Биоповреждения и защита непродовольственных товаров. Биологическая коррозия

Почва является вместилищем необычайно обильной и разнообразной микрофлоры, представленной многочисленными группами бактерий, плесневыми грибками, дрожжевыми организмами и т. п.

Количество разнообразных бактерий, приходящееся на 1 г почвы, достигает сотен миллионов, а иногда и десятков миллиардов. Основная масса микроорганизмов встречается в верхних горизонтах почвы, однако и в подпочвенных слоях они содержатся в значительном количестве. В некоторых случаях эти организмы могут вызывать интенсивную коррозию, получившую наименование микробиологической коррозии.

Действие микроорганизмов сводится или к непосредственному влиянию на скорость анодной и катодной реакций, или к созданию коррозийной среды.

Кроме того, микроорганизмы могут вызывать изменение стойкости защитной пленки в результате обменных биохимических реакций или действия на пленку продуктов этих реакций.

Микроорганизмы подразделяются на аэробные, способные жить и размножаться только при наличии свободного кислорода, и анаэробные, живущие и нормально размножающиеся при отсутствии свободного кислорода за счет энергии расщепления химических соединений.

Наибольшее значение и распространение в почвенных условиях имеет анаэробная коррозия. Сюда прежде всего относится микробиологическая коррозия стальных и чугунных трубопроводов, заложенных в тяжелых глинистых грунтах, болотах, стоячих водах и т. п., а также коррозия внутри стальных нефтепродуктовых резервуаров, где в силу их герметичности создаются анаэробные условия. На чугунных трубах анаэробная коррозия обнаруживается в форме спонгиоза(графитизация), распространенного на большую площадь и значительную глубину. Стальные трубы подвергаются точечной, а внутренние стенки резервуаров - общей анаэробной коррозии.

Наиболее распространенный вид анаэробной коррозии связывается с жизнедеятельностью сульфатвосстанавливающих бактерий, широко распространенных в различных почвах, пресных и соленых водах и нормально вегетатирующих только в анаэробных условиях, в присутствии сульфатов и небольшого количества органических веществ. Названная культура бактерий является чрезвычайно жизнеспособной при значениях рН среды от 5 до 9. Более повышенное значение рН угнетающе действует на бактерии и при продолжительном пребывании в среде с рН = 9,5 бактерии погибают.

Коррозионный процесс в анаэробных условиях заключается в том, что благодаря жизнедеятельности микроорганизмов в среде, окружающей подземное сооружение, сульфаты восстанавливаются и преобразуются в сероводород. Последний взаимодействует с железом, образуя сернистое железо. Освободившийся при восстановлении сульфатов кислород обеспечивает деполяризацию катода, на котором должен накапливаться водород в связи с растворением железа. Таким образом, через катодную деполяризацию бактериальный процесс стимулирует развитие коррозии.

Максимальное количество сернистого железа, получающегося в результате бактериальной коррозии, составляет одну четвертую часть общей массы прокорродировавшего металла, остальная часть железа переходит в гидрат закиси.

Указанием на микробиологическую коррозию с участием сульфатвосстанавливающих бактерий служит наличие сернистого железа в продуктах коррозии.

При воздействии сероводорода на железо образуется сернистое железо, которым покрывается внутренняя поверхность резервуара. Образование сернистого железа, помимо непосредственного вреда сооружению, создает опасность внезапного взрыва горючих смесей, так как при соприкосновении с воздухом сернистое железо вступает в энергичную реакцию окисления с выделением большого количества тепла.

Для предупреждения развития микрофлоры в резервуарах и трубопроводах рекомендуется:

1) днища и стенки резервуаров до уровня водяной подушки покрывать цементом, обеспечивая тем самым щелочность среды, препятствующую развитию бактерий;

2) трубопроводы и резервуары промывать только пресной водой

3) соблюдать меры предосторожности при проветривании резервуаров, содержащих продукты коррозии, богатые сернистыми соединениями.

К анаэробным микроорганизмам, кроме сульфатвосстанавливающих, относятся также денитрифицирующие (азотвосстанавливающие) бактерии и бактерии, образующие метан. Во всяком случае эти бактерии оказывают значительно меньшее влияние, чем сульфатвосстанавливающие.

Из аэробных бактерий в почве и природных водах некоторое значение для коррозии металлов имеют серобактерии и железобактерии; последние являются типично водными формами.

Исходным материалом для развития серобактерий является элементарная сера, конечным продуктом микробиологического окисления - серная кислота. Наиболее благоприятный для серобактерий является кислая среда с рН от 0 до 1. Концентрация серной кислоты, образующейся в результате жизнедеятельности этих бактерий, достигает 10%. Следовательно, почвы, содержащие свободную серу или сернистые соединения, представляют для стальных трубопроводов реальную опасность, так как в этих условиях серобактерии могут вызвать серьезную коррозию.

Железобактерии в результате своей жизнедеятельности накапливают железо, усваиваемое ими из водных растворов, и отлагают его в виде бугорков.

Чаще всего это наблюдается на внутренней поверхности труб, по которым течет вода.

Собственно коррозия наблюдается под этими бугорками и протекает как анаэробный процесс, вероятно, с участием сульфатвосстанавливающих бактерий.

В целом коррозия металлов при участии аэробных бактерий имеет значительно меньшее распространение и значение, чем коррозия с участием анаэробных бактерий.

Микробиологическая коррозия, или просто биокоррозия, – это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов, к которым относят прокарчоты (бактерии) и зукарчоты (грибы, простейшие).

Биокоррозию следует рассматривать как самостоятельный вид коррозии, хотя она часто протекает совместно с атмосферной, почвенной, в водных растворах или в неэлектролитах, при этом она инициирует и интенсифицирует их.

Микроорганизмы могут непосредственно разрушать материал конструкций, но чаще они стимулируют процессы электрохимической коррозии.

Биоповреждениям подвержены подземные сооружения, оборудование нефтяной промышленности, трубопроводы при контакте с почвой и водными средами, элементы конструкций машин, их лакокрасочные покрытия и т.д. Коррозионные эффекты при участии микроорганизмов аналогичны другим видам коррозии.

Биокоррозию подразделяют на бактериальную, протекающую в водных средах при наличии особого вида бактерий (в почве, воде, продукте), и микологическую (грибную), протекающую в атмосферных условиях, при контакте с почвой, при увлажнении поверхности, при наличии загрязнений, спор, мицелия и продуктов жизнедеятельности грибов. Коррозия возможна при совместном и попеременном действии указанных микроорганизмов, актиномицетов, дрожжей.

Микроорганизмы могут воздействовать на металлы с высокой коррозионной стойкостью: кислотоупорные стали, алюминивые сплавы и др.

Бактериальная коррозия может происходить при 6…40 °С, рН = 1…10 в присутствии органических и неорганических веществ, включающих такие эле-менты, как углерод, сера, азот, фосфор, калий, железо, водород, кислород и др.

Разрушение металла происходит по следующим причинам: непосредственно – микроорганизмы потребляют материалы конструкций в качестве источников питания; косвенно – продукты жизнедеятельности бактерий создают на поверхности металла различные электрохимические концентрационные элементы, в растворе или на поверхности металла образуются агрессивные химические соединения, изменяются электрохимические потенциалы среды в связи с изменением концентрации кислорода в растворе.



Бактерии быстро размножаются и легко приспосабливаются к изменяющимся физическим, химическим и биологическим условиям среды. Они могут адаптивно образовывать ферменты (оксидоредуктазы и гидролазы), необходимые для трансформации питательных сред.

Микроорганизмы, использующие в качестве источника энергии неорга-нические вещества, выделены в особую группу. К ним относятся следующие:

водородные, окисляющие водород с образованием воды;

нитрифицирующие, окисляющие аммиак до азотной кислоты (Nitrosomonas, Nitrobacter);

тионовые, окисляющие сероводород до элементарной серы, или элементарную серу до серной кислоты (Thiobacillus thiooxidans), или сернокислое железо до окисного (Th. Ferroxidans);

железобактерии, окисляющие закисное железо до окисного (Gallionella) в нейтральных средах;

метанообразующие, стимулирующие природный синтез метана из углекислоты и водорода в анаэробных условиях;

сульфатвосстанавливающие (СВБ), жизнедеятельность которых происхо-дит за счет процесса восстановления сульфатов до сероводорода и которые являются основными разрушителями нефти, нефтепродуктов и металлов;

нитратвосстанавливающие, вызывающие в почве процесс денитрофикации – восстановление окисленных форм азота (Thiobaсillus denitrificans).

Обычно в коррозионном процессе участвуют бактерии многих видов, проявляющие свою активность, как правило, в ассоциациях, могущих изменяться под действием различных факторов.

Окислительно-восстановительные процессы в биохимии характеризует показатель rH 2 – отрицательный логарифм давления молекулярного водорода, выражающий степень аэробности. При перенасыщении среды кислородом rH 2 = 41, если среда насыщена водородом, то rH 2 = 0. Равновесие окислительно-восстановительных процессов характеризуется rH 2 = 28. Анаэробы существуют при rH 2 = 8…10; аэробы - rH 2 = 10…30; факультативные анаэробы - rH 2 = 0…30.

Анаэробные условия могут быть созданы деятельностью аэробных бактерий, в природе те или эти существуют совместно. В почве наиболее интенсивная коррозия наблюдается в болотистых местах (рН = 6,8…7,8), насыщенных органическими остатками с пониженным содержанием кислорода. Поверхность конструкций, имеющих значительную протяженность (трубопро-воды), становится анодной по отношению к участкам, контактирующим с более аэрированной почвой, и коррозия ускоряется. В анодных зонах возможно окисление гидрозакиси железа железобактериями.

Электрохимическая коррозия металлов происходит при деполяризации ло-кальных элементов. Установлено, что гидрогенозоактивный штамм сульфатвос-станавливающих бактерий является эффективным катодным деполяризатором при анаэробной коррозии алюминиевых сплавов. На поверхности алюминиевых сплавов образуются вздутия, в которых были обнаружены микроорганизмы в виде бактерий Ps. aerquqinose, a также гриб Cladosprium, создающие анаэроб-ные условия и продуцирующие продукты питания для СВБ. Анаэробная зона под вздутием становится анодом, а зона по краям вздутия – катодом (рис. 5.8).

Рис. 5.8. Схема бактериальной коррозии

алюминия Ps. Aerquqinose и СВБ

Аналогично действие СВБ в отношении сталей:

4Fe 4Fe 2+ + 8e (1) – анодная реакция;

8Н 2 О 8Н + + 8ОН - (2) - анодная реакция;

8Н + + 8е 8Н - (3) - катодная реакция;

SO 4 2- +8Н S 2- +4H 2 O (4) - катодная реакция СВБ;

Fe 2+ + S 2- FeS (5) – продукты коррозии;

3Fe 2+ + 6ОН - 3Fe(ОН 2) - (6) – продукты коррозии;

4Fe 2+ + SO 4 2- +4 Н 2 О FeS + 3Fe(ОН) 2 + 2ОН - (7) – суммарно.

Выпадающий при развитии бактерий сульфид железа также способствует усилению процесса коррозии.

Изучение катодной поляризации стали в бактериальной среде, восстанавливающей сульфаты, показало, что могут существовать два механизма деполяризации: ферментативный и деполяризация катода твердым сульфидом железа.

Исследование кинетики коррозии стали Ст3 в средах, содержащих СВБ и сероводород, также показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. Адгезионная пленка сульфида железа разрыхляется продуктами метаболизма СВБ и таким образом ускоряет процесс коррозии.

Высокая коррозионная активность СВБ связана с интенсификацией катодного процесса, обусловленного потреблением атомарного водорода по важнейшей для микроорганизмов реакции (4). Сульфид-ионы, образующиеся по этой реакции, могут ускорять развитие коррозии. Скорость коррозии существенно возрастает в присутствии элементарной серы, последняя выполняет роль, аналогичную растворенному кислороду в аэрируемых электролитах (рис. 5.9).

Рис. 5.9. Схема бактериальной коррозии стали в присутствии СВБ:

а - катодная реакция; б – анодная реакция

Механизм реакции меняется при переходе от одной фазы развития бактерий к другой. В период развития бактерий происходит деполяризация анодных и катодных процессов. С понижением бактериологического воздейст-вия поляризация вновь увеличивается, и образующийся сульфид железа тормо-зит анодный процесс. Значение рН при этом сдвигается от 7…7,2 до 7,8…8. Дальнейшее превращение сульфидов FeS 1,2,3,4 в Fe 3 S 4 сопровождается большими внутренними напряжениями, приводящими к разрушению пленки сульфидов и обнажению поверхности металла.

Метановые бактерии воздействуют на металл как деполяризаторы по схеме:

деполяризация микробами

СО 2 + 8Н + СН 4 + 2Н 2 О;

продукт коррозии

4Fe 2+ + 8(ОН) - 4Fe(ОН) 2 .

Железо может окисляться гетеротрофами (Serratis mariescens, Salmonela typhimurium) в присутствии нитратов. Гетеротрофы используют водород и восстанавливают нитраты, стимулируя коррозию.

Железобактерии окисляют железо до трехвалентного, участки труб под осадком Fe(OH) 3 в присутствии кислорода становятся анодными, и процесс локальной коррозии ускоряется.

Наибольшее коррозионное повреждение оборудования и сооружений, контактирующих со сточными водами, вызывают тионовые бактерии. Наиболее интенсивной коррозии подвергаются легированные стали типа 12X13Г18Д, 12Х18Н10Т.

В подземной коррозии труб и повреждениях изоляционных покрытий основное участие принимают бактерии. В почве, вблизи поверхности трубопровода, защищенного различными полимерными покрытиями, обнаружены Pleomorphic rods, Pseudomonas acruqinosa, Microccus parabfinae и др.

Исследования показали, что биокоррозия возникает в результате воздействия СВБ. Состав нефтепродуктов, наличие влаги, рН, температура в емкостях способствуют развитию этих микроорганизмов.

Микологическая (грибная) коррозия – это разрушение металлов и покрытий при воздействии агрессивных сред, формирующихся в результате жизнедеятельности микроскопических (несовершенных, плесневых) грибов.

В отличие от бактерий мицелиальные грибы непосредственно коррозию не вызывают. Поражения возникают в процессе жизнедеятельности гриба на нестойких материалах (углеводородном топливе, лакокрасочных материалах органических загрязнениях и др.). Грибному разрушению подвержены металлы, полимерные материалы, лакокрасочные покрытия, нефтепродукты и др.

Порчу топлив вызывает Cladosporium resinae, повреждение полимеров Penicillium, Asperqillus и др. Гриб Cl. resinae является причиной разрушения хранилищ нефтепродуктов. Установлено, что развитие гриба начинается в водной фазе по границе раздела водной фазы и продукта. Содержание воды в нефтепродуктах в концентрации 1:10 4 достаточно для заселения микроорганизмов. Вода в нефтепродуктах накапливается за счет конденсации при их хранении и транспортировке, негерметичности емкостей и др.

Биоповреждения материалов стимулируют коррозию металлов и тем самым снижают прочностные, электроизоляционные и другие свойства металлов.

Если для развития сульфатвосстанавливающих, метанообразующих и железобактерий необходимы специальные условия, то для микрогрибов достаточно незначительного загрязнения и временного повышения влажности воздуха, и на поверхности конструкции образуется колония.

Повреждения грибами имеют характерные признаки и особенности. Грибы не содержат хлорофилла и по способу питания относятся к гетеротрофам, т.е., как и гетеротрофные бактерии, потребляют углерод из готовых органических соединений. Размножение грибов происходит разрастанием гиф и спор.

Основной фактор, способствующий развитию грибов, - вода, которая составляет главную часть клеточного тела гриба. Большое влияние на прорастание спор оказывает температура, интервал жизнедеятельности грибов - 0…+ 45 °С. Некоторые грибы способны развиваться и при более высокой температуре (термофилы) или более низких (психрофилы) температурах.

Особую опасность представляют грибы – продуценты кислот. Они могут стимулировать процессы коррозии. К сильным кислотообразующим грибам относят грибы рода Asperqillus и др.

Развитие микологической коррозии схематично можно подразделить на четыре стадии:

прорастание спор (конидий) или вегетативных элементов гриба с учетом адаптивных возможностей культуры, стимулирующей на первых этапах преимущественно контактный обмен;

развитие мицелия с последующим формированием визуально наблюдаемых колоний гриба; локальное накопление, проявление активности вторичных метаболитов, в частности органических кислот;

развитие коррозионных процессов, разрушающее действие гидролаз и оксидоредуктаз на полимеры, появление градиентов концентрации акцепторов электронов (кислорода);

обильное спорообразование грибов, коррозионные повреждения (локальные или сплошные) резко выражены, на металлах возникает катодная (анодная) деполяризация.

Виды грибов, наиболее часто стимулирующих коррозию: Asperqillus niqer, A. amstelodamii, A. fumiqatus, trichoderma lignorum, Cladosporium herbarum и др.

Несовершенные грибы (аэробные гетеротрофы) стимулируют коррозию металлов следующим образом:

действием органических кислот, продуцируемых грибами по реакциям

действием окисленных ферментов с выделением перекиси водорода, а затем атомарного кислорода при ее разложении

NH 2 O 2 n H 2 O + nO,

MMe + nO Me m O n .

Продукты коррозии, в свою очередь, стимулируют процесс разложения перекиси водорода. Ферменты, выделяемые грибами, - мощный фактор биоповреждений металлоконструкций. К таким ферментам относятся оксидоредуктазы и эстеразы.

Более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит из-за появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствуют неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и так далее в условиях, казалось бы исключающих появление этих соединений.

Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетание аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов.

Металлы и металлопокрытия подвержены воздействию микрогрибов, причем обрастанию в различной степени подвержены почти все металлы. Продукты коррозии обнаружены на поверхностях углеродистых и низколегированных сталей, алюминиевых сплавов и латуней, металлопокрытий, избирательно – на высоколегированных сталях.

Отмечены сезонные колебания микрофлоры: зимой доминируют железобактерии, летом – СВБ. В процессах биокоррозии принимают участие также микрогрибы (Cl. resinae), микроводоросли, вступающие в ассоциацию с бактериями.

Повреждения носят локальный характер, глубина их иногда достигает критических величин, приводящих к нарушению герметичности или прочности конструкций.


6. ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ

  • Защита войск и населения от отравляющих и аварийно опасных химических веществ
  • Защита временем при контакте с локальной вибрацией, превышающей ПДУ
  • ЗАЩИТА МЕДИЦИНСКИХ ИЗДЕЛИЙ ПРИ ХРАНЕНИИ И ТРАНСПОРТИРОВКЕ
  • Защита прав юридических лиц и индивидуальных предпринимателей при проведении государственного контроля (надзора).
  • Коррозии подвергаются не только металлы, но и материалы ор­ганического и синтетического происхождения. В этом случае го­ворят о микробиологической коррозии, или биокоррозии, разрушающей многие виды промышленных изделий в результате воздействия микроорганизмов. Наболее интенсивно воздействие микро­организмов в условиях тропического климата, т. е. повышенной температуры и влажности. Однако в ряде районов нашей страны (Черноморское побережье Кавказа, Прибалтика) климатические факторы способствуют развитию микробиологической коррозии таких материалов, как дерево, ткани, кожа, картон, бумага и др., хотя и не в такой степени, как в тропиках. Подсчитано, что из общих потерь от коррозии в мировом масштабе на долю биокор­розии приходится 15-20%. Реальные потери, вероятно, значи­тельно больше.

    Главное действующее начало микробиологической коррозии - плесневые грибы, а для некоторых материалов и бактерии. Основ­ной фактор жизнедеятельности плесневых грибов - наличие во­ды. Пониженная температура сдерживает их развитие, однако при наличии воды некоторые виды грибов хорошо растут даже при температуре, близкой к 0°С. Споры плесневых грибов распростра­нены в атмосфере, но особенно много их в поверхностных слоях почвы. Плесень сравнительно легко приспосабливается к различ­ным физическим и химическим условиям среды.

    Источником питания плесени служат материалы, содержащие углерод и азот, но известны плесени, ассимилирующие фенол и каучук. Оптимальная температура для развития всех видов пле­сени находится в пределах 26-30 °С. При повышении или пони­жении температуры их развитие, замедляется. Споровые формы плесневых грибов выносят температуру 100 °С и выше.

    Под воздействием плесени материалы органического происхож­дения разрушаются, а продукты их распада могут вызывать хими­ческую коррозию и металлов. Это особенно опасно для электро­технических изделий (провода с хлопчатобумажной или шелковой оплеткой). В результате микробиологической коррозии резко сни­жается электрическая прочность изоляции и могут возникнуть пробои и короткие замыкания. Известны случаи, когда в резуль­тате микробиологической коррозии полностью нарушалось функ­ционирование механических приборов, например зеркального галь­ванометра.

    Меры защиты от биокоррозии. Наилучшей защитой при хране­нии и эксплуатации изделий служит создание условий, препятст­вующих развитию плесени. Условия эксплуатации изделий меди­цинской техники малоблагоприятны для возникновения плесени, так как изделия во время эксплуатации неоднократно стерили­зуют или подвергают влажной санитарной обработке. В связи с этим благоприятные условия для развития плесени могут появ­ляться главным образом при хранении изделий в складских помещениях. Однако при нормальной температуре хранения и при ульт­рафиолетовом облучении изделие будет надежно защищено от плесени.

    Особенно важно проветривать складские помещения. Если изде­лия влажны, то поток воздуха, даже имеющего большую относи­тельную влажность по сравнению с воздухом помещения, служит защитным фактором. Поток воздуха препятствует оседанию спор на поверхности предметов. Исходя из этого, в условиях хранения, которые записаны в ТУ на изделия медицинской техники, не предусматривается, как правило, специальных мер борьбы с биокоррозией, кроме хранения в сухих, отапливаемых помещениях. В большинстве районов СССР соблюдение указанных выше усло­вий надежно предохраняет изделия от плесневения.

    Микробиологическая коррозия, или просто биокоррозия, – это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов, к которым относят прокарчоты (бактерии) и зукарчоты (грибы, простейшие).

    Биокоррозию следует рассматривать как самостоятельный вид коррозии, хотя она часто протекает совместно с атмосферной, почвенной, в водных растворах или в неэлектролитах, при этом она инициирует и интенсифицирует их.

    Микроорганизмы могут непосредственно разрушать материал конструкций, но чаще они стимулируют процессы электрохимической коррозии.

    Биоповреждениям подвержены подземные сооружения, оборудование нефтяной промышленности, трубопроводы при контакте с почвой и водными средами, элементы конструкций машин, их лакокрасочные покрытия и т.д. Коррозионные эффекты при участии микроорганизмов аналогичны другим видам коррозии.

    Биокоррозию подразделяют на бактериальную, протекающую в водных средах при наличии особого вида бактерий (в почве, воде, продукте), и микологическую (грибную), протекающую в атмосферных условиях, при контакте с почвой, при увлажнении поверхности, при наличии загрязнений, спор, мицелия и продуктов жизнедеятельности грибов. Коррозия возможна при совместном и попеременном действии указанных микроорганизмов, актиномицетов, дрожжей.

    Микроорганизмы могут воздействовать на металлы с высокой коррозионной стойкостью: кислотоупорные стали, алюминивые сплавы и др.

    Бактериальная коррозия может происходить при 6…40 С, рН = 1…10 в присутствии органических и неорганических веществ, включающих такие эле-менты, как углерод, сера, азот, фосфор, калий, железо, водород, кислород и др.

    Разрушение металла происходит по следующим причинам: непосредственно – микроорганизмы потребляют материалы конструкций в качестве источников питания; косвенно – продукты жизнедеятельности бактерий создают на поверхности металла различные электрохимические концентрационные элементы, в растворе или на поверхности металла образуются агрессивные химические соединения, изменяются электрохимические потенциалы среды в связи с изменением концентрации кислорода в растворе.

    Бактерии быстро размножаются и легко приспосабливаются к изменяющимся физическим, химическим и биологическим условиям среды. Они могут адаптивно образовывать ферменты (оксидоредуктазы и гидролазы), необходимые для трансформации питательных сред.

    Микроорганизмы, использующие в качестве источника энергии неорга-нические вещества, выделены в особую группу. К ним относятся следующие:

    водородные, окисляющие водород с образованием воды;

    нитрифицирующие, окисляющие аммиак до азотной кислоты (Nitrosomonas, Nitrobacter);

    тионовые, окисляющие сероводород до элементарной серы, или элементарную серу до серной кислоты (Thiobacillus thiooxidans), или сернокислое железо до окисного (Th. Ferroxidans);

    железобактерии, окисляющие закисное железо до окисного (Gallionella) в нейтральных средах;

    метанообразующие, стимулирующие природный синтез метана из углекислоты и водорода в анаэробных условиях;

    сульфатвосстанавливающие (СВБ), жизнедеятельность которых происхо-дит за счет процесса восстановления сульфатов до сероводорода и которые являются основными разрушителями нефти, нефтепродуктов и металлов;

    нитратвосстанавливающие, вызывающие в почве процесс денитрофикации – восстановление окисленных форм азота (Thiobaсillus denitrificans).

    Обычно в коррозионном процессе участвуют бактерии многих видов, проявляющие свою активность, как правило, в ассоциациях, могущих изменяться под действием различных факторов.

    Окислительно-восстановительные процессы в биохимии характеризует показатель rH 2 – отрицательный логарифм давления молекулярного водорода, выражающий степень аэробности. При перенасыщении среды кислородом rH 2 = 41, если среда насыщена водородом, то rH 2 = 0. Равновесие окислительно-восстановительных процессов характеризуется rH 2 = 28. Анаэробы существуют при rH 2 = 8…10; аэробы - rH 2 = 10…30; факультативные анаэробы - rH 2 = 0…30.

    Анаэробные условия могут быть созданы деятельностью аэробных бактерий, в природе те или эти существуют совместно. В почве наиболее интенсивная коррозия наблюдается в болотистых местах (рН = 6,8…7,8), насыщенных органическими остатками с пониженным содержанием кислорода. Поверхность конструкций, имеющих значительную протяженность (трубопро-воды), становится анодной по отношению к участкам, контактирующим с более аэрированной почвой, и коррозия ускоряется. В анодных зонах возможно окисление гидрозакиси железа железобактериями.

    Электрохимическая коррозия металлов происходит при деполяризации ло-кальных элементов. Установлено, что гидрогенозоактивный штамм сульфатвос-станавливающих бактерий является эффективным катодным деполяризатором при анаэробной коррозии алюминиевых сплавов. На поверхности алюминиевых сплавов образуются вздутия, в которых были обнаружены микроорганизмы в виде бактерий Ps. aerquqinose, a также гриб Cladosprium, создающие анаэроб-ные условия и продуцирующие продукты питания для СВБ. Анаэробная зона под вздутием становится анодом, а зона по краям вздутия – катодом (рис. 5.8).

    Рис. 5.8. Схема бактериальной коррозии

    алюминия Ps. Aerquqinose и СВБ

    Аналогично действие СВБ в отношении сталей:

    4Fe 4Fe 2+ + 8e (1) – анодная реакция;

    8Н 2 О 8Н + + 8ОН - (2) - анодная реакция;

    8Н + + 8е 8Н - (3) - катодная реакция;

    SO 4 2- +8Н S 2- +4H 2 O (4) - катодная реакция СВБ;

    Fe 2+ + S 2- FeS (5) – продукты коррозии;

    3Fe 2+ + 6ОН - 3Fe(ОН 2) - (6) – продукты коррозии;

    4Fe 2+ + SO 4 2- +4 Н 2 О FeS + 3Fe(ОН) 2 + 2ОН - (7) – суммарно.

    Выпадающий при развитии бактерий сульфид железа также способствует усилению процесса коррозии.

    Изучение катодной поляризации стали в бактериальной среде, восстанавливающей сульфаты, показало, что могут существовать два механизма деполяризации: ферментативный и деполяризация катода твердым сульфидом железа.

    Исследование кинетики коррозии стали Ст3 в средах, содержащих СВБ и сероводород, также показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. Адгезионная пленка сульфида железа разрыхляется продуктами метаболизма СВБ и таким образом ускоряет процесс коррозии.

    Высокая коррозионная активность СВБ связана с интенсификацией катодного процесса, обусловленного потреблением атомарного водорода по важнейшей для микроорганизмов реакции (4). Сульфид-ионы, образующиеся по этой реакции, могут ускорять развитие коррозии. Скорость коррозии существенно возрастает в присутствии элементарной серы, последняя выполняет роль, аналогичную растворенному кислороду в аэрируемых электролитах (рис. 5.9).

    Рис. 5.9. Схема бактериальной коррозии стали в присутствии СВБ:

    а - катодная реакция;б – анодная реакция

    Механизм реакции меняется при переходе от одной фазы развития бактерий к другой. В период развития бактерий происходит деполяризация анодных и катодных процессов. С понижением бактериологического воздейст-вия поляризация вновь увеличивается, и образующийся сульфид железа тормо-зит анодный процесс. Значение рН при этом сдвигается от 7…7,2 до 7,8…8. Дальнейшее превращение сульфидов FeS 1,2,3,4 в Fe 3 S 4 сопровождается большими внутренними напряжениями, приводящими к разрушению пленки сульфидов и обнажению поверхности металла.

    Метановые бактерии воздействуют на металл как деполяризаторы по схеме:

    деполяризация микробами

    СО 2 + 8Н + СН 4 + 2Н 2 О;

    продукт коррозии

    4Fe 2+ + 8(ОН) - 4Fe(ОН) 2 .

    Железо может окисляться гетеротрофами (Serratis mariescens, Salmonela typhimurium) в присутствии нитратов. Гетеротрофы используют водород и восстанавливают нитраты, стимулируя коррозию.

    Железобактерии окисляют железо до трехвалентного, участки труб под осадком Fe(OH) 3 в присутствии кислорода становятся анодными, и процесс локальной коррозии ускоряется.

    Наибольшее коррозионное повреждение оборудования и сооружений, контактирующих со сточными водами, вызывают тионовые бактерии. Наиболее интенсивной коррозии подвергаются легированные стали типа 12X13Г18Д, 12Х18Н10Т.

    В подземной коррозии труб и повреждениях изоляционных покрытий основное участие принимают бактерии. В почве, вблизи поверхности трубопровода, защищенного различными полимерными покрытиями, обнаружены Pleomorphic rods, Pseudomonas acruqinosa, Microccus parabfinae и др.

    Исследования показали, что биокоррозия возникает в результате воздействия СВБ. Состав нефтепродуктов, наличие влаги, рН, температура в емкостях способствуют развитию этих микроорганизмов.

    Микологическая (грибная) коррозия – это разрушение металлов и покрытий при воздействии агрессивных сред, формирующихся в результате жизнедеятельности микроскопических (несовершенных, плесневых) грибов.

    В отличие от бактерий мицелиальные грибы непосредственно коррозию не вызывают. Поражения возникают в процессе жизнедеятельности гриба на нестойких материалах (углеводородном топливе, лакокрасочных материалах органических загрязнениях и др.). Грибному разрушению подвержены металлы, полимерные материалы, лакокрасочные покрытия, нефтепродукты и др.

    Порчу топлив вызывает Cladosporium resinae, повреждение полимеров Penicillium, Asperqillus и др. Гриб Cl. resinae является причиной разрушения хранилищ нефтепродуктов. Установлено, что развитие гриба начинается в водной фазе по границе раздела водной фазы и продукта. Содержание воды в нефтепродуктах в концентрации 1:10 4 достаточно для заселения микроорганизмов. Вода в нефтепродуктах накапливается за счет конденсации при их хранении и транспортировке, негерметичности емкостей и др.

    Биоповреждения материалов стимулируют коррозию металлов и тем самым снижают прочностные, электроизоляционные и другие свойства металлов.

    Если для развития сульфатвосстанавливающих, метанообразующих и железобактерий необходимы специальные условия, то для микрогрибов достаточно незначительного загрязнения и временного повышения влажности воздуха, и на поверхности конструкции образуется колония.

    Повреждения грибами имеют характерные признаки и особенности. Грибы не содержат хлорофилла и по способу питания относятся к гетеротрофам, т.е., как и гетеротрофные бактерии, потребляют углерод из готовых органических соединений. Размножение грибов происходит разрастанием гиф и спор.

    Основной фактор, способствующий развитию грибов, - вода, которая составляет главную часть клеточного тела гриба. Большое влияние на прорастание спор оказывает температура, интервал жизнедеятельности грибов - 0…+ 45 С. Некоторые грибы способны развиваться и при более высокой температуре (термофилы) или более низких (психрофилы) температурах.

    Особую опасность представляют грибы – продуценты кислот. Они могут стимулировать процессы коррозии. К сильным кислотообразующим грибам относят грибы рода Asperqillus и др.

    Развитие микологической коррозии схематично можно подразделить на четыре стадии:

    прорастание спор (конидий) или вегетативных элементов гриба с учетом адаптивных возможностей культуры, стимулирующей на первых этапах преимущественно контактный обмен;

    развитие мицелия с последующим формированием визуально наблюдаемых колоний гриба; локальное накопление, проявление активности вторичных метаболитов, в частности органических кислот;

    развитие коррозионных процессов, разрушающее действие гидролаз и оксидоредуктаз на полимеры, появление градиентов концентрации акцепторов электронов (кислорода);

    обильное спорообразование грибов, коррозионные повреждения (локальные или сплошные) резко выражены, на металлах возникает катодная (анодная) деполяризация.

    Виды грибов, наиболее часто стимулирующих коррозию: Asperqillus niqer, A. amstelodamii, A. fumiqatus, trichoderma lignorum, Cladosporium herbarum и др.

    Несовершенные грибы (аэробные гетеротрофы) стимулируют коррозию металлов следующим образом:

    действием органических кислот, продуцируемых грибами по реакциям

    mMe mMe n+ + ne;

    mMe n+ + n(A n - H +) nH 2 O Me m (A n -) n + nH 3 O + ;

    nH 3 O + + ne nH 2 O + (n/2)H 2 

    Органические кислоты, продуцируемые грибами, повышают агрессивность среды, стимулируя процессы коррозии металлов и деструкцию полимеров, и служат источником углерода для дальнейшего развития микроорганизмов;

    действием щелочной среды, создаваемой грибами

    Аl Al 3+ + 3e,

    Al 3+ + 3OH - AlO 2 - +H 3 O + Аl(OH) 3

    AlO 2 - + Me + MeAlO 2 ,

    H 3 O + + e H 2 O + 1/2H 2 ,

    2 Аl(OH) 3 Al 2 O 3 +3 H 2 O;

    действием окисленных ферментов с выделением перекиси водорода, а затем атомарного кислорода при ее разложении

    nH 2 O 2 n H 2 O + nO,

    mMe + nO Me m O n .

    Продукты коррозии, в свою очередь, стимулируют процесс разложения перекиси водорода. Ферменты, выделяемые грибами, - мощный фактор биоповреждений металлоконструкций. К таким ферментам относятся оксидоредуктазы и эстеразы.

    Более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит из-за появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствуют неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и так далее в условиях, казалось бы исключающих появление этих соединений.

    Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетание аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов.

    Металлы и металлопокрытия подвержены воздействию микрогрибов, причем обрастанию в различной степени подвержены почти все металлы. Продукты коррозии обнаружены на поверхностях углеродистых и низколегированных сталей, алюминиевых сплавов и латуней, металлопокрытий, избирательно – на высоколегированных сталях.

    Отмечены сезонные колебания микрофлоры: зимой доминируют железобактерии, летом – СВБ. В процессах биокоррозии принимают участие также микрогрибы (Cl. resinae), микроводоросли, вступающие в ассоциацию с бактериями.

    Повреждения носят локальный характер, глубина их иногда достигает критических величин, приводящих к нарушению герметичности или прочности конструкций.

    6. ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ

    СРЕД В ТРУБОПРОВОДНОМ ТРАНСПОРТЕ НЕФТИ И ГАЗА

    Коррозии подвергаются не только металлы, но и материалы ор­ганического и синтетического происхождения. В этом случае го­ворят о микробиологической коррозии, или биокоррозии, разрушающей многие виды промышленных изделий в результате воздействия микроорганизмов. Наболее интенсивно воздействие микро­организмов в условиях тропического климата, т. е. повышенной температуры и влажности. Однако в ряде районов нашей страны (Черноморское побережье Кавказа, Прибалтика) климатические факторы способствуют развитию микробиологической коррозии таких материалов, как дерево, ткани, кожа, картон, бумага и др., хотя и не в такой степени, как в тропиках. Подсчитано, что из общих потерь от коррозии в мировом масштабе на долю биокор­розии приходится 15-20%. Реальные потери, вероятно, значи­тельно больше.

    Главное действующее начало микробиологической коррозии - плесневые грибы, а для некоторых материалов и бактерии. Основ­ной фактор жизнедеятельности плесневых грибов - наличие во­ды. Пониженная температура сдерживает их развитие, однако при наличии воды некоторые виды грибов хорошо растут даже при температуре, близкой к 0°С. Споры плесневых грибов распростра­нены в атмосфере, но особенно много их в поверхностных слоях почвы. Плесень сравнительно легко приспосабливается к различ­ным физическим и химическим условиям среды.

    Источником питания плесени служат материалы, содержащие углерод и азот, но известны плесени, ассимилирующие фенол и каучук. Оптимальная температура для развития всех видов пле­сени находится в пределах 26-30 °С. При повышении или пони­жении температуры их развитие, замедляется. Споровые формы плесневых грибов выносят температуру 100 °С и выше.

    Под воздействием плесени материалы органического происхож­дения разрушаются, а продукты их распада могут вызывать хими­ческую коррозию и металлов. Это особенно опасно для электро­технических изделий (провода с хлопчатобумажной или шелковой оплеткой). В результате микробиологической коррозии резко сни­жается электрическая прочность изоляции и могут возникнуть пробои и короткие замыкания. Известны случаи, когда в резуль­тате микробиологической коррозии полностью нарушалось функ­ционирование механических приборов, например зеркального галь­ванометра.

    Меры защиты от биокоррозии. Наилучшей защитой при хране­нии и эксплуатации изделий служит создание условий, препятст­вующих развитию плесени. Условия эксплуатации изделий меди­цинской техники малоблагоприятны для возникновения плесени, так как изделия во время эксплуатации неоднократно стерили­зуют или подвергают влажной санитарной обработке. В связи с этим благоприятные условия для развития плесени могут появ­ляться главным образом при хранении изделий в складских помещениях. Однако при нормальной температуре хранения и при ульт­рафиолетовом облучении изделие будет надежно защищено от плесени.

    Особенно важно проветривать складские помещения. Если изде­лия влажны, то поток воздуха, даже имеющего большую относи­тельную влажность по сравнению с воздухом помещения, служит защитным фактором. Поток воздуха препятствует оседанию спор на поверхности предметов. Исходя из этого, в условиях хранения, которые записаны в ТУ на изделия медицинской техники, не предусматривается, как правило, специальных мер борьбы с биокоррозией, кроме хранения в сухих, отапливаемых помещениях. В большинстве районов СССР соблюдение указанных выше усло­вий надежно предохраняет изделия от плесневения.



    Открытие бизнеса