 еТ/с.
Если суммарное охлаждение отрицательно, то охлаждение будет нулевым. То есть корпус реактора не будет охлаждаться. Можно посчитать, что максимальное пассивное охлаждение: 1+6*2+20*1 = 33 еТ/с.
  • Аварийное охлаждение (до версии 1.106).
Помимо обычных охлаждающих систем, есть «аварийные» охладители, которые могут быть использованы для экстренного охлаждения реактора (даже с высоким тепловыделением):
  • Ведро воды , положенное в активную зону, остужает корпус Ядерного реактора на 250 еТ в случае, если он нагрет не менее, чем на 4 000 еТ.
  • Лёд остужает корпус на 300 еТ в случае, если он нагрет не менее, чем на 300 еТ.

Классификация ядерных реакторов

Ядерные реакторы имеют свою классификацию: МК1, МК2, МК3, МК4 и МК5. Типы определяются по выделению тепла и энергии, а также по некоторым другим аспектам. МК1 - самый безопасный, но вырабатывает меньше всего энергии. МК5 вырабатывает больше всего энергии при наибольшей вероятности взрыва.

MК1

Самый безопасный тип реактора, который совершенно не нагревается, и в то же время производит меньше всего энергии. Подразделяется на два подтипа: МК1А - тот, который соблюдает условия класса вне зависимости от окружающей среды и МК1Б - тот, который требует пассивного охлаждения, чтобы соблюдать стандарты класса 1.

МК2

Самый оптимальный вид реактора, который при работе на полной мощности не нагревается более, чем на 8500 еТ за цикл (время, за которое ТВЭЛ успевает полностью разрядится или 10000 секунд). Таким образом, это оптимальный компромисс тепла/энергии. Для таких типов реакторов также есть отдельная классификация МК2x, где х - это количество циклов, которое реактор будет работать без критического перегрева. Число может быть от 1 (один цикл) до E (16 циклов и больше). MK2-E является эталоном среди всех ядерных реакторов, поскольку является практически вечным. (То есть, до окончания 16 цикла реактор успеет охладится до 0 еТ)

МК3

Реактор, который может работать по крайней мере 1/10 полного цикла без испарения воды/плавления блоков. Более мощный, чем МК1 и МК2, но требует дополнительного присмотра, ведь за некоторое время температура может достигнуть критического уровня.

МК4

Реактор, который может работать по крайней мере 1/10 полного цикла без взрывов. Наиболее мощный из работоспособных видов Ядерных Реакторов, который требует наибольшего внимания. Требует постоянного присмотра. За первый раз издаёт приблизительно от 200 000 до 1 000 000 еЭ.

МК5

Ядерные реакторы 5-ого класса неработоспособны, в основном используются для доказательства того факта, что они взрываются. Хотя возможно сделать и работоспособный реактор такого класса, однако смысла в этом никакого нет.

Дополнительная классификация

Даже несмотря на то, что реакторы и так имеют целых 5 классов, реакторы иногда подразделяют ещё на несколько незначительных, однако немаловажных подклассов вида охлаждения, эффективности и производительности.

Охлаждение

-SUC (single use coolants - одноразовое использование охлаждающих элементов)

  • до версии 1.106 эта маркировка обозначала охлаждение реактора экстренным способом (с помощью вёдер воды или льда). Обычно такие реакторы используются редко или не используются совсем ввиду того, что без присмотра реактор может проработать не очень долго. Это обычно использовалось для Mk3 или Mk4.
  • после версии 1.106 появились тепловые конденсаторы. Подкласс -SUC теперь обозначает наличие в схеме тепловых конденсаторов. Их теплоёмкость можно быстро восстановить, но при этом придётся тратить красную пыль или лазурит .

Эффективность

Эффективность - это среднее число импульсов, производимых твэлами. Грубо говоря, это количество миллионов энергии, получаемой в результате работы реактора, поделённое на число твэлов. Но в случае схем обогатителей часть импульсов расходуется на обогащение, и в этом случае эффективность не совсем соответствует полученной энергии и будет выше.

Сдвоенные и счетверённые твэлы обладают большей базовой эффективностью по сравнению с одиночными. Сами по себе одиночные твэлы производят один импульс, сдвоенные - два, счетверённые - три. Если в одной из четырёх соседних клеток будет находиться другой ТВЭЛ, обеднённый ТВЭЛ или нейтронный отражатель, то число импульсов увеличивается на единицу, то есть максимум ещё на 4. Из вышесказанного становится понятно, что эффективность не может быть меньше 1 или больше 7.

Маркировка Значение
эффективности
EE =1
ED >1 и <2
EC ≥2 и <3
EB ≥3 и <4
EA ≥4 и <5
EA+ ≥5 и <6
EA++ ≥6 и <7
EA* =7

Иные подклассы

На схемах реакторов вы можете иногда увидеть дополнительные буквы, аббревиатуры или другие символы. Эти символы хоть и используются (например, раньше подкласс -SUC официально не был зарегистрирован), но большой популярности они не имеют. Поэтому вы можете назвать свой реактор хоть Mk9000-2 EA^ dzhigurda, однако такой вид реактора просто не поймут и сочтут это за шутку.

Постройка реактора

Все мы знаем, что реактор нагревается, и может внезапно произойти взрыв. И нам приходится то выключать, то включать его. Далее написано, как можно защитить свой дом, а также как максимально использовать реактор, который никогда не взорвётся. При этом у вас должно быть уже поставлены 6 реакторных камер .

    Вид реактора с камерами. Ядерный реактор внутри.

  1. Обложить реактор укреплённым камнем (5х5x5)
  2. Сделать пассивное охлаждение, то есть залить весь реактор водой. Заливайте его сверху, поскольку вода потечёт вниз. С помощью такой схемы реактор будет охлаждаться на 33 еТ за сек.
  3. Сделать максимальное количество вырабатываемой энергии с охлаждающими стержнями и т. д. Будьте внимательны, поскольку если будет неправильно расставленный хотя бы 1 теплораспределитель , может произойти катастрофа! (схема приведена для версии до 1.106)
  4. Дабы наш МФЭ не взорвался от высокого напряжения, ставим трансформатор, как на картинке.

Реактор Mk-V EB

Многим известно, что обновления вносят изменения. Одним из этих обновлений были внесены новые твэлы - сдвоенный и счетверённый. Схема, которая находится выше, не подходит к этим твэлам. Ниже предоставлено подробное описание изготовления довольно опасного, но эффективного реактора. Для этого к IndustrialCraft 2 нужен Nuclear Control. Данный реактор заполнил MFSU и MFE примерно за 30 минут реального времени. К сожалению, это реактор класса МК4. Но он выполнил свою задачу нагревшись до 6500 еТ. Рекомендуется поставить на температурном датчике 6500 и подключить к датчику сигнализацию и экстренную систему отключения. Если тревога орёт дольше двух минут, то лучше выключить реактор вручную. Постройка такая же, как и сверху. Изменено лишь расположение компонентов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: 10 мин. 26 сек.

Время перезарядки: Невозможно

Максимум циклов: 6,26 % цикла

Общее время: Никогда

Самое главное в таком реакторе - не дать ему взорваться!

Реактор Mk-II-E-SUC Breeder EA+ с возможностью обогащения обеднённых твэлов

Достаточно эффективный но дорогостоящий вид реактора. За минуту вырабатывает 720 000 еТ и конденсаторы нагреваются на 27/100, следовательно, без охлаждения конденсаторов реактор выдержит 3 минутных цикла, а 4-й почти наверняка взорвёт его. Возможна установка обеднённых твэлов для обогащения. Рекомендуется подключение реактора к таймеру и заключение реактора в «саркофаг» из укреплённого камня. Из-за высокого выходного напряжения (600 еЭ/т) необходимы высоковольтные провода и трансформатор ВН.

Выходная мощность: 600 еЭ/т

Всего еЭ: 120 000 000 еЭ

Время генерации: Полный цикл

Реактор Mk-I EB

Элементы не нагреваются вообще, работают 6 счетверённых твэлов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA++

Маломощный, но экономичный к сырью и дешёвый в постройке. Требует отражателей нейтронов .

Выходная мощность: 60 еЭ/т

Всего еЭ: 12 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA*

Средней мощности но относительно дешёвый и максимально эффективный. Требует отражателей нейтронов .

Выходная мощность: 140 еЭ/т

Всего еЭ: 28 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-II-E-SUC Breeder EA+, обогащение урана

Компактный и дешёвый к постройке обогатитель урана. Время безопасной работы - 2 минуты 20 секунд, после чего рекомендуется чинить лазуритовые конденсаторы (ремонт одного - 2 лазурита + 1 редстоун), из-за чего придется постоянно следить за реактором. Также из-за неравномерного обогащения сильно обогащенные стержни рекомендуется менять местами со слабо обогащенными. В то же время может выдать за цикл 48 000 000 еЭ.

Выходная мощность: 240 еЭ/т

Всего еЭ: 48 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EC

«Комнатный» реактор. Имеет невысокую мощность, зато очень дешёв и абсолютно безопасен - весь присмотр за реактором сводится к замене стержней, поскольку охлаждение вентиляцией превышает теплогенерацию в 2 раза. Лучше всего поставить его вплотную к МФЭ /МФСУ и настроить их на подачу сигнала редстоуна при частичной зарядке (Emit if partially filled), таким образом реактор будет автоматически заполнять энергохранитель и отключаться при его заполнении. Для крафта всех компонентов потребуется 292 меди, 102 железа, 24 золота, 8 редстоуна, 7 резины, 7 олова, 2 единицы светопыли и лазурита, а также 6 единиц урановой руды. За цикл выдает 16 млн еЭ.

Выходная мощность: 80 еЭ/т

Всего еЭ: 32 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: около 5 ч. 33 мин. 00 сек.

Таймер реактора

Реакторы классов MK3 и MK4 вырабатывают действительно много энергии в короткие сроки, но они имеют тенденцию взрываться без присмотра. Но с помощью таймера, можно заставить даже эти капризные реакторы работать без критического перегрева и позволить вам отлучится, например, чтобы накопать песочка для вашей фермы кактусов. Вот три примера таймеров:

  • Таймер из раздатчика , деревянной кнопки и стрел (Рис. 1). Выпущенная стрела - это сущность , время её жизни равно 1 минуте. При подсоединении деревянной кнопки с застрявшей в ней стрелой к реактору, тот будет работать ~ 1 мин. 1.5 сек. Лучше всего будет открыть доступ к деревянной кнопке, тогда можно будет экстренно остановить реактор. Заодно меньшится расход стрел, так как при соединении раздатчика с ещё одной кнопкой, кроме деревянной, после нажатия раздатчик выпускает сразу 3 стрелы из-за множественного сигнала.
  • Таймер из деревянной нажимной пластины (Рис. 2). Деревянная нажимная пластина реагирует, если на неё упадет какой-либо предмет. У выпавших передметов «срок жизни» равен 5 минутам (в SMP возможны отклонения из-за пинга), и если подсоединить пластину к реактору, тот будет работать ~ 5 мин. 1 сек. При создании множества таймеров, можно поставить этот таймер на первое место в цепочке, чтобы не ставить раздатчик . Тогда все цепь таймеров будет запускаться выбрасыванием игроком предмета на нажимную пластину.
  • Таймер из повторителей (Рис. 3). Таймер из повторителей может использоваться для точной настройки задержки работы реактора, но он очень громоздок и требует большое количество ресурсов для создания даже малой задержки. Сам таймер - это линия поддержки сигнала (10.6) . Как видно, он занимает много места, и на задержку сигнала в 1.2 сек. требуется целых 7 повторителей (21

    Пассивное охлаждение (до версии 1.106)

    Базовое охлаждение самого реактора равно 1. Далее проверяется область 3х3х3 вокруг реактора. Каждая камера реактора добавляет к охлаждению 2. Блок с водой (источником или течением) добавляет 1. Блок с лавой (источником или течением) уменьшает на 3. Блоки с воздухом и огнем считаются отдельно. Они добавляют к охлаждению (число блоков воздуха-2×число блоков с огнем)/4 (если результат деления не целое число, то дробная часть отбрасывается). Если суммарное охлаждение меньше 0, то оно считается равным 0.
    То есть корпус реактора не может нагреться из-за внешних факторов. В худшем случае он просто не будет охлаждаться за счёт пассивного охлаждения.

    Температура

    При высокой температуре реактор начинает отрицательно воздействовать на окружающую среду. Это воздействие зависит от коэффициента нагрева. Коэффициент нагрева=Текущая температура корпуса реактора/Максимальная температура , где Максимальная температура реактора=10000+1000*число камер реактора+100*число термопластин внутри реактора .
    Если коэффициент нагрева:

    • <0,4 - никаких последствий нет.
    • >=0,4 - есть шанс 1,5×(коэффициент нагрева-0,4) , что будет произведён выбор случайного блока в зоне 5×5×5 , и если это окажется воспламеняющийся блок, такой как листья, какой-либо деревянный блок, шерсть или кровать, то он сгорит.
    То есть при коэффициенте нагрева 0,4 шансы нулевые, при 0,67 выше будет 100 %. То есть при коэффициенте нагрева 0,85 шанс будет 4×(0,85-0,7)=0,6 (60 %), а при 0,95 и выше шанс будет 4×(95-70)=1 (100 %). В зависимости от типа блока произойдёт следующее:
    • если это центральный блок (сам реактор) или блок коренной породы, то эффекта не будет.
    • каменные блоки(в том числе ступеньки и руда), железные блоки(в том числе и блоки реактора), лава, земля, глина будут превращены в поток лавы.
    • если это блок воздуха, то на его месте будет попытка зажечь огонь (если рядом нет твёрдых блоков, огонь не появится).
    • остальные блоки (в том числе и вода) будут испаряться, и на их месте тоже будет попытка зажечь огонь.
    • >=1 - Взрыв! Базовая мощность взрыва равна 10. Каждый ТВЭЛ в реакторе увеличивает мощность взрыва на 3 единицы, а каждая обшивка реактора уменьшает его на единицу. Также мощность взрыва ограничена максимумом в 45 единиц. По числу выпадения блоков этот взрыв аналогичен ядерной бомбе, 99 % блоков после взрыва уничтожатся, а дроп составит лишь 1 %.

    Расчёт нагрева или низкообогащённый ТВЭЛ , то корпус реактора нагревается на 1 еТ.

  • Если это ведро воды , и температура корпуса реактора больше 4000 еТ, то корпус охлаждается на 250 еТ, а ведро воды заменяется на пустое ведро.
  • Если это ведро лавы , то корпус реактора нагревается на 2000 еТ, а ведро лавы заменяется на пустое ведро.
  • Если это блок льда , и температура корпуса более 300 еТ, то корпус охлаждается на 300 еТ, а количество льда уменьшается на 1. То есть сразу весь стак льда не испарится.
  • Если это теплораспределитель , то проводится такой расчёт:
    • Проверяется 4 соседние ячейки, в следующем порядке: левая, правая, верхняя и нижняя.
Если в них есть охлаждающая капсула или обшивка реактора, то производится рассчёт баланса тепла. Баланс=(температура теплораспределителя-температура соседнего элемента)/2
  1. Если баланс больше 6, он приравнивается 6.
  2. Если соседний элемент - охлаждающая капсула, то он нагревается на значение вычисленного баланса.
  3. Если это обшивка реактора, то производится дополнительный расчёт передачи тепла.
  • Если рядом с этой пластиной нет охлаждающих капсул, то пластина нагреется на значение вычисленного баланса (на другие элементы тепло от теплораспределителя через термопластину не идёт).
  • Если есть охлаждающие капсулы, то проверяется, делится ли баланс тепла на их количество без остатка. Если не делится, то баланс тепла увеличивается на 1 еТ, и пластина охлаждается на 1 еТ, пока не будет делиться нацело. Но если обшивка реактора остывшая, и нацело баланс не делится, то она нагревается, а баланс уменьшается, пока не станет делиться нацело.
  • И, соответственно, эти элементы нагреваются на температуру, равную Баланс/количество .
  1. Он берется по модулю, и если он больше 6, то приравнивается к 6.
  2. Теплораспределитель нагревается на значение баланса.
  3. Соседний элемент охлаждается на значение баланса.
  • Производится расчёт баланса тепла между теплораспределителем и корпусом.
Баланс=(температура теплораспределителя-температура корпуса+1)/2 (если результат деления не целое число, то дробная часть отбрасывается)
  • Если баланс положительный, то:
  1. Если баланс больше 25, он приравнивается к 25.
  2. Теплораспределитель охлаждается на значение вычисленного баланса.
  3. Корпус реактора нагревается на значение вычисленного баланса.
  • Если баланс отрицательный, то:
  1. Он берется по модулю и если получается больше 25, то он приравнивается к 25.
  2. Теплораспределитель нагревается на значение вычисленного баланса.
  3. Корпус реактора охлаждается на значение вычисленного баланса.
  • Если это ТВЭЛ, и реактор не заглушен сигналом красной пыли, то проводятся такие расчёты:
Считается число импульсов, генерирующих энергию для данного стержня. Число импульсов=1+количество соседних урановых стержней . Соседние - это те, которые находятся в слотах справа, слева, сверху и снизу. Подсчитывается количество энергии генерируемое стержнем. Количество энергии(еЭ/т)=10×Число импульсов . еЭ/т - единица энергии за такт (1/20 часть секунды) Если рядом с урановым стержнем есть обеднённый ТВЭЛ , то число импульсов увеличивается на их количество. То есть Число импульсов=1+количество соседних урановых стержней+количество соседних обеднённых твэлов . Также проверяются эти соседние обеднённые твэлы , и с некоторой вероятностью они обогащаются на две единицы. Причём шанс обогащения зависит от температуры корпуса и если температура:
  • менее 3000 - шанс 1/8 (12,5 %);
  • от 3000 и менее 6000 - 1/4 (25 %);
  • от 6000 и менее 9000 - 1/2 (50 %);
  • 9000 или выше - 1 (100 %).
При достижении обеднённым твэлом значения обогащения в 10000 единиц, он превращается в низкообогащённый ТВЭЛ . Дальше для каждого импульса рассчитывается генерация тепла. То есть расчёт производится столько раз, сколько получилось импульсов. Считается количество охлаждающих элементов (охлаждающие капсулы, термопластины и теплораспределители) рядом с урановым стержнем. Если их количество равно:
  • 0? корпус реактора нагревается на 10 еТ.
  • 1: охлаждающий элемент нагревается на 10 еТ.
  • 2: охлаждающие элементы нагреваются каждый на 4 еТ.
  • 3: нагреваются каждый на 2 еТ.
  • 4: нагреваются каждый на 1 еТ.
Причём если там есть термопластины, то они будет также перераспределять энергию. Но в отличие от первого случая, пластины рядом с урановым стержнем могут распределить тепло и на охлаждающие капсулы, и на следующие термопластины. А следующие термопластины могут распределить тепло дальше лишь на охлаждающие стержни . ТВЭЛ уменьшает свою прочность на 1 (изначально она равна 10000), и если она достигает 0, то он уничтожается. Дополнительно с шансом 1/3 при уничтожении он оставит после себя исчерпанный ТВЭЛ .

Пример расчёта

Существуют программы, рассчитывающие эти схемы. Для более надёжных расчётов и большего понимания процесса стоит использовать их.

Возьмем к примеру такую схему с тремя урановыми стержнями.

Цифрами обозначен порядок расчёта элементов в этой схеме, и этими же цифрами будем обозначать элементы, чтобы не запутаться.

Для примера рассчитаем распределение тепла на первой и второй секундах. Будем считать, что вначале нагрев элементов отсутствует, пассивное охлаждение максимально (33 еТ), и охлаждение термопластин не будем учитывать.

Первый шаг.

  • Температура корпуса реактора 0 еТ.
  • 1 - Обшивка реактора (ТП) ещё не нагрета.
  • 2 - Охлаждающая капсула (ОхС) ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (0 еТ), что нагреет её до 8 еТ, и на 2й ОхС (0 еТ), что нагреет его до 8 еТ.
  • 4 - ОхС ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 5 - Теплораспределитель (ТР), ещё не нагретый, сбалансирует температуру со 2м ОхС (8 еТ). Охладит его до 4 еТ и сам нагреется до 4 еТ.
Далее 5й ТР (4 еТ) сбалансирует температуру у 10го ОхС (0 еТ). Нагреет его до 2 еТ, и сам охладится до 2 еТ. Далее 5й ТР (2 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 1 еТ. Корпус нагреется до 1 еТ, и ТР охладится до 1 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (1 еТ), что нагреет его до 13 еТ, и на 7ю ТП (0 еТ), что нагреет её до 12 еТ.
  • 7 - ТП уже нагрета до 12 еТ и может охладиться с шансом 10 %, но мы не учитываем тут шанс охлаждения.
  • 8 - ТР (0 еТ) сбалансирует температуру у 7й ТП (12 еТ), и заберет у неё 6 еТ. 7я ТП охладится до 6 еТ, и 8й ТР нагреется до 6 еТ.
Далее 8й ТР(6 еТ) сбалансирует температуру у 9го ОхС(0 еТ). В итоге он нагреет его до 3 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 1 еТ. Далее 8й ТР (1 еТ) сбалансирует температуру корпуса реактора(1 еТ). Так как разницы температур нет, ничего не происходит.
  • 9 - ОхС (3 еТ) охладится до 2 еТ.
  • 10 - ОхС (2 еТ) охладится до 1 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (1 еТ), что нагреет его до 9 еТ, и на 13ю ТП (0 еТ), что нагреет её до 8 еТ.

На рисунке красные стрелочки показывают нагрев от урановых стержней, синие - балансировку тепла теплораспределителями, желтые - распределение энергии на корпус реактора, коричневые - итоговый нагрев элементов на данном шаге, голубые - охлаждение для охлаждающих капсул. Цифры в верхнем правом углу показывают итоговый нагрев, а для урановых стержней - время работы.

Итоговый нагрев после первого шага:

  • корпус реактора - 1 еТ
  • 1ТП - 8 еТ
  • 2ОхС - 4 еТ
  • 4ОхС - 1 еТ
  • 5ТР - 13 еТ
  • 7ТП - 6 еТ
  • 8ТР - 1 еТ
  • 9ОхС - 2 еТ
  • 10ОхС - 9 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 8 еТ

Второй шаг.

  • Корпус реактора охладится до 0 еТ.
  • 1 - ТП, не учитываем охлаждение.
  • 2 - ОхС (4 еТ) охладится до 3 еТ.
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (8 еТ), что нагреет её до 16 еТ, и на 2й ОхС (3 еТ), что нагреет его до 11 еТ.
  • 4 - ОхС (1 еТ) охладится до 0 еТ.
  • 5 - ТР (13 еТ) сбалансирует температуру со 2м ОхС (11 еТ). Нагреет его до 12 еТ, и сам охладится до 12 еТ.
Далее 5й ТР (12 еТ) сбалансирует температуру у 10го ОхС (9 еТ). Нагреет его до 10 еТ, и сам охладится до 11 еТ. Далее 5й ТР (11 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 6 еТ. Корпус нагреется до 6 еТ, и 5й ТР охладится до 5 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (5 еТ), что нагреет его до 17 еТ, и на 7ю ТП (6 еТ), что нагреет её до 18 еТ.
  • 7 - ТП (18 еТ), не учитываем охлаждение.
  • 8 - ТР (1 еТ) сбалансирует температуру у 7й ТП (18 еТ) и заберёт у неё 6 еТ. 7я ТП охладится до 12 еТ, и 8й ТР нагреется до 7 еТ.
Далее 8й ТР (7 еТ) сбалансирует температуру у 9го ОхС (2 еТ). В итоге он нагреет его до 4 еТ, и сам охладится до 5 еТ. Далее 8й ТР (5 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 2 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру корпуса реактора (6 еТ), забрав у него 2 еТ. Корпус охладится до 4 еТ, и 8й ТР нагреется до 4 еТ.
  • 9 - ОхС (4 еТ) охладится до 3 еТ.
  • 10 - ОхС (10 еТ) охладится до 9 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (9 еТ), что нагреет его до 17 еТ, и на 13ю ТП (8 еТ), что нагреет её до 16 еТ.
  • 12 - ОхС (1 еТ) охладится до 0 еТ.
  • 13 - ТП (8 еТ), не учитываем охлаждение.


Итоговый нагрев после второго шага:

  • корпус реактора - 4 еТ
  • 1ТП - 16 еТ
  • 2ОхС - 12 еТ
  • 4ОхС - 2 еТ
  • 5ТР - 17 еТ
  • 7ТП - 12 еТ
  • 8ТР - 4 еТ
  • 9ОхС - 3 еТ
  • 10ОхС - 17 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 16 еТ


Открытие бизнеса